• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Accurate and Computational Efficient Joint Multiple Kronecker Pursuit for Tensor Data Recovery

    2021-12-11 13:30:58WeizeSunPengZhangJingxinXuandHuochaoTan
    Computers Materials&Continua 2021年8期

    Weize Sun,Peng Zhang,*,Jingxin Xu and Huochao Tan

    1Guangdong Key Laboratory of Intelligent Information Processing,College of Electronics and Information Engineering,Shenzhen University,Shenzhen,518061,China

    2Department of Housing and Public Works,Queensland,Australia

    3Customer Service Centre,Guangdong Power Grid Corporation,Guangzhou,China

    Abstract:This paper addresses the problem of tensor completion from limited samplings.Generally speaking,in order to achieve good recovery result,many tensor completion methods employ alternative optimization or minimization with SVD operations, leading to a high computational complexity.In this paper, we aim to propose algorithms with high recovery accuracy and moderate computational complexity.It is shown that the data to be recovered contains structure of Kronecker Tensor decomposition under multiple patterns,and therefore the tensor completion problem becomes a Kronecker rank optimization one, which can be further relaxed into tensor Frobenius-norm minimization with a constraint of a maximum number of rank-1 basis or tensors.Then the idea of orthogonal matching pursuit is employed to avoid the burdensome SVD operations.Based on these, two methods,namely iterative rank-1 tensor pursuit and joint rank-1 tensor pursuit are proposed.Their economic variants are also included to further reduce the computational and storage complexity,making them effective for large-scale data tensor recovery.To verify the proposed algorithms, both synthesis data and real world data,including SAR data and video data completion,are used.Comparing to the single pattern case,when multiple patterns are used,more stable performance can be achieved with higher complexity by the proposed methods.Furthermore, both results from synthesis and real world data shows the advantage of the proposed methods in term of recovery accuracy and/or computational complexity over the state-of-the-art methods.To conclude,the proposed tensor completion methods are suitable for large scale data completion with high recovery accuracy and moderate computational complexity.

    Keywords: Tensor completion; tensor Kronecker decomposition; Kronecker rank-1 decomposition

    1 Introduction

    The problem of data recovery from limited number of observed entries, referred to as matrix completion or tensor recovery problem, had attracted significant attention in the pass decade and had been applied in various fields such as recommendation system [1,2], Bioinformatics data [3],computer vision [4,5] and image data [6,7].

    In practice, the matrix data we observed is often of low rank structure.Therefore, the matrix completion problem can be solved by finding a low rank matrix to approximate the data matrix to be recovered.However, the process of rank minimization is NP-hard [8].In order to relax the non-convex NP-hard problem to a traceable and convex one, [9,10] proposed to minimize the matrix nuclear norm instead of matrix rank.Based on this concept, many algorithms, such as the singular values thresholding (SVT) [11] and singular value projection (SVP) [12] approaches.Unfortunately, a great number of singular value decomposition (SVD) operations or iterations are required for these methods, leading to high computational and storage complexity.

    In real world systems, the observed data is sometimes of high dimensional structure.The recovery of these tensor data, which can be regarded as a generalization of that of matrix completion to the high dimensional case, is becoming more and more important.It is assumed that the observed data tensor contains a low rank structure and thus the missing entries can be recovered by the minimizing the tensor rank.In fact, several tensor decomposition methods and definitions of tensor rank are employed for the completion problem.Reference [13] proposed to minimize the number of rank-1 tensors from CANDECOMP/PARAFAC (CP) decomposition to recover the original tensor data.However, the decomposition is very costly, and it might fail to give reasonable results in some cases because of the ill-posedness property [14].Other than the CP decomposition, the Tucker decomposition that yields a core tensor and corresponding subspace matrices of each dimension, are employed for tensor completion [15,16].However, these methods require the knowledge of tensor rank, and might be not applicable in some applications.

    Recently, some new types of tensor decomposition methods are proposed.By operating the 3-dimensional (3-D) tensors as 2-D matrices using the tensor product, the tensor singular value decomposition (t-SVD) is proposed [17].Then the corresponding tensor rank and tensor nuclear norm [18] are defined and used for tensor data recovery.This method can transform the decomposition of one 3-D tensor to slice-wise matrix ones.However, for tensor with number of dimension higher than 3, it will fold all the dimensions higher than 3 into the third one, resulting in a lost of higher order information.Other researchers, proposed to employ the Kronecker tensor decomposition (KTD) based on the Kronecker structure of general R-D tensor to solve the tensor completion problem [19].This approach employed the idea that folding an R-D tensor into a highorder tensor and then unfolding it into a matrix by general unfolding [20].By reducing the tensor computation to matrix computation, a similar matrix rank can be defined, and good recovery results can be obtained.However, the computational complexity of the KTD based methods are still unsatisfying because of the SVD operation of large matrices.

    Furthermore, in order to improve the efficiency of data recovery, some orthogonal rank-1 matrix and tensor pursuit approaches had been proposed [21,22].These methods transfer the minimization of the matrix rank or tensor rank to an iterative rank-1 pursuit problem, and achieve a moderate data recovery result with low computational complexity.In this work, we will propose two novel tensor completion methods based on the minimization of tensor Kronecker rank as well as technique of matching pursuit, and apply the tensor data recovery methods to several real world data completion applications.

    The remainder of the paper is organized as follows.Section 2 presents the notations and definitions.In Section 3, the tensor recovery algorithms are developed in details.Experiments are provided in Section 4 and conclusions are drawn in Section 5.

    2 Notations and Definitions

    The notations used in this paper is first defined.Scalars, vectors, matrices and tensors are denoted by italic, bold lower-case, bold upper-case and bold calligraphic symbols, respectively.The Frobenius-norm of a tensorAis defined asFurthermore, by stacking the firstF-th dimensions of anR-D tensorA∈CM1×M2×···×MRone by one into one dimension and the remaining dimensions into the other [23], the tensorAcan be unfolded into a matrix A={A}1→F∈CNF×M/NFwhereThei×iidentity matrix is symbolized as Ii, and the transpose and conjugate transpose of a vector or matrix are written asTandH.Furthermore, we definevec(A)as the vectorized result of the tensorA, and ˙a=vec(AΩ)be the vectorized ofAΩ, whereΩis the set indicating the location of tensorA.Now we go on to the definitions.

    Definition 2.1.The 2-way folding of anR-D tensorA∈CM1×M2×···×MRby a pattern {K}where K=[K1,K2,...,KR],Mr=KrLrforr=1,2,...,Rwith integersKrandLr, isB=fold(A)∈CK1×···×KR×L1×···×LRwhereB(k1,k2,...,kR,l1,l2,...,lR)=A(m1,m2,...,mR)withmr=lr(Kr?1)+kr,kr=1,2,...,Krandlr= 1,2,...,Lr.This folding procedure in fact folds ther-th and(r+R)-th dimensions ofB.

    We can now go on to define the Kronecker tensor product [19] of two tensorsA∈CK1×K2×···×KRandB∈CL1×L2×···×LRasX=B?A∈CM1×M2×···×MRwhereMr=KrLr,Y=fold{K}(X), {Y}1→R=abT, a={A}1→Rand b={B}1→R.

    Definition 2.2.The(K×L)tensor Kronecker unfolding [19] of anR-D tensorA∈CM1×M2×···×MRwithMr=KrLrunder a pattern {K}is Y(k,l)=unfold{K}(Y)of the dimensionswhose entries(k,l)are given by Y(k,l)=Y(m)for all k=[k1,k2,...,kR],kr=1,2,...,Kr, l=[l1,l2,...,lR],lr=1,2,...,Lrand m=[m1,m2,...,mR],mr=(kr?1)Lr.This unfolding can be operated by first computeY=fold{K}(X)∈CK1×···×KR×L1×···×LRand then calculate Y={Y}1→R.Then the Kronecker tensor decomposition (KTD) [19] can be defines as the Definition 2.3.

    Definition 2.3.The KTD of a tensorX∈CM1×M2×···×MRunderGpatterns1,2,...,Gis

    Following this definition, the tensor rank ofXcan be defined as the total number of Kronecker terms the joint KTD approach generates, which isFurthermore, whenG=1 andFG=1, it is called Kronecker rank-1 tensor under the pattern {KG}[19].

    3 Main Result

    The task is to recover the R-D tensorX∈CM1×M2×···×MRfrom the partly observed tensorX,denoted asXΩwhereΩis the 1/0 set indicating the location of the observed entries.By writing the tensorXas a linear combination of several Kronecker rank-1 tensors under a given set of patterns {K1,K2,...,KG}, we get:

    whereMg,fis the f-th Kronecker rank-1 tensor with theg-th pattern Kgandθg,fis the magnitude ofMg,fforg=1,2,...,Gandf=1,2,...,F.Note that here we assume that the ranks ofXgforg=1,2,...,GareF.By writingforf=1,2,...,Fandθ=[θ1;θ2;...;θG], the low rank tensor completion problem becomes:

    where ‖θ‖0denotes the number of nonzero elements ofθ.For noisy scenario, the optimization problem is ‖XΩ?where ?is a small value.The (3) can be transformed into:

    whereFis the maximum number of Kronecker rank.We can solve this problem by a greedy matching pursuit type method.

    3.1 Iterative Multiple Kronecker Tensor Pursuit

    In this Iterative multiple Kronecker Tensor Pursuit (IKTP) method, we update one Kronecker rank-1 basis tensorMnand one magnitudeθnwith one patternKh∈{K1,K2,...,KG}, whereh=(n?1)%G+1 in an iteration.Therefore, the problem (4) can be rewritten as

    whereθ=[θ1,θ2,...,θN]TandN=GF.

    Supposing that after the(k?1)-th iteration,(k?1)Kronecker rank-1 basis tensorsM1,M2,...,Mk?1and their weightsθk?1= [θ1,θ2,...,θk?1]Twere obtained.In thek-th iteration, the target is to pursue a new Kronecker rank-1 basis tensorMkfrom the residual termwhereis the recovered tensor in the(k?1)-th iteration.According to Definition 2.2, we defineRk=and theMk=unfold{Kh}(Mk),whereh=(k?1)%G+1, then the Mkcan be solved by optimizing:

    where ‖uk‖=‖‖=1.Theukandvkare pair of top left and right singular vectors of Rk,which can be solved using the power method [23,24].Then the tensorMkcan be folded formMk=ukaccording to Definition 2.2.

    After solving the new Kronecker rank-1 basis tensorMk, the weight vectorθkfor all currently available basis tensor {M1,M2,...,Mk}can be updated by:

    By reshaping the tensorXΩandinto vectorsand lettingthe optimal solutionθkof (7) is calculated as

    Then we can go on to the(k+1)-th iteration until allNranks are solved, and this iterative multiple Kronecker Tensor Pursuit (IKTP) method is now summarized in Tab.1.

    Table 1:Iterative Kronecker tensor pursuit

    3.2 Joint Multiple Kronecker Tensor Pursuit

    The proposed IKTP approach updates one Kronecker rank-1 basis tensor according to one of theGpatterns alternatively.When the number of ranks to be recovered is large, a lot of iteration is required, making the proposed approach highly computational inefficient.To overcome this problem, we propose a Joint multiple Kronecker Tensor Pursuit (JKTP) method that updates all theGKronecker rank-1 basis tensors in one iteration under the given patterns.

    According to (4), suppose that after the(k?1)-th iteration, the Kronecker rank-1 basis tensorsM1,1,...,MG,1,M1,2,...,MG,2,...,M1,k?1,...,MG,k?1and their weightsθk?1= [θ1;θ2;...;θk?1], whereforf=1,2,...,k?1, have already been computed.In thek-th iteration, the target becomes to calculate G new Kronecker rank-1 basis tensorsM1,k,...,MG,kwith unit Frobenius norm, from the recover tensor and the residual term arerespectively.

    Under the given patterns {K1,K2,...,KG}, we defineandMg,k=unfold{Kg}forg=1,2,...,G, and proposed to solve theMg,k,g=1,2,...,G, by:

    where ‖ug,k‖=‖vg,k‖=1.Theug,kandvg,kare pair of top left and right singular vectors of,which can be solved using the power method [25,26].The new Mg,kcan be available by computingThen theMg,kcan be retrieve from the updated Mg,kforg=1,2,...,G.

    After solving the new Kronecker rank-1 basis tensorsM1,k,...,MG,k, we update the weightsθk=[θ1;θ2;...;θk] for all currently available basis tensorsM1,1,...,MG,1,M1,2,...,MG,2,...,M1,k,...,MG,kby solving the following least squares regression problem:

    Then the optimal solutionθkof (10) is given by

    Table 2:Joint Kronecker tensor pursuit

    3.3 Economic Algorithms

    In each iteration, the proposed IKTP algorithm will track all pursued bases and save them in the memory, leading to a high requirement of storage space.Furthermore, when the number of iteration is large, the LS solution (8) will compute the inverse of a large matrix, making it be rather computationally unattractive.To overcome these problems, an economic updating scheme

    which updateα=[α1,α2] instead of the magnitude termθcan be used in Algorithm 1, where theαcan be figured by

    And the updated recovered tensor becomesYk=α1Yk?1+α2Mk.

    Similarly, the economic updating technique can be used to updateα=[α1,α2,...,αG+1] for the JKTP approach instead of (10), whereαis calculated as

    And the recovered tensor can be obtained by

    4 Performance Evaluation

    In this section, we conduct experiments based on both visual data and SAR imaging data completion.The proposed IKTP and JKTP methods as well as they economic realization, IKTPecon and JKTP-econ, are evaluated, and the state-of-the-art algorithms, including Tucker [15],KTD [19], R1TP [21] and R1MP [22] are employed for comparison.For all algorithms, the stop criterion is met if the two conditions are reached:‖Xk?Xk?1‖F(xiàn) < ε= 10?6or a maximum number ofimaxis satisfied.All the experiments are performed using MATLAB running on Inter(R) Core(TM) i7-8700@3.2 GHz for 100 Monte Carlo trials.

    4.1 Image Recovery

    First, the problem of image recovery by JKTP, JKTP-econ, IKTP, IKTP-econ, Tucker [15],KTD [19], and R1TP [22] methods from randomly sampled entries is tackled.Six images of dimensions 256×256×3 and 1024×1024×3 that separated into 2 groups are used for testing and they are shown in Fig.1, we can infer that the completion result of the images from the first group might be better than that from the second one, as the pixels in the image form the former group is more related to each other.

    Figure 1:Images for testing:group 1 contain some patterns and those in group 2 are not

    In the first test, the convergence performances of the proposed algorithms are verified.The images of dimensions 256×256×3 are used for the proposed methods.The patterns used in this test are {K1}=[8,8,1], {K2}=[16,16,1],{K3}=[32,32,1], {K4}=[64,64,1], and the observation rate is set to be 0.2.Note that in order to achieve a good performance, the patterns are suggested to be set as square as possible.By writing ‘JKTP-i,’‘IKTP-i,’‘JKTP-econ-i’and ‘IKTP-econ-i,’i=1,2,3,4, we mean that the proposed approach will use i patterns out if all 4 patterns for data recovery, and the patterns used are randomly selected in each Monte Carlo trial.The PSNR results of the two groups images data under numbers of iteration in Figs.2 and 3, respectively.It is shown that the JKTP and JKTP-econ algorithms can converge within 15 iterations and the IKTP and IKTP-econ approaches will converge within 25 iterations when the n umber of patterns is larger than 3.In the remainder image and video experiments, the maximum numbers of iteration are set to be 20 and 30 for these methods, respectively, and we will use at least 3 patterns for proposed algorithms.

    Figure 2:PSNR vs.numbers of iterations with 20% observed entries for group 1 images

    In the second test, the completion performances of the proposed approaches under different number of patterns and the state-of-the-art methods for image recovery under 10% observation rate are tested.The four patterns are the same as those in the first test.The average PSNR and SSIM results as well as the computational time in seconds of different methods on the first image, namely, the ‘Group 1:Beans’under the resolution of 256×256×3 are shown in Tab.3.Similar performance can be observed for other images in Fig.1, and thus their recovery results are not shown here.It is shown that when more pattern used, better performance the proposed approached can achieve.Tucker and R1MP methods as well as the KTD approach with i = 1,2,3,4 patterns are also included for comparison.It is shown that the JKTP and JKTP-econ methods give inferior results.For i ≥2, all the proposed algorithms can give better performance than the Tucker and R1MP approaches.Furthermore, the computational complexity of the proposed methods are much smaller than KTD, making them more attractive in dealing image data.

    Figure 3:PSNR vs.numbers of iterations with 20% observed entries for group 2 images

    Table 3:Image recovery performance of different algorithms

    In the third test, the performance under different percentage of observation percentages,ranging from 2% to 10 %, is evaluated.The images with resolution 1024×1024×3 are used.We test the proposed methods with 4 patterns {K1}=[16,16,1], {K2}=[32,32,1], {K3}=[64,64,1]and {K4}=[16,16,1].The other parameters for the proposed approaches are the same as those in the previous test.The PSNR and SSIM results of the two groups images are shown in Figs.4 and 5, respectively.Generally speaking, the proposed methods can give 3 to 7dB gain over the other algorithms in all cases.The average computational time of the JKTP, JKTP-econ, IKTP,IKTP-econ, KTD, R1MP and Tucker methods are 54.41, 30.54, 14.75, 9.51, 1.57×103, 17.54 and 77.13 s.It is shown that the proposed methods run slightly slower than the R1MP methodology because the R1MP is matrix based rank-1 pursuit method while the proposed methods are tensor based ones.Comparing to the other methods, the computational complexity of proposed algorithms are much smaller, indicating the efficiency of the proposed approaches especially when the dimensions of the data to be recovered is large.

    Figure 4:Average PSNR and SSIM vs.observation percentage of group 1 images (a) PSNR(b) SSIM

    4.2 Video Inpainting

    In this part, we test the algorithms JKTP, JKTP-econ, IKTP, IKTP-econ, Tucker [15],R1MP [19] and R1TP [21] under ‘Gun Shooting’video [25,26] completion from randomly sampled entries, and the first and last frames of the video are shown in Fig.6.Note that the KTD approach is not include for comparison because of its high computational complexity.The video is of dimensions 200×520×3×80.

    And the situations of different number of frames ranging from 10 to 80 are tested.The observation rate is set to 0.03, and for all the methods, a maximum number of 50 iterations is used.The patterns for the proposed methods are {K1}= [20,52,3,5], {K2}= [40,104,3,5],{K3}= [50,130,3,5] and {K4}= [20,52,1,5], {K5}= [40,104,1,5], {K6}= [50,130,1,5].The PSNR and SSIM results are shown in Fig.7 and the computational complexity results are shown in Fig.8.Note that for the proposed methods, ‘?3’means that only the first 3 patterns are used, while ‘?6’means that all 6 patterns are employed in data recovery.Generally speaking, the proposed methods give the best PSNR performance when the number of frames used is higher than 20.It is worth noting that although the proposed methods with 3 patterns perform worse than R1TP method when the number of frames used is less than 20, when more frames are used,the recovery performance of the proposed approaches increase rapidly, and far outperform the other methods.

    Figure 5:Average PSNR and SSIM vs.observation percentage of group 2 images (a) PSNR(b) SSIM

    Figure 6:video data for testing

    4.3 High Resolution SAR Imaging

    In the end, we evaluate the algorithms with under-sampled high resolution SAR imaging data [27,28].We employ the model shown in Fig.9 to conduct our experiments as follows.First, scan the test scene to generate the dataXby using the SAR system, and the scanning parameters follow those in [27].Note that the true imageIcan be computed from the dataXby the FFT process.Furthermore, the dataXcan be sampled randomly under an observation rate to obtainMΩ.Finally, the tensor recovery methods can be applied for the recovery of the original data as, and the recovered image can be computed asThe mean square error (MSE)betweenXandis used to evaluate the performance of the proposed four methods, R1MP [27],Tucker [18] and KTD [22] methods.The tested high resolution SAR imaging scene with the size 6200×12000 is shown in Fig.10a.

    Figure 7:PSNR and SSIM results vs.number of frames (a) PSNR (b) SSIM

    Figure 8:Computational complexity vs.number of frames

    Figure 9:Model of SAR image recovery

    Figure 10:The original, sampled and recovered SAR images (a) Original (b) Sampled (c) JKTP(d) JKTP-econ (e) IKTP (f) IKTP-econ (g) R1MP (h) Tucker

    Considering that the size 6200 × 12000 of the SAR imaging data is too large to be computed effectively by one computer, we will not complete the whole SAR data in one tune.We complete small subdata whose data dimensions are 620 × 50, 620 × 200 and 620 × 400 in one time and repeat the process for 2400, 600 and 300 times, respectively, for the whole image.The patterns for the proposed methods with different completed data size are= [155,2],

    The situations of different observation percentages ranging from 10% to 30% are tested and a maximum number of 40 iterations is used.The SAR imaging scene sampled under the observation percentage 10% is shown in Fig.10b, and the SAR imaging scenes with the size of 620×200 recovered by all the algorithms under 10% observation rate are shown in Figs.10c-10f.The completion results of the four methods including MSE performances and CUP times are listed in Tab.4.Generally speaking, the proposed methods can give the best performance with moderate computational complexity among all the algorithms.

    Table 4:Completion results with different step-sizes of completion under 10% to 30% observed entries

    5 Conclusion

    In this paper, the novel tensor completion algorithms combining the ideas of tensor Kronecker Decomposition and rank-1 tensor pursuit, named IKTP and JKTP, are proposed and applied to color image, video and SAR image inpainting.A novel weight update algorithm, to reduce the time and storage complexity, is also derived.Experimental results show that the proposed methods outperform the state-of-the-art algorithms in terms of PSNR, SSIM and MSE.For the tensor based algorithms, the results also show the advantage of the proposed methods in terms of computational complexity.

    Funding Statement:The work described in this paper was supported in part by the Foundation of Shenzhen under Grant JCYJ20190808122005605, and in part by National Science Fund for Distinguished Young Scholars under grant 61925108, and in part by the National Natural Science Foundation of China (NSFC) under Grant U1713217 and U1913203.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国内精品久久久久精免费| 亚洲国产高清在线一区二区三| 日韩精品青青久久久久久| 五月玫瑰六月丁香| 一个人免费在线观看电影| av女优亚洲男人天堂| 天堂影院成人在线观看| 九九在线视频观看精品| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久国产精品人妻aⅴ院| 日韩一本色道免费dvd| 97超视频在线观看视频| 99久久无色码亚洲精品果冻| 中文字幕免费在线视频6| 亚洲,欧美,日韩| 97碰自拍视频| 国产一区二区亚洲精品在线观看| 日韩 亚洲 欧美在线| 精品久久久久久久久久久久久| 亚洲国产精品合色在线| 日本与韩国留学比较| 亚洲熟妇熟女久久| 国产真实乱freesex| 国产 一区 欧美 日韩| 天天一区二区日本电影三级| 最新中文字幕久久久久| 精品免费久久久久久久清纯| 国产精品女同一区二区软件| 国产成人福利小说| 亚洲国产精品成人综合色| 日韩欧美精品免费久久| 久久久色成人| 中文字幕精品亚洲无线码一区| 中出人妻视频一区二区| 亚洲久久久久久中文字幕| 啦啦啦韩国在线观看视频| 大香蕉久久网| 亚洲欧美精品自产自拍| 午夜福利高清视频| 日日摸夜夜添夜夜爱| 亚洲精品久久国产高清桃花| 国产精品美女特级片免费视频播放器| 精品久久久久久成人av| 国内精品久久久久精免费| 欧美不卡视频在线免费观看| 亚洲经典国产精华液单| 午夜福利在线在线| 搡女人真爽免费视频火全软件 | 亚洲最大成人手机在线| 久久精品夜色国产| 欧美另类亚洲清纯唯美| 国内精品久久久久精免费| 欧美人与善性xxx| av福利片在线观看| 大型黄色视频在线免费观看| 精品人妻视频免费看| 日本精品一区二区三区蜜桃| 偷拍熟女少妇极品色| 日韩高清综合在线| 最新在线观看一区二区三区| 又爽又黄a免费视频| 亚洲成av人片在线播放无| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av| 国模一区二区三区四区视频| 黄色欧美视频在线观看| 大型黄色视频在线免费观看| а√天堂www在线а√下载| 免费看日本二区| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 亚洲国产精品国产精品| 亚洲电影在线观看av| 波多野结衣高清作品| 久久午夜亚洲精品久久| 午夜日韩欧美国产| 精品人妻视频免费看| av在线播放精品| 免费看日本二区| 黄色一级大片看看| 久久婷婷人人爽人人干人人爱| 午夜福利在线观看吧| 又爽又黄a免费视频| 成人亚洲欧美一区二区av| 国产成人91sexporn| 亚洲精品久久国产高清桃花| 99热这里只有是精品50| 麻豆久久精品国产亚洲av| 亚洲av成人av| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 欧美日韩在线观看h| 亚洲七黄色美女视频| 色av中文字幕| 亚洲中文字幕一区二区三区有码在线看| 97超视频在线观看视频| 97超级碰碰碰精品色视频在线观看| 日日摸夜夜添夜夜添av毛片| 日本 av在线| 性插视频无遮挡在线免费观看| 老司机午夜福利在线观看视频| 少妇的逼水好多| 久久精品91蜜桃| 香蕉av资源在线| 99久久精品国产国产毛片| 老师上课跳d突然被开到最大视频| 亚洲中文字幕日韩| 舔av片在线| 欧美成人精品欧美一级黄| 大香蕉久久网| 香蕉av资源在线| 最近在线观看免费完整版| 天堂av国产一区二区熟女人妻| 日本五十路高清| 日本爱情动作片www.在线观看 | 美女黄网站色视频| 最近的中文字幕免费完整| 在线播放无遮挡| 亚洲欧美日韩无卡精品| 在线观看午夜福利视频| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 白带黄色成豆腐渣| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 成年女人看的毛片在线观看| 日本免费a在线| 亚洲人成网站在线播| av天堂中文字幕网| 成人特级av手机在线观看| 色视频www国产| 网址你懂的国产日韩在线| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 成人精品一区二区免费| 色在线成人网| 18禁裸乳无遮挡免费网站照片| 午夜精品一区二区三区免费看| 人人妻,人人澡人人爽秒播| 国产黄色小视频在线观看| 在线播放国产精品三级| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 成人亚洲精品av一区二区| 国产老妇女一区| 99在线人妻在线中文字幕| 热99re8久久精品国产| 国产精品99久久久久久久久| 精品一区二区免费观看| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 91久久精品国产一区二区三区| 中出人妻视频一区二区| 欧美一区二区精品小视频在线| av在线天堂中文字幕| 国产精品久久电影中文字幕| 1000部很黄的大片| 国产高清有码在线观看视频| 乱码一卡2卡4卡精品| 一进一出抽搐gif免费好疼| 免费大片18禁| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 久久6这里有精品| 国产成人a区在线观看| 国产三级中文精品| 97热精品久久久久久| 可以在线观看毛片的网站| 日韩精品中文字幕看吧| 久久中文看片网| 最近2019中文字幕mv第一页| .国产精品久久| 国产男人的电影天堂91| 蜜桃久久精品国产亚洲av| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 日本欧美国产在线视频| 久久精品国产亚洲av香蕉五月| 亚洲精品国产av成人精品 | 一级毛片久久久久久久久女| 亚洲欧美精品综合久久99| av福利片在线观看| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 身体一侧抽搐| 六月丁香七月| 午夜免费男女啪啪视频观看 | 观看免费一级毛片| 久久欧美精品欧美久久欧美| 国产成人影院久久av| 赤兔流量卡办理| 午夜a级毛片| 麻豆国产av国片精品| 欧美日韩国产亚洲二区| 少妇的逼好多水| 成熟少妇高潮喷水视频| 波多野结衣高清无吗| 欧美成人a在线观看| 真人做人爱边吃奶动态| 国产成年人精品一区二区| 干丝袜人妻中文字幕| 亚洲专区国产一区二区| 中国国产av一级| 级片在线观看| 搡老岳熟女国产| 欧美色视频一区免费| 欧美+日韩+精品| 亚洲18禁久久av| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼| 丝袜美腿在线中文| 国产亚洲精品av在线| 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 日韩精品青青久久久久久| videossex国产| 在线播放无遮挡| av免费在线看不卡| 欧美成人免费av一区二区三区| 91久久精品电影网| 久久久久国内视频| 国产精品乱码一区二三区的特点| a级毛片a级免费在线| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 18禁裸乳无遮挡免费网站照片| 尾随美女入室| 九色成人免费人妻av| 极品教师在线视频| 99国产极品粉嫩在线观看| 日本一二三区视频观看| .国产精品久久| 俄罗斯特黄特色一大片| 成人综合一区亚洲| 精品乱码久久久久久99久播| 精品99又大又爽又粗少妇毛片| 成人毛片a级毛片在线播放| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品在线观看| 国产精品久久久久久久电影| 亚洲高清免费不卡视频| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 精品久久久久久久久久免费视频| 日韩精品有码人妻一区| 性欧美人与动物交配| 身体一侧抽搐| 国产精华一区二区三区| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 久久久成人免费电影| 成年免费大片在线观看| 日日啪夜夜撸| 在线免费十八禁| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 成人综合一区亚洲| 日韩三级伦理在线观看| av黄色大香蕉| 久久久成人免费电影| 一级av片app| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久com| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 日本免费a在线| 免费一级毛片在线播放高清视频| 97超视频在线观看视频| 国产综合懂色| 日日撸夜夜添| 久久久久久久久久久丰满| 美女大奶头视频| 国产精品美女特级片免费视频播放器| 久久精品91蜜桃| 男女视频在线观看网站免费| 大香蕉久久网| 99国产精品一区二区蜜桃av| 熟妇人妻久久中文字幕3abv| 我要搜黄色片| 国产精品亚洲美女久久久| 国产黄a三级三级三级人| 亚洲第一电影网av| 一区福利在线观看| 欧美成人精品欧美一级黄| 神马国产精品三级电影在线观看| 三级毛片av免费| 身体一侧抽搐| 好男人在线观看高清免费视频| 国产老妇女一区| 久久6这里有精品| 亚洲性久久影院| 欧美性猛交黑人性爽| 亚洲人成网站高清观看| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 亚洲乱码一区二区免费版| av女优亚洲男人天堂| 欧美日韩一区二区视频在线观看视频在线 | 免费av不卡在线播放| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 国产成人福利小说| 日日摸夜夜添夜夜添小说| 国产私拍福利视频在线观看| 国产大屁股一区二区在线视频| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 丰满的人妻完整版| 国产乱人偷精品视频| 男人舔女人下体高潮全视频| 国产91av在线免费观看| 欧美日韩精品成人综合77777| 国产亚洲欧美98| 神马国产精品三级电影在线观看| 秋霞在线观看毛片| 久久精品人妻少妇| 热99re8久久精品国产| 国产高潮美女av| 日本欧美国产在线视频| 国产免费一级a男人的天堂| 亚洲欧美清纯卡通| 国产一级毛片七仙女欲春2| 插阴视频在线观看视频| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 日本黄大片高清| 一边摸一边抽搐一进一小说| 在线天堂最新版资源| 中国美女看黄片| 国产黄片美女视频| 嫩草影院入口| 插逼视频在线观看| 久久久久九九精品影院| 日本黄色视频三级网站网址| 免费观看的影片在线观看| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 午夜亚洲福利在线播放| 黄色一级大片看看| 亚洲婷婷狠狠爱综合网| 三级男女做爰猛烈吃奶摸视频| 一区二区三区四区激情视频 | 精品久久久久久久久亚洲| 又爽又黄无遮挡网站| 无遮挡黄片免费观看| 99热这里只有是精品在线观看| 日日啪夜夜撸| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 欧美3d第一页| 美女免费视频网站| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 人妻久久中文字幕网| 美女免费视频网站| 亚洲久久久久久中文字幕| 国内揄拍国产精品人妻在线| 尤物成人国产欧美一区二区三区| 色吧在线观看| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 国产亚洲精品av在线| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看 | 一本一本综合久久| 日本免费一区二区三区高清不卡| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 久久精品夜色国产| 国产精品无大码| 老司机午夜福利在线观看视频| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 色吧在线观看| 欧美最黄视频在线播放免费| or卡值多少钱| 国产免费男女视频| 天天躁日日操中文字幕| 欧美日韩综合久久久久久| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 乱系列少妇在线播放| 天天躁夜夜躁狠狠久久av| 热99re8久久精品国产| 婷婷精品国产亚洲av在线| 麻豆av噜噜一区二区三区| 日本与韩国留学比较| 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看 | 波多野结衣巨乳人妻| 激情 狠狠 欧美| 成人永久免费在线观看视频| 夜夜爽天天搞| 亚洲第一区二区三区不卡| 99久国产av精品国产电影| 国产女主播在线喷水免费视频网站 | 精品午夜福利视频在线观看一区| 欧美日韩在线观看h| 国产v大片淫在线免费观看| 久久热精品热| 国产欧美日韩一区二区精品| 97碰自拍视频| 晚上一个人看的免费电影| 亚洲美女视频黄频| 精品一区二区三区av网在线观看| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| 午夜亚洲福利在线播放| 变态另类成人亚洲欧美熟女| 国产片特级美女逼逼视频| 嫩草影视91久久| 美女高潮的动态| 黄片wwwwww| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 大又大粗又爽又黄少妇毛片口| 久久久精品94久久精品| 国产精品99久久久久久久久| 亚洲婷婷狠狠爱综合网| 免费在线观看影片大全网站| 99热6这里只有精品| 亚洲国产精品sss在线观看| 成熟少妇高潮喷水视频| 亚州av有码| 波多野结衣巨乳人妻| 观看美女的网站| 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站| 国产视频内射| 少妇丰满av| 最近最新中文字幕大全电影3| 卡戴珊不雅视频在线播放| 亚洲专区国产一区二区| 亚洲欧美中文字幕日韩二区| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 婷婷六月久久综合丁香| 青春草视频在线免费观看| 亚洲无线在线观看| 大香蕉久久网| 久久久色成人| 午夜福利18| 亚洲人成网站在线播| 丰满人妻一区二区三区视频av| 日韩一区二区视频免费看| 久久综合国产亚洲精品| 亚洲av二区三区四区| 一本一本综合久久| 国产精品福利在线免费观看| 亚洲国产精品国产精品| 亚洲国产欧美人成| 亚洲国产精品合色在线| 日本欧美国产在线视频| 久久人人精品亚洲av| 日本在线视频免费播放| 麻豆国产97在线/欧美| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 国产女主播在线喷水免费视频网站 | 久久精品91蜜桃| 午夜激情欧美在线| 成人国产麻豆网| 国内精品久久久久精免费| av在线天堂中文字幕| 亚洲经典国产精华液单| 久99久视频精品免费| 亚洲精品日韩av片在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产国拍精品亚洲av在线观看| 亚洲精华国产精华液的使用体验 | 亚洲美女搞黄在线观看 | 国产探花极品一区二区| 日本一二三区视频观看| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 精品久久国产蜜桃| 大香蕉久久网| 亚洲欧美中文字幕日韩二区| 欧美日韩精品成人综合77777| 男女那种视频在线观看| 中文字幕熟女人妻在线| 亚洲专区国产一区二区| 热99re8久久精品国产| 男女下面进入的视频免费午夜| 日本一本二区三区精品| 久久综合国产亚洲精品| 全区人妻精品视频| 韩国av在线不卡| 日韩制服骚丝袜av| 中文字幕av在线有码专区| 成人午夜高清在线视频| 两个人的视频大全免费| 男人狂女人下面高潮的视频| 国产成年人精品一区二区| 欧美日韩国产亚洲二区| 春色校园在线视频观看| 日产精品乱码卡一卡2卡三| 亚洲图色成人| 成年女人永久免费观看视频| 老熟妇乱子伦视频在线观看| 能在线免费观看的黄片| 日本色播在线视频| 男女那种视频在线观看| 少妇裸体淫交视频免费看高清| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| www日本黄色视频网| 人妻丰满熟妇av一区二区三区| 天美传媒精品一区二区| 色哟哟哟哟哟哟| 中出人妻视频一区二区| 久久精品影院6| 不卡视频在线观看欧美| 国产精华一区二区三区| 精品人妻视频免费看| 淫妇啪啪啪对白视频| 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 日本撒尿小便嘘嘘汇集6| 日日撸夜夜添| 国产精品一二三区在线看| www.色视频.com| 午夜视频国产福利| 六月丁香七月| 亚洲真实伦在线观看| 99久久成人亚洲精品观看| 综合色av麻豆| 女同久久另类99精品国产91| 国产亚洲欧美98| 99热只有精品国产| av在线亚洲专区| 国产亚洲av嫩草精品影院| 少妇人妻一区二区三区视频| 日韩大尺度精品在线看网址| 最近中文字幕高清免费大全6| 我的老师免费观看完整版| 色av中文字幕| a级毛片免费高清观看在线播放| av天堂中文字幕网| 夜夜夜夜夜久久久久| 亚州av有码| 日韩,欧美,国产一区二区三区 | 成人无遮挡网站| 久久欧美精品欧美久久欧美| 中文字幕人妻熟人妻熟丝袜美| 俄罗斯特黄特色一大片| 亚洲欧美精品自产自拍| 成人亚洲精品av一区二区| 久久久久久国产a免费观看| .国产精品久久| 国产精品一二三区在线看| 深夜精品福利| 国产精品一区二区三区四区免费观看 | 亚洲色图av天堂| 国产中年淑女户外野战色| 免费电影在线观看免费观看| 不卡视频在线观看欧美| 乱系列少妇在线播放| 免费av毛片视频| 中文资源天堂在线| 在现免费观看毛片| 午夜a级毛片| 亚洲成av人片在线播放无| 国产亚洲精品久久久com| 精品久久久久久久久亚洲| 麻豆一二三区av精品| 亚洲va在线va天堂va国产| 97人妻精品一区二区三区麻豆| 啦啦啦观看免费观看视频高清| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 天堂影院成人在线观看| 日本a在线网址| 久久精品人妻少妇| av在线老鸭窝| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品日韩在线中文字幕 | 12—13女人毛片做爰片一| 亚洲不卡免费看| 深爱激情五月婷婷| 国产高潮美女av| 在线播放国产精品三级| 一个人免费在线观看电影| 午夜福利高清视频| 乱码一卡2卡4卡精品| 一区二区三区四区激情视频 | 免费大片18禁| 老熟妇仑乱视频hdxx| 老师上课跳d突然被开到最大视频| 亚洲七黄色美女视频| 此物有八面人人有两片| 亚洲在线观看片| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩无卡精品| 麻豆一二三区av精品| 免费观看的影片在线观看| 男女下面进入的视频免费午夜| 日韩成人伦理影院| 在线免费十八禁|