• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial-Resolution Independent Object Detection Framework for Aerial Imagery

    2021-12-11 13:30:26SidharthSamantaMrutyunjayaPandaSomulaRamasubbareddySankarandDanielBurgos
    Computers Materials&Continua 2021年8期

    Sidharth Samanta,Mrutyunjaya Panda,Somula Ramasubbareddy,S.Sankar and Daniel Burgos

    1Deptartment of CSA,Utkal University,Bhubaneswar,751004,India

    2Department of Information Technology,VNRVJIET,Hyderabad,500090,India

    3Department of CSE,Sona College of Technology,Salem,636005,India

    4Research Institute for Innovation&Technology in Education(UNIR iTED),Universidad Internacional de La Rioja(UNIR),Logro?o,26006,Spain

    Abstract:Earth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms.The progression of deep learning and computer vision methods and the availability of heterogeneous multispectral remote sensing data make the field more fertile for research.With the evolution of optical sensors, aerial images are becoming more precise and larger, which leads to a new kind of problem for object detection algorithms.This paper proposes the“Sliding Region-based Convolutional Neural Network(SRCNN),”which is an extension of the Faster Region-based Convolutional Neural Network(RCNN) object detection framework to make it independent of the image’s spatial resolution and size.The sliding box strategy is used in the proposed model to segment the image while detecting.The proposed framework outperforms the state-of-the-art Faster RCNN model while processing images with significantly different spatial resolution values.The SRCNN is also capable of detecting objects in images of any size.

    Keywords: Computer vision; deep learning; multispectral images; remote sensing; object detection; convolutional neural network; faster RCNN;sliding box strategy

    1 Introduction

    Surveillance of a large geographical area through aerial imagery is undoubtedly a faster and less time-consuming process than conventional methods that use a horizontal perspective.Although there are some cases where aerial imagery cannot be used for surveillance, like person or facial detection and pedestrian or vehicle license plate detection, it can be used for detection of the number and types of vehicles in a city or any geographical area.To perform this task using a horizontal perspective, it is very expensive in terms of planning, procurement and execution, but computationally it is quite simple to analyse through an aerial perspective.The field of computer vision has resolved numerous problems of surveillance, irrespective of their type and complexity.Surveying the Earth from an aerial view by using deep learning has not only reduced the time and cost but has also become more accurate and robust with the availability of training data and computation power.There are many application areas, like the study of vegetation distribution in an area and changes in shape and size of agricultural land, towns, or slums, where the machine outsmarts humans concerning time as well as efficiency.

    1.1 Object Detection

    Object detection is a computer vision technique widely used in surveillance.It is generally used to determine the number, type and position of a particular object in an image.There are many state-of-the-art object detection frameworks such as the Region-based Fully Convolutional Network (RFCN) [1], Single-Shot Detector (SSD) [2], You Only Look Once (YOLO) [3] and RCNN [4] and its multiple variants, such as Mask RCNN [5], Fast RCNN [6], Faster RCNN [7],YOLO version 2 [8] and YOLO version 3 [9].Each of these frameworks uses different methods and principles to detect objects, but all are based on deep neural networks.This study uses Faster RCNN rather than SSD and YOLO because of its accuracy [10], although it is slower and more resource-heavy than SSD and YOLO.When detecting objects from an extremely large aerial image,time and computational resources can be traded for accuracy.

    The change in the size of the objects in the image makes the detection process more complex for the algorithm.When a trained model processes an input image with higher or lower spatial resolution than the training image dataset, the Region Proposal Network (RPN) of Faster RCNN fails to provide a Region of Interest (RoI).This is because the RPN uses similar sized anchor boxes as evaluated during the training process.For example, an object detection model trained on a dataset with a spatial resolution of 7.5 cm cannot perform well with an image with a spatial resolution of 30 cm.The same thing happens for the size of the image.A model trained on a dataset of images with the dimensions 250 px × 250 px cannot perform accordingly with larger images with the dimensions 1000 px × 1000 px or smaller images with the dimensions 100 px ×100 px.

    1.2 Problem Statement

    Innovations in optical sensors, storage devices and sensor carriers like satellites, airplanes and drones have revolutionized the remote sensing and Geographic Information System (GIS)industries.These sensors are producing a huge number of multispectral images with different characteristics, such as spatial resolution.The spatial resolution of an aerial image can be defined as the actual size of an individual pixel on the surface, as demonstrated in Fig.1.Images with lower spatial resolution values seem to be clearer and larger than those with relatively higher spatial resolution values.

    An object detection model trained with an arial image dataset will perform accordingly with test images having the same spatial resolution, but its accuracy drops drastically when tested with images having a different spatial resolution.Almost all existing state-of-the-art frameworks fail to detect objects in this scenario.Though image cropping can be used where the spatial resolution of the training image is less than that of the testing image, the reverse (i.e., the spatial resolution of the training image is higher than that of the testing image) cannot be done with this technique.

    Figure 1:250 × 250 px of four different images with different spatial resolution values

    1.3 Research Contributions

    This paper proposes an extension to the state-of-the-art Faster RCNN.It is based on the sliding windows strategy which uses a mathematically-derived optimal window size for precise detection.The primary use cases of the proposed model can be noted as follows:

    (i) To detect objects from images of any spatial resolution value and size, such as detection of vehicles in a city [11] and tree crowns in a forest [12].

    (ii) For object detection in images captured from drones [13] or aircraft [14], where the elevation is not fixed, as elevation is directly proportional to the spatial resolution value, where the sensor remains constant.

    (iii) For the detection of small and very small objects, such as headcounts in protests or social gatherings [15,16].

    (iv) It can also be used for microscopic object detection such as cells [17], molecules [18],pathogens [19], red blood cells [20] and blob objects [21].

    The rest of the paper is organized as follows.Section 2 provides an overview of some critical works on object detection in remote sensing and aerial imagery and methods to deal with size and resolution.Sections 3 and 4 provide the proposed model and its results, respectively.Finally,Section 5 contains the conclusion.

    2 Related Works

    Many pieces of literature have reviewed the application of deep-learning-based computer vision techniques in aerial imagery.The authors [22] surveyed about 270 publications related to object detection.This includes the detection of objects by (i) matching the template, (ii) matching the knowledge, (iii) image analysis and (iv) machine learning.They also raised a concern about the availability of labelled data for supervised learning.Han et al.[23] proposed a framework in,where a weakly labelled dataset can be used to extract high-level features.The problem of object orientation in remote sensing imagery is addressed in [24-26].

    Diao et al.[27] proposed a deep belief network in, whereas [28] used a convolutional neural network for object detection.In [29], a basic RCNN model is used and in [30] a single-stage densely connected feature pyramid network is used for object detection specifically for very-highresolution remote sensing imagery.The studies in [31,32] used the SSP and the state-of-the-art YOLO 9000, respectively.Huang et al.used a densely connected YOLO based on the SSP in [33].The proposed model aims to provide a framework that can process any aerial image with any value of spatial resolution.Although very few studies addressed this problem, the semantics of [34-36] and the method used in [37] are close to the working principle of the proposed model.

    3 Proposed Method

    This study proposes an extension that is based on the sliding window strategy; therefore, it is called the Sliding Region-based Convolutional Neural Network.In the proposed model, the slider box shown in Fig.2i(a) will roam all over the input image just like a convolution operation with a determined stride value.The stride value is derived from the spatial resolution of the input image.At each instance of the box position, the model will perform the object detection process according to the stock Faster RCNN on the fragment of the image that falls under the footprint of the slider box as demonstrated in Fig.2i(b).Fig.2 shows the architecture of the proposed SRCNN.The proposed SRCNN is divided into three phases.

    ? Phase 1:Image Analysis

    ? Phase 2:Image Pre-Processing

    ? Phase 3:Object Detection

    Figure 2:Architecture of proposed sliding RCNN

    3.1 Phase 1:Image Analysis

    Phase 1 of the proposed model includes data acquisition, data analysis and a box dimension proposal.This phase plays a vital role in normalizing the spatial resolution factor.As illustrated in Fig.1 in Section 1.2, the size changes according to the spatial resolution value.So, the image has to be scaled in such a way that the size of the object in the training and testing images feels similar in terms of spatial view.In Fig.3, the visual object size feels very similar in (a) and(b) as the image in (b) is down-scaled almost three times.For the proposed model, the original dimension of the scaled image can be the size of the slider box.The box length m can be derived from the average length s of the input image with dimensions a × b and the spatial resolution of both training image r and testing image R, as follows:

    Thus, the slider box width is the product of the training image width and the ratio between the spatial resolution of the training image and the input image.This value is also helpful when cropping a large image to process individually.

    Figure 3:Scaling of image.(a) Spatial resolution:25 cm/px image size:250 × 250 px, (b) spatial resolution:7.5 cm/px image size:848 × 848 px

    3.2 Phase 2:Image Pre-Processing

    Phase 2 of the proposed model is image pre-processing, which includes image size analysis and padding.The size of the slider box, evaluated in Section 3.1, depends upon the spatial resolutions of the training and testing image and the dimensions of the training image.But the slider box has to traverse every pixel present in the testing image, so it must be compatible with the image size.In Fig.4ii, the original image is too short to accommodate the last set of slider boxes.As the image area covered by these last boxes will be exempted from the object detection process, it cannot be ignored.This problem can be solved by either image resizing or image padding, in such a way that the end of the last slider box will converge with the end of the image, as demonstrated in Figs.4i and 4iii.

    Figure 4:Overlapping problem and difference between resizing and padding

    It is observed in Fig.4 that the object size in the padded image is the same as the original image, but the object size in the resized image is bigger than the original, and this is similar to Fig.1.This means that resizing the image results in a significant change in spatial resolution.Thus, the proposed model has used the padding method over resizing.The given image needs to be padded with 0s in such a way that the sliding boxes can cover the entire image area.To determine the padding amount, two cases have to be considered for the slider box of length m, which takes p number of steps to cover the image having length n with O percentage of overlapping.The best and worst cases are demonstrated in Fig.5.

    Figure 5:Box sliding demonstration

    a)Best Case:

    The last box converges perfectly with the image as shown in Fig.5 (case 1).The size of the image is calculated as follows:

    b)Worst Case:

    The last box does not converge with the image as shown in Fig.5 (case 2).The box will takep′number of steps to cover the image.

    With p′number of instances, an image of length n′is needed to converge perfectly like the best case.The same formula is applied for vertical sliding as well.

    3.3 Phase 3:Object Detection

    Phase 3 of the proposed model is detection.The fraction of the image that falls under the footprint of the slider box is selected and the image matrix is processed by the Faster RCNN to detect the objects.Here, a trained Faster RCNN model is used to detect objects in the input image.Rather than taking the whole image at once, it takes the box image, i.e., the portion of the input image covered by the sliding box.By using Eq.(3), the row instancePrand column instancePccan be evaluated for an input image of dimension a × b.The product ofPcandPris the total number of iterations I.

    4 Results and Discussion

    A computer with an Intel i5 8th generation processor, 8 GB RAM and a dedicated 4 GB NVIDIA GTX 1050ti graphics card is used to train a Faster RCNN model using the TensorFlow open-source library.Pre-trained weights named “faster_rcnn_inception_v2_coco_2018” are used to initialize the parameter for transfer learning.The model was trained for nineteen hours on the benchmark VEDAI dataset [38].The experimental codes used in this paper for evaluation and weights are available at https://github.com/sidharthsamanta/srcnn.

    Four types of images with spatial resolution (sample image with ground truth demonstrated in Fig.6) 7.5, 12.5, 15.5 and 30.5 cm were used for testing (Fig.7).Each type contained three images of 256 px × 256 px, the same as the training image dataset.All images were processed under Faster RCNN and the proposed SRCNN to determine the accuracy and the precision of the proposed framework.

    Figure 6:Portion of test Christchurch.jpg with ground truth

    i.Image Analysis:Details of the testing images are given below in Tab.1.The Box Size column in the table is the length of the slider box, which is calculated by using the formula derived in Eq.(1).

    Figure 7:Overview of test images with spatial resolution 7.5, 12.5, 15 and 30.5 cm, respectively

    Table 1:Train and test image description

    ii.Image Pre-processing:The padding amount p is calculated for each image with 5% overlapping by using the mathematical formula from Eq.(6).The Padding Value column of Tab.1 contains all the padding values for each test image.The first number represents the number of 0s to be added on the right side of the image and the second number represents the number of 0s to be appended at the bottom of the image.0s can be padded on any side of the image, as there will be no effect on performance.

    iii.Object Detection:Now the detector is deployed on top of the sliding window to process the image fragment that falls under its footprint.The process continues until the box reaches the vertical and horizontal end.Fig.8 illustrates the sliding detection process.

    iv.Evaluation:The outcomes of the proposed model with four sets of input images mentioned in Tab.1 are compared with the Faster RCNN model in Tab.2.The confusion matrix is used for calculating the accuracy (Eq.7) and precision (Eq.8).

    (a)True Positives(TP):Objects that are present in the ground truth and correctly detected in the output.

    (b)True Negatives(TN):Objects that are not present in the ground truth and not detected in the output.For object detection and localization, the TN is always considered 0.

    Figure 8:Sliding detection process on a sample image with 15 cm resolution

    Table 2:Accuracy and prenecision of faster RCNN and proposed SRCNN

    (c)False Positives (FP):Objects that are not present in the ground truth, but detected in the output.

    (d)False Negatives (FN):Objects that are not present in the ground truth, but detected in the output.

    v.Discussion:As the spatial resolution was the same as the training image data, i.e., 12.5 cm,both models performed identically, as both are the same.But when the spatial resolution increased or decreased, the performance of the stock Faster RCNN started to deteriorate.There was a significant change in accuracy as well as in precision when the Faster RCNN dealt with the images having spatial resolution of 7.5 cm and 15 cm.At resolution 30 cm, it performed worse with 0 accuracies and 0 precision, whereas the proposed SRCNN shows the better results for every spatial resolution.

    5 Conclusion

    Detection of an object is a complex task due to ambiguity in object position, orientation and light source.A small modification of the sensor might change the scale of the objects present over the image.This scaling can be normalized by the proposed method, as it segments the image before detection.The proposed SRCNN outperformed the stock Faster RCNN on image samples with completely different spatial resolution values.It is additionally ascertained that the model can work with images of much smaller or far larger dimensions.

    The size problem can also be resolved by using an internal slider box during the convolution operation.However, when an image with very large dimensions undergoes a convolution operation directly, it creates a large range of hyperparameters.Storing and processing these hyperparameters could cause a high configuration personal computer to run out of memory.There is a possibility to implement the extended part of SRCNN in a different state-of-the-art framework, such as YOLO or SSD.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费看a级黄色片| 亚洲av电影在线进入| 禁无遮挡网站| 最近最新中文字幕大全电影3| 欧美+日韩+精品| 久久精品人妻少妇| 成年女人永久免费观看视频| 一本久久中文字幕| 在线看三级毛片| 精品一区二区三区av网在线观看| 一区二区三区激情视频| 十八禁网站免费在线| 欧美成人一区二区免费高清观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区不卡视频| 老熟妇仑乱视频hdxx| 欧美午夜高清在线| 午夜福利在线观看吧| 精品午夜福利视频在线观看一区| 午夜久久久久精精品| 级片在线观看| 国产精品美女特级片免费视频播放器| 亚洲人成电影免费在线| 欧美最黄视频在线播放免费| 国产视频一区二区在线看| 亚洲片人在线观看| 中国美女看黄片| 亚洲人成网站在线播| 一个人看视频在线观看www免费 | 色视频www国产| a级一级毛片免费在线观看| 三级国产精品欧美在线观看| 少妇的逼好多水| a在线观看视频网站| 亚洲精品乱码久久久v下载方式 | 18禁黄网站禁片午夜丰满| 欧美一区二区精品小视频在线| 国产高清激情床上av| 18禁美女被吸乳视频| 美女 人体艺术 gogo| 免费人成在线观看视频色| 每晚都被弄得嗷嗷叫到高潮| 五月玫瑰六月丁香| 亚洲人成电影免费在线| 韩国av一区二区三区四区| 亚洲 国产 在线| 麻豆国产97在线/欧美| 久久久国产成人免费| 久久久久久久亚洲中文字幕 | 国产精品久久久久久精品电影| 久久6这里有精品| 国产精品久久久久久久久免 | 亚洲人成网站在线播放欧美日韩| 十八禁网站免费在线| 久久久色成人| 午夜视频国产福利| 精品电影一区二区在线| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 成人高潮视频无遮挡免费网站| 欧美av亚洲av综合av国产av| 亚洲国产精品成人综合色| 人妻久久中文字幕网| 日韩国内少妇激情av| 亚洲成人精品中文字幕电影| 亚洲国产精品成人综合色| 99热这里只有精品一区| 全区人妻精品视频| 国产三级黄色录像| 国产69精品久久久久777片| 搡老熟女国产l中国老女人| 亚洲真实伦在线观看| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 欧美不卡视频在线免费观看| 久久中文看片网| 午夜免费激情av| 国产高清三级在线| 久久精品人妻少妇| 久久6这里有精品| 亚洲不卡免费看| 亚洲精品一卡2卡三卡4卡5卡| 精品国产三级普通话版| a在线观看视频网站| 精品久久久久久久久久免费视频| 国产极品精品免费视频能看的| 深夜精品福利| 一级黄片播放器| 9191精品国产免费久久| 色在线成人网| 欧美激情在线99| 精品99又大又爽又粗少妇毛片 | 国产亚洲精品一区二区www| 男女午夜视频在线观看| 男女视频在线观看网站免费| 精品一区二区三区av网在线观看| 人人妻人人澡欧美一区二区| 一个人观看的视频www高清免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久久电影 | 国产亚洲精品一区二区www| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 国产一区二区亚洲精品在线观看| 首页视频小说图片口味搜索| 国产老妇女一区| 波多野结衣高清作品| 99精品久久久久人妻精品| av专区在线播放| 97碰自拍视频| 一区二区三区免费毛片| 精品久久久久久久久久免费视频| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 法律面前人人平等表现在哪些方面| 在线a可以看的网站| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 日日夜夜操网爽| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 国产在视频线在精品| 每晚都被弄得嗷嗷叫到高潮| 免费看美女性在线毛片视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看av片永久免费下载| 极品教师在线免费播放| 亚洲第一电影网av| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 人妻久久中文字幕网| 99视频精品全部免费 在线| 国产高清视频在线观看网站| 很黄的视频免费| 特级一级黄色大片| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 国产精品亚洲av一区麻豆| 欧美不卡视频在线免费观看| 久久久久久久午夜电影| www国产在线视频色| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av | 日韩中文字幕欧美一区二区| 国产精品精品国产色婷婷| 婷婷丁香在线五月| 一个人看的www免费观看视频| 在线视频色国产色| 午夜免费观看网址| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| 国产午夜精品论理片| 草草在线视频免费看| 久久性视频一级片| 亚洲成av人片在线播放无| av国产免费在线观看| 国模一区二区三区四区视频| 18+在线观看网站| 亚洲成人中文字幕在线播放| 在线观看午夜福利视频| 在线国产一区二区在线| 国产主播在线观看一区二区| 狂野欧美白嫩少妇大欣赏| 国产免费男女视频| 亚洲熟妇中文字幕五十中出| av片东京热男人的天堂| 亚洲一区二区三区色噜噜| 成人特级av手机在线观看| 一夜夜www| 精品99又大又爽又粗少妇毛片 | 又黄又爽又免费观看的视频| 久久久久久久久久黄片| 婷婷丁香在线五月| 国产三级中文精品| 国产精华一区二区三区| 伊人久久精品亚洲午夜| 成年女人永久免费观看视频| 亚洲天堂国产精品一区在线| 搡老岳熟女国产| 久久九九热精品免费| 亚洲无线观看免费| 宅男免费午夜| 少妇的丰满在线观看| 夜夜看夜夜爽夜夜摸| 听说在线观看完整版免费高清| 亚洲久久久久久中文字幕| 999久久久精品免费观看国产| 叶爱在线成人免费视频播放| 免费观看精品视频网站| 3wmmmm亚洲av在线观看| 男人的好看免费观看在线视频| 制服人妻中文乱码| 欧美zozozo另类| 精品一区二区三区视频在线 | 精品国产超薄肉色丝袜足j| 亚洲成人精品中文字幕电影| 偷拍熟女少妇极品色| 女警被强在线播放| 天堂网av新在线| 久久香蕉精品热| 午夜免费观看网址| 中国美女看黄片| 午夜久久久久精精品| 欧美区成人在线视频| 丰满的人妻完整版| 日韩高清综合在线| 欧美大码av| 熟女电影av网| 国产精品免费一区二区三区在线| 日韩高清综合在线| 黑人欧美特级aaaaaa片| 人妻夜夜爽99麻豆av| 有码 亚洲区| 亚洲男人的天堂狠狠| 一进一出抽搐gif免费好疼| 亚洲av第一区精品v没综合| 天堂网av新在线| 亚洲精品成人久久久久久| 毛片女人毛片| 免费av不卡在线播放| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产中文字幕在线视频| 亚洲精品一区av在线观看| 午夜老司机福利剧场| 亚洲成av人片在线播放无| 国产精品免费一区二区三区在线| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| bbb黄色大片| 99久久九九国产精品国产免费| 国产亚洲欧美在线一区二区| 观看免费一级毛片| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 99国产精品一区二区三区| 免费高清视频大片| 精品人妻一区二区三区麻豆 | 嫩草影院入口| 欧美高清成人免费视频www| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 日本成人三级电影网站| or卡值多少钱| 美女被艹到高潮喷水动态| 精品国产三级普通话版| 在线看三级毛片| 国产午夜福利久久久久久| 岛国在线免费视频观看| 91九色精品人成在线观看| 美女黄网站色视频| 校园春色视频在线观看| 亚洲国产精品999在线| 1024手机看黄色片| 成年版毛片免费区| 国产高清有码在线观看视频| 久久精品亚洲精品国产色婷小说| 久久久久久久午夜电影| 国产探花在线观看一区二区| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 老司机在亚洲福利影院| 日日干狠狠操夜夜爽| 小蜜桃在线观看免费完整版高清| 少妇的逼好多水| 级片在线观看| 搡女人真爽免费视频火全软件 | 国产精品1区2区在线观看.| 噜噜噜噜噜久久久久久91| 观看免费一级毛片| eeuss影院久久| 麻豆成人午夜福利视频| 在线观看66精品国产| 欧美性感艳星| 中文字幕高清在线视频| 天堂√8在线中文| 亚洲人成网站在线播| 亚洲乱码一区二区免费版| 麻豆国产av国片精品| av福利片在线观看| 亚洲av第一区精品v没综合| 成人精品一区二区免费| 九色成人免费人妻av| 国产aⅴ精品一区二区三区波| 美女大奶头视频| 麻豆成人午夜福利视频| 亚洲一区二区三区色噜噜| 久久精品91无色码中文字幕| 日韩精品中文字幕看吧| 国内毛片毛片毛片毛片毛片| 日韩欧美在线乱码| 露出奶头的视频| 亚洲在线观看片| 国产蜜桃级精品一区二区三区| e午夜精品久久久久久久| 老汉色∧v一级毛片| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩av片在线观看 | 在线a可以看的网站| 国产主播在线观看一区二区| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 欧美成人一区二区免费高清观看| 国语自产精品视频在线第100页| 免费大片18禁| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 亚洲av一区综合| netflix在线观看网站| 午夜免费观看网址| 国产aⅴ精品一区二区三区波| 精品久久久久久,| 叶爱在线成人免费视频播放| 久久精品综合一区二区三区| 男人和女人高潮做爰伦理| 法律面前人人平等表现在哪些方面| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 欧美成人一区二区免费高清观看| 国产成人a区在线观看| 国产视频一区二区在线看| 亚洲av一区综合| 欧美中文综合在线视频| 亚洲av成人不卡在线观看播放网| 天美传媒精品一区二区| 天堂网av新在线| 久久精品国产自在天天线| 国产欧美日韩一区二区精品| 免费看光身美女| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 国产高清视频在线观看网站| 两人在一起打扑克的视频| 网址你懂的国产日韩在线| 九色成人免费人妻av| 欧美极品一区二区三区四区| 国产午夜福利久久久久久| 免费观看人在逋| 两个人看的免费小视频| 午夜福利18| 99riav亚洲国产免费| 18+在线观看网站| 国产精品久久久久久精品电影| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| 床上黄色一级片| 欧美中文综合在线视频| 久久人人精品亚洲av| 国产中年淑女户外野战色| 男人舔奶头视频| 美女 人体艺术 gogo| 亚洲 国产 在线| 女警被强在线播放| 日本五十路高清| 很黄的视频免费| 午夜福利在线在线| 国产成人欧美在线观看| 亚洲精品日韩av片在线观看 | 亚洲欧美日韩东京热| 深爱激情五月婷婷| 亚洲最大成人中文| 日本 欧美在线| 欧美最新免费一区二区三区 | 别揉我奶头~嗯~啊~动态视频| 1000部很黄的大片| 欧美日韩一级在线毛片| 久久精品人妻少妇| 国产69精品久久久久777片| 午夜福利18| 成年女人毛片免费观看观看9| 丁香欧美五月| svipshipincom国产片| 国产免费av片在线观看野外av| 亚洲第一电影网av| 天堂动漫精品| 久久久久久久久中文| 舔av片在线| 一本综合久久免费| 久久久久久久精品吃奶| 国产精品亚洲一级av第二区| 久久午夜亚洲精品久久| 嫩草影视91久久| 欧美色欧美亚洲另类二区| 国产野战对白在线观看| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 99久久成人亚洲精品观看| 日韩欧美一区二区三区在线观看| 国产成人a区在线观看| 国产av不卡久久| 真人做人爱边吃奶动态| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 亚洲一区二区三区色噜噜| 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| 欧美3d第一页| 午夜福利欧美成人| 国产又黄又爽又无遮挡在线| 亚洲精品国产精品久久久不卡| 日韩欧美在线乱码| 狠狠狠狠99中文字幕| 亚洲av二区三区四区| 国产成人影院久久av| 国内精品美女久久久久久| 熟女人妻精品中文字幕| 最好的美女福利视频网| 99热这里只有精品一区| 美女高潮喷水抽搐中文字幕| 看片在线看免费视频| 亚洲性夜色夜夜综合| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美一区二区三区黑人| 国产精品亚洲一级av第二区| 精品熟女少妇八av免费久了| 国产av在哪里看| 亚洲精品456在线播放app | 亚洲欧美日韩无卡精品| 色尼玛亚洲综合影院| 国产私拍福利视频在线观看| 丁香六月欧美| 午夜亚洲福利在线播放| 精品福利观看| 日韩亚洲欧美综合| 女人高潮潮喷娇喘18禁视频| 色综合欧美亚洲国产小说| 国产精品久久久久久精品电影| 嫩草影院精品99| 久久国产精品人妻蜜桃| 19禁男女啪啪无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 精品久久久久久,| 亚洲不卡免费看| 88av欧美| 中文字幕av在线有码专区| 叶爱在线成人免费视频播放| 婷婷精品国产亚洲av| 免费看十八禁软件| 亚洲成人久久性| 99久久精品国产亚洲精品| 搡老岳熟女国产| 级片在线观看| 丰满乱子伦码专区| 成人国产综合亚洲| 久久九九热精品免费| 97碰自拍视频| 亚洲久久久久久中文字幕| 欧美黄色片欧美黄色片| 亚洲成av人片在线播放无| 久久6这里有精品| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片午夜丰满| 在线视频色国产色| 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 内射极品少妇av片p| 在线观看午夜福利视频| 又粗又爽又猛毛片免费看| 免费看日本二区| 久久精品国产清高在天天线| 中文字幕av在线有码专区| 成人午夜高清在线视频| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 啦啦啦免费观看视频1| 亚洲avbb在线观看| 国产一区在线观看成人免费| 最后的刺客免费高清国语| 18禁黄网站禁片午夜丰满| 又黄又爽又免费观看的视频| 99国产综合亚洲精品| 日日摸夜夜添夜夜添小说| 天天添夜夜摸| 日本成人三级电影网站| 少妇人妻精品综合一区二区 | 久久久久亚洲av毛片大全| 特大巨黑吊av在线直播| 日韩欧美三级三区| 免费av观看视频| 国产精品 国内视频| 一区二区三区高清视频在线| 特大巨黑吊av在线直播| 亚洲精品美女久久久久99蜜臀| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 欧美一区二区精品小视频在线| 中出人妻视频一区二区| 国产高清视频在线观看网站| 特级一级黄色大片| 毛片女人毛片| 久久国产乱子伦精品免费另类| 午夜久久久久精精品| 淫秽高清视频在线观看| 成人国产综合亚洲| 精品熟女少妇八av免费久了| 国产真人三级小视频在线观看| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 国产极品精品免费视频能看的| e午夜精品久久久久久久| 精品国产三级普通话版| 看片在线看免费视频| 91久久精品国产一区二区成人 | 一进一出好大好爽视频| 波多野结衣巨乳人妻| 亚洲欧美日韩卡通动漫| 99久久九九国产精品国产免费| 免费搜索国产男女视频| 麻豆久久精品国产亚洲av| 欧美3d第一页| 亚洲18禁久久av| 国产伦在线观看视频一区| 午夜免费激情av| 日本与韩国留学比较| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看美女被高潮喷水网站 | 精品人妻1区二区| 级片在线观看| 18禁在线播放成人免费| 精品国产亚洲在线| 蜜桃亚洲精品一区二区三区| 男女床上黄色一级片免费看| 国产探花极品一区二区| 亚洲av免费高清在线观看| 成人三级黄色视频| 国产 一区 欧美 日韩| 免费看美女性在线毛片视频| 国产极品精品免费视频能看的| 国产成人av教育| 黄色女人牲交| 欧美乱码精品一区二区三区| 午夜福利视频1000在线观看| 在线视频色国产色| 怎么达到女性高潮| 亚洲黑人精品在线| 国产三级中文精品| 中文在线观看免费www的网站| 极品教师在线免费播放| 精品国产超薄肉色丝袜足j| www国产在线视频色| 免费高清视频大片| 亚洲色图av天堂| 亚洲成人久久爱视频| 久久这里只有精品中国| 99久久99久久久精品蜜桃| 久久久久九九精品影院| 亚洲国产精品999在线| 免费在线观看日本一区| 夜夜爽天天搞| av天堂在线播放| 真实男女啪啪啪动态图| а√天堂www在线а√下载| 久久久久久人人人人人| 亚洲久久久久久中文字幕| 九九热线精品视视频播放| 国产精品亚洲一级av第二区| 欧美中文日本在线观看视频| 亚洲熟妇中文字幕五十中出| 亚洲av五月六月丁香网| 国内精品久久久久久久电影| 欧美黄色片欧美黄色片| 岛国在线观看网站| 女警被强在线播放| 宅男免费午夜| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 国产免费av片在线观看野外av| 欧美乱码精品一区二区三区| 久久久色成人| 久久亚洲精品不卡| 在线观看舔阴道视频| 男人和女人高潮做爰伦理| 男女下面进入的视频免费午夜| 色综合婷婷激情| 十八禁人妻一区二区| 美女免费视频网站| 成人精品一区二区免费| 亚洲五月婷婷丁香| 男人舔女人下体高潮全视频| 午夜免费男女啪啪视频观看 | 村上凉子中文字幕在线| 欧美最黄视频在线播放免费| 一区二区三区免费毛片| 在线视频色国产色| 国产精品野战在线观看| 久久久久九九精品影院| eeuss影院久久| 亚洲成av人片在线播放无| 国产精品嫩草影院av在线观看 | 熟女电影av网| 特大巨黑吊av在线直播| a级毛片a级免费在线| 欧美三级亚洲精品| 老司机福利观看| 亚洲狠狠婷婷综合久久图片| 日本黄色视频三级网站网址| 精品99又大又爽又粗少妇毛片 | 久久久久久国产a免费观看| 女同久久另类99精品国产91| 欧美一级毛片孕妇| 中文字幕熟女人妻在线| 我的老师免费观看完整版|