• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wave Propagation Model in a Human Long Poroelastic Bone under Effect of Magnetic Field and Rotation

    2021-12-11 13:29:04AbdAllaHanaaAbuZinadahAboDahabBouslimiandOmri
    Computers Materials&Continua 2021年8期

    A.M.Abd-Alla,Hanaa Abu-Zinadah, S.M.Abo-Dahab, J.Bouslimi and M.Omri

    1Department of Mathematics, Sohag University, Sohag, Egypt

    2Department of Statistics, University of Jeddah,College of Science, Jeddah,Saudi Arabia

    3Department of Mathematics, South Valley University, Qena, 83523,Egypt

    4Department of Engineering Physics and Instrumentation, National Institute of Applied Sciences and Technology, Carthage University, Tunisia

    5Department of Physics, Taif University, Taif, Saudi Arabia

    6Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia

    Abstract:This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone.It offers a solution with an exact closed form.The authors got and examined numerically the general frequency equation for poroelastic bone.Moreover,they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation.Unlike the results of previous studies, the authors noticed little frequency dispersion in the wet bone.The proposed model will be applicable to wide-range parametric projects of bone mechanical response.Examining the vibration of surface waves in rotating cylindrical,long human bones under the magnetic field can have an impact.The findings of the study are offered in graphs.Then,a comparison with the results of the literature is conducted to show the effect of rotation and magnetic field on the wave propagation phenomenon.It is worth noting that the results of the study highly match those of the literature.

    Keywords:Propagation of waves;rotation;magnetic field;poroelastic;wet bone;natural frequency;magnetic field

    1 Introduction

    One of the highly considerable clinical methods for identifying the integrity of bonesin vivois radiographic examination, though, X-ray cannot detect when the loss of a bone decreases less than 30%.By the same token, periodic X-rays can always be utilized in monitoring the healing of fractures although evaluating the healing degree is subjective and often inaccurate.Natall et al.[1] examined bones as a material from a biomechanical perspective.The authors of [2-7] explored various issues related to the propagation of waves within poroelastic cylinders.In regard to a porous anisotropic solid, Biot [8]introduced the theory of elasticity and consolidation.In another study, Biot [9] discussed the theory of elastic wave propagation in a solid that is fluid-saturated and porous.Cardoso et al.[10] investigated the role of the biological tissue structural anisotropy in the poroelastic propagation of waves.The authors of[11]solved issues related to the propagation of coupled poroelastic/acoustic/elastic waves through automatic hpadaptively.In 3D poroelastic solids, Wen [12] used the meshless local Petrov-Galerkin method for the propagation of waves.Morin et al.[13] investigated the arduous multiscale poromicrodynamics method that is effective in the diverse bone tissues.Employing an iterative active medium approximation, Potsika et al.[14] introduced the model ultrasound propagation of waves in the healing of long bones.The authors of [15] analyzed theoretically the process of internal bone restoration motivated by a medullary pin.Nguyen et al.[16] investigated the performance of the flows of interstitial fluid in cortical bones controlled by axial cyclic harmonic loads that mimic the behavior ofin vivobones while doing daily activities, such as going for a walk.Misra et al.[17] derived the relation of dispersion for axisymmetric acoustic wave propagation along a long composite bone.Qin et al.[18] predicted theoretically the remodeling of the surface bone in the diaphysis of the long bone under different external loads controlled by the theory of adaptive elasticity.Mathieu et al.[19] studied biomechanically the performance of the bone-dental implant interface as an environmental task by taking into account thein silico,in vivo,andex vivoprojects on animal models.Brynk et al.[20] evaluated relevant experimental findings within a microporomechanic theoretical framework.Parnell et al.[21] compared the theoretical estimates of the active elastic moduli of cortical bone at the meso- and macroscales.Shah [22] studied the near-surface condition of stress established under the oscillatory contact between the artificial components that have a considerable role in defining fretting severity.Gilbert et al.[23] investigated the viscous interstitial fluid that plays a role in the ultrasound insonification of non-defatted cancellous bone.The authors of [24]solved analytically the noticeably long borehole in the isotropic and poroelastic medium inclined to the far-field principal stresses.Cowin [25] developed the interaction model of fluid and solid stages of a fluid-saturated porous medium.The effectiveness of bone healing in the ultrasonic reaction of the titanium implants that take the shape of coins and inserted in rabbit tibiae was discussed by Mathieu et al[26].Singhal et al.[27] investigated the interior restoration of bone by defining the process that enables the bones to have the histological structure to modify within areas of long mechanical load.Kumha [28]investigated the shear wave in a primarily stressed poroelastic medium that has corrugated boundary surfaces inserted between a higher material strengthened with fiber and isotropic inhomogeneous half-space.

    Abo-Dahab et al.[29] investigated the analytical solution for surface waves’ remodeling in the long bones under the magnetic field and rotating.Farhan [30] discussed the effect of rotation on the propagation of waves in a hollow poroelastic circular cylinder with a magnetic field.Marin et al.[31]investigated the structural continuous dependence in micropolar porous bodies.Abo-Dahab et al.[32]discussed the effect of rotation on the propagation of waves model in a human long poroelastic bone.

    In this paper,the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone is discussed.The paper provides a solution with an exact closed form.The authors got and examined numerically the general frequency equation of the poroelastic bone.Moreover,they calculated the frequencies of the poroelastic bone for different values of the magnetic field and rotation.Unlike the results of the previous studies, the authors noticed little frequency dispersion in the wet bone.The proposed model will be applicable to wide-range parametric projects of bone mechanical response.Examining the vibration of surface waves in rotating cylindrical, long human bones under the magnetic field can have an impact.The findings of the study are offered in graphs.Then, a comparison with the results of the literature is conducted.It is worth noting that the results of the study highly match those of the literature.

    2 Formulation of the Problem

    Take into account a hollow cylinder in the form of a geometric approximation to a long bone that is welldefined in the cylindrical coordinatesr, θ,z.To carry out the analysis, assume thez-axis as the long bone axis andaandbas the internal and external radius of the cortical thickness,respectively.Moreover,the linear theory of transverse isotropy that is effective for small strain provides the resulting stress-displacement and velocity relationships in the following form

    where τijacts as the solid stress, τ represents the fluid stress, and σrris the magnetic stress.Additionally,cij, M, Q, R and c66=represent the elastic constants.

    The equation of the fluid is

    where brr=μf2/krr,bzz=μf2/kzz,?2represent the Laplacian operator in cylindrical coordinates, μ represents the viscosity,frepresents the porosity, and krrand kzzrepresent the permeability of the medium.The displacements of solid and velocity of fluid are represented by uiand vi, respectively.Moreover,the strains are given in displacement in the following form:

    The dilatione=ui,jand ?=vi,i.

    The motion equations are

    Replacing from Eq.(1)into Eq.(5),the result becomes

    3 The Solution to the Problem

    To obtain a solution to Eq.(7), use the following solution in the field equations

    whereur,uθ,uz,vr,vθandvzrepresent the displacement components and velocity components, ω is the angular frequency, k represents the wavenumber, andh=b?arepresents the thickness of the cylinder.Additionally,arepresents the inner radius;brepresents the outer radius; φ, ψ, and η represent the displacement potentials introduced for solving the field Eq.(8).

    Replacing from Eq.(1) into Eqs.(3) and (5) and using Eqs.(6) and (7), the following equations are obtained:

    Introducing the parameter asε1=khand ω=k?,Eq.(9)takes a dimensionless form as

    where

    Because the fluid flow through the bone boundaries does not happen while exploring the wave propagation,ξ is defined in the above-mentioned form and it is not solved for the variable η.Though,when prescribing the flow on these boundaries, η may be estimated.Eq.(10)takes a determinant form as:

    where

    Estimating the determinant form,we have these equations:

    where

    The solution of Eq.(10)are

    where α2iare the roots of the following equation

    where

    F1=and diand eiare calculated from the following equation

    The solution of Eq.(11)is

    where

    4 Frequency Equation

    To have the boundary conditions that are free of traction, stress must disappear on the internal and external surfaces of the hollow cylinder,as follows:

    where

    Eqs.(8), (15) and (18) together with Eq.(19) and combiningA1,B1,A2,B2,A3,B3andA4,B4coefficients help determine the characteristic frequency equation:

    where the coefficients ofaijare given the form in the appendix.

    The roots of Eq.(20)afford the curves of dispersion of the guided modes,namely the wavenumber as a frequency function.

    Figure 1:Variations of the roots | αj |(j=1,2,3,4) concerning the rotation Ω with different values for ρ, ω,h and H0

    Figure 2:Variations of |ej|(j=1,2,3,4) with respect to the rotation Ω with different values for ρ,ω,h and H0

    Figure 4:Variations of the determinant|aij|,Re(aij),Im(aij)(i,j=1,2,3,4)with respect to the rotation Ω with different values for ρ,ω,h and H0

    5 Frequency Equation:Special Cases

    5.1 Motion Independent of z

    The frequency Eq.(20)degenerates into the product of two determinants

    where

    The termsaij(a) andaij(b) appearing in Δ1and Δ2are given in Eq.(21) for the wavenumbersk=0,α21, α22, α23are positive.Therefore, the Bessel functions of the first and second kinds are included in the solution.This equation could have been obtained immediately from the displacement equation of Eqs.(7)by settingur=uθ=0,=0 with the result:

    5.2 Motion Independent of θ

    If the motion becomes independent of the angular coordinate θ,the frequency Eq.(20)is declined to two determinants Δ3, Δ4in the following form

    The termsaijin Δ3and Δ4are given by Eq.(23) forn=0.

    Now,Eq.(23)is satisfied if Δ3=0 or Δ4=0.The case of Δ3=0 displays the equation of frequency of vibrations that are axially symmetric of an infinite hollow poroelastic cylinder.

    5.3 Motion Independent of θ and z

    If the wavenumbersk(for the infinite wavelength)andndisappear, the frequency equation declines into three uncoupled mode groups that can be defined as plane-strain extensional, longitudinal shear, and plane-strain shear.The equations of the frequency of the three types of motion take the following form

    The termsaijin (25)are given by(20).

    Figure 5:Variations of the determinant | aij |, Re(aij), Im(aij) (i,j=1,2,3,4)with respect to the rotation Ω with different values of ρ, ω,h and H0 if the motion is independent of z

    6 Numerical Results and Discussion

    The numerical results of the equation of frequency are calculated for the wet bone.The roots are obtained forn=0 and the longitudinal mode and flexural moden=1,2.These findings are estimated within 0<ε1<4 and 0

    wherefis the porosity and γ, δ, χ are the Young’s modulus and the Poisson ratio.The constants γ, δ, χ are

    wherecis zero concerning the incompressibility fluid.

    The human bone porosity within the age group 35-40 years is estimated as 0.24 [1].To evaluate one more poroelastic constant, the following equation is definedin which the valueMis not given.Because the fluid is generally isotropic,brr=bzz, the fluid density in the porospace, permeability of the medium, and mass density of the bone take the form of [15]as in Tab.1.

    Table 1:The constants of the material

    Fig.1 shows a considerable modification of the absolute value of α1| |, α2| |, α3| |and α4| |coefficients for the poroelastic bones concerning the rotation Ω that increases with increasing rotation for the diverse values of the density ρ, frequencyω, thicknessh, and magnetic fieldH0.It rises with an increase in the density,frequency, and magnetic field at the effect of density and the coefficients of α1| |, α3| |.It also increases and decreases with the increase of the density.

    Fig.2 displays various coefficients ofd1| |,d2| |,d3| | andd4| |for the poroelastic bone concerning the rotation Ω,which increases with increasing the rotation for diverse values of the frequency ω,the thicknessh,and the magnetic fieldH0except for the effect of the density because it increases and decreases.It declines with rising the frequency,thickness,and magnetic field except for the coefficientd4| |that rises with rising the density,frequency, and thickness.Moreover, the coefficients decrease with increasing the magnetic field.

    Fig.3 graphically portrays the variations of the absolute of the coefficients for the poroelastic bone ofconcerning the rotation Ω.It rises with rising the rotation for diverse values of the density ρ, the frequency ω, the thickness, and the magnetic fieldH0, while it rises with rising the density,frequency, and thickness except for the effect of the magnetic field.In this case, the absolute of the coefficients is the oscillatory behavior in the scope of the Ω-axis for the diverse values of the magnetic field.

    Fig.4 shows the variations of the scalar equationwave velocityand attenuation coefficient Imconcerning the rotation Ω for diverse values of the density ρ, the frequency ω, the thicknessh, and the magnetic fieldH0.It declines with the growing rotation.We also note that the scalar equation increases with the higher frequency, thickness, and magnetic field.On the contrary, it decreases with a higher density.Wave velocity increases with increasing density and rotation.It also rises with the higher frequency and magnetic field but decreases with higher rotation.It declines with higher thickness,and the attenuation coefficient declines with the higher frequency, thickness, magnetic field, and rotation,H0.Additionally,wave velocity rises with higher rotation and density.

    Figure 6:Variations of the determinant | aij |, Re(aij), Im(aij) (i,j=1,2,3,4)with respect to the rotation Ω with different values of ρ, ω,h and H0 (if the motion is independent of θ)

    Figure 7:Variations of | aij|= |Δ 5||Δ 7|, Re (| aij |), Im (| aij |)with respect to the rotation Ω with different values of ρ, ω,h and H0 (if the motion independent is of θ and z)

    Fig.5 graphically irradiates the effect of the variations of the scalar equationthe wave velocityand the attenuation coefficientsconcerning the rotation Ω for diverse values of the density ρ, the frequency ω, the thicknessh, and the magnetic fieldH0(if the motion is independent of z).The scalar equation rises with higher density, frequency, thickness, magnetic, field, and rotation.Wave velocity rises with higher frequency, thickness, magnetic field, and rotation, except for the effect of the density that rises and declines with higher density.Attenuation coefficients decline with higher density,frequency,thickness,magnetic field,and rotation.They shift downward from positive to negative values.

    Fig.6 illustrates the variations of the scalar equationthe wave velocityand the attenuation coefficientsconcerning the rotation Ω for diverse values of the density ρ, the frequency ω, the thicknessh, and the magnetic fieldH0(if the motion is independent of θ).The scalar equation rises with higher density, frequency, thickness, magnetic field, and rotation.Wave velocity rises with higher frequency and magnetic field, while it has an oscillatory with the x-axis.However, it declines with higher density, thickness, and rotation.Attenuation coefficients decrease with higher density, frequency,thickness,magnetic field,and rotation.They shift downward from positive to negative values.

    Fig.7 displays the variations of the scalar equationthe wave velocityand the attenuation coefficientsconcerning the rotation(if the motion is independent of θ and z)for the diverse values of the density ρ,the frequency ω,the thicknessh,and the magnetic fieldH0.The scalar equation decreases with higher density,frequency,magnetic field,and rotation but declines with higher thickness.Wave velocity rises with higher rotation,density,frequency,and magnetic field,except for the effect of thickness it declines with higher thickness.Moreover, the attenuation coefficient decreases with higher density, frequency,rotation,and magnetic field and rises with higher thickness.

    7 Conclusion

    In this paper,the wave propagation of a poroelastic bone with a circular cylindrical cavity subjected to the rotation and the magnetic field is considered.The frequency equation is obtained by considering the material as transversely isotropic in nature.The numerical results are obtained and compared for the bone in the presence and absence of the magnetic field and the rotation.The findings of the study can be useful for the applications of the poroelastic materials in the orthopedics, the dental, and the cardiovascular fields are well known.The results obtained have significant applications related to medicine, chemical engineering,and orthopedics surgery.

    Acknowledgement:This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.D-668-305-1441.The authors,therefore,gratefully acknowledge DSR technical and financial support.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that there are no conflicts of interest between all authors.

    Appendix

    The remaining four rows can be obtained from the above equations by replacingby.

    十分钟在线观看高清视频www| 午夜两性在线视频| 韩国av一区二区三区四区| 国产人伦9x9x在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩亚洲国产一区二区在线观看| 校园春色视频在线观看| 中出人妻视频一区二区| 美女扒开内裤让男人捅视频| 99热这里只有精品一区 | 在线av久久热| 欧美一级毛片孕妇| 亚洲成人久久爱视频| 久久久国产成人免费| 男人的好看免费观看在线视频 | 久久久国产成人免费| 可以在线观看的亚洲视频| 人人妻人人澡人人看| 亚洲成a人片在线一区二区| 欧美成人免费av一区二区三区| 中文字幕精品亚洲无线码一区 | 免费在线观看视频国产中文字幕亚洲| 老司机深夜福利视频在线观看| 女性被躁到高潮视频| 国产精品国产高清国产av| 熟妇人妻久久中文字幕3abv| 男女床上黄色一级片免费看| 免费电影在线观看免费观看| 免费看美女性在线毛片视频| 久99久视频精品免费| 午夜福利成人在线免费观看| xxx96com| 中文资源天堂在线| 美女国产高潮福利片在线看| 国内少妇人妻偷人精品xxx网站 | 国产97色在线日韩免费| 熟女少妇亚洲综合色aaa.| 精品国产乱子伦一区二区三区| 精品国产国语对白av| 伦理电影免费视频| 视频区欧美日本亚洲| 亚洲av电影在线进入| 叶爱在线成人免费视频播放| 满18在线观看网站| 俺也久久电影网| 在线观看日韩欧美| 精品无人区乱码1区二区| 国产单亲对白刺激| www.精华液| 国内精品久久久久精免费| 真人做人爱边吃奶动态| 国产伦一二天堂av在线观看| 手机成人av网站| 午夜两性在线视频| 成人av一区二区三区在线看| 一进一出抽搐gif免费好疼| 午夜免费成人在线视频| 国产不卡一卡二| 午夜免费观看网址| 国产黄a三级三级三级人| 欧美日韩乱码在线| 中国美女看黄片| 久久精品91无色码中文字幕| 1024手机看黄色片| e午夜精品久久久久久久| 99热这里只有精品一区 | 夜夜看夜夜爽夜夜摸| 亚洲专区中文字幕在线| 亚洲第一av免费看| 欧美午夜高清在线| 19禁男女啪啪无遮挡网站| 一夜夜www| 给我免费播放毛片高清在线观看| 国产精品美女特级片免费视频播放器 | 最近最新免费中文字幕在线| tocl精华| xxxwww97欧美| 久久伊人香网站| 人人澡人人妻人| 久久国产亚洲av麻豆专区| 国产精品亚洲美女久久久| 婷婷亚洲欧美| 国产成人欧美| 欧美日本亚洲视频在线播放| 婷婷六月久久综合丁香| 久久精品影院6| 免费观看人在逋| 十八禁人妻一区二区| 777久久人妻少妇嫩草av网站| 婷婷亚洲欧美| 亚洲国产欧美日韩在线播放| 国产男靠女视频免费网站| 久久亚洲精品不卡| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区黑人| a在线观看视频网站| 99久久国产精品久久久| 成熟少妇高潮喷水视频| 50天的宝宝边吃奶边哭怎么回事| 9191精品国产免费久久| 国产精品国产高清国产av| 一进一出抽搐gif免费好疼| 搡老岳熟女国产| 色综合站精品国产| 99久久无色码亚洲精品果冻| 免费在线观看成人毛片| 高清在线国产一区| 久久国产亚洲av麻豆专区| 国产视频一区二区在线看| 99国产极品粉嫩在线观看| 亚洲久久久国产精品| 日韩欧美免费精品| 亚洲色图 男人天堂 中文字幕| 久久草成人影院| 高潮久久久久久久久久久不卡| 中文资源天堂在线| 999久久久精品免费观看国产| 精品久久久久久,| 在线免费观看的www视频| 听说在线观看完整版免费高清| 久久久久九九精品影院| 久久久久久亚洲精品国产蜜桃av| 最近最新中文字幕大全电影3 | 亚洲真实伦在线观看| 久久99热这里只有精品18| 女性生殖器流出的白浆| 视频在线观看一区二区三区| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 免费在线观看视频国产中文字幕亚洲| 亚洲精品国产区一区二| 18禁黄网站禁片免费观看直播| 天堂动漫精品| 国产成人精品无人区| 国产色视频综合| 色av中文字幕| 9191精品国产免费久久| 午夜两性在线视频| 国产真人三级小视频在线观看| 老汉色av国产亚洲站长工具| 亚洲国产精品成人综合色| 国产成人一区二区三区免费视频网站| 国产成人欧美在线观看| 免费在线观看日本一区| 婷婷亚洲欧美| 久久久久亚洲av毛片大全| 亚洲成人国产一区在线观看| 18禁美女被吸乳视频| 久9热在线精品视频| 午夜久久久在线观看| 成人精品一区二区免费| 亚洲五月色婷婷综合| 啦啦啦免费观看视频1| 亚洲熟妇熟女久久| 一级片免费观看大全| 成人国语在线视频| 亚洲欧美日韩高清在线视频| 亚洲最大成人中文| 91字幕亚洲| 亚洲,欧美精品.| 人成视频在线观看免费观看| bbb黄色大片| 黄片播放在线免费| 国产黄片美女视频| 亚洲国产毛片av蜜桃av| 国产精品日韩av在线免费观看| 亚洲国产欧美一区二区综合| 国产成人一区二区三区免费视频网站| 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 伊人久久大香线蕉亚洲五| 在线免费观看的www视频| 亚洲精品中文字幕一二三四区| 欧美日韩福利视频一区二区| 亚洲天堂国产精品一区在线| 少妇熟女aⅴ在线视频| 久久久久亚洲av毛片大全| www.999成人在线观看| 一个人观看的视频www高清免费观看 | 久久草成人影院| 99国产精品99久久久久| 国产一区二区三区视频了| 午夜免费观看网址| 亚洲av熟女| 免费在线观看亚洲国产| 日韩大尺度精品在线看网址| 一级a爱视频在线免费观看| 国产三级在线视频| av欧美777| 男女之事视频高清在线观看| 免费在线观看黄色视频的| 国产aⅴ精品一区二区三区波| 不卡av一区二区三区| 欧美+亚洲+日韩+国产| 国产成年人精品一区二区| 一个人观看的视频www高清免费观看 | 国产成人啪精品午夜网站| 国产精品亚洲美女久久久| 精品电影一区二区在线| 黄片小视频在线播放| 人妻久久中文字幕网| 男女那种视频在线观看| 国产亚洲av高清不卡| 一区福利在线观看| 日本免费a在线| 在线观看免费午夜福利视频| 欧美大码av| 欧美绝顶高潮抽搐喷水| 日本免费一区二区三区高清不卡| 国产精品免费一区二区三区在线| 欧美在线一区亚洲| 欧美丝袜亚洲另类 | 久久婷婷成人综合色麻豆| 免费av毛片视频| 欧美成人性av电影在线观看| 很黄的视频免费| 精品高清国产在线一区| 老汉色∧v一级毛片| 国产私拍福利视频在线观看| av超薄肉色丝袜交足视频| 亚洲第一欧美日韩一区二区三区| 色综合婷婷激情| 好男人电影高清在线观看| 长腿黑丝高跟| 麻豆成人午夜福利视频| 欧美大码av| 成人特级黄色片久久久久久久| 国产精品久久久人人做人人爽| 国产成人精品久久二区二区91| 一进一出抽搐动态| 成人精品一区二区免费| 欧美日本视频| 女人爽到高潮嗷嗷叫在线视频| 国产免费男女视频| 黑人操中国人逼视频| 国产免费男女视频| 国语自产精品视频在线第100页| 老熟妇乱子伦视频在线观看| 国产精品免费视频内射| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线播放欧美日韩| 日韩中文字幕欧美一区二区| 欧美成人午夜精品| 国产99白浆流出| ponron亚洲| 欧美日本亚洲视频在线播放| 精品久久久久久,| 日本 av在线| 欧美黑人欧美精品刺激| 久久久久久久午夜电影| 国产精品av久久久久免费| 99国产精品一区二区蜜桃av| 麻豆av在线久日| 国产av又大| 亚洲人成伊人成综合网2020| 在线av久久热| 亚洲欧洲精品一区二区精品久久久| 老熟妇乱子伦视频在线观看| 日韩欧美一区视频在线观看| 成人午夜高清在线视频 | 色在线成人网| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成a人片在线一区二区| 黄色毛片三级朝国网站| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 制服诱惑二区| 久久久久久久久免费视频了| 黄网站色视频无遮挡免费观看| 国产精品久久久人人做人人爽| 高清毛片免费观看视频网站| 制服人妻中文乱码| 亚洲精品在线美女| 免费高清视频大片| 精品欧美国产一区二区三| 久久热在线av| 亚洲三区欧美一区| 免费在线观看完整版高清| 国产亚洲av嫩草精品影院| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 国产欧美日韩精品亚洲av| 在线观看日韩欧美| 久久国产亚洲av麻豆专区| 此物有八面人人有两片| 极品教师在线免费播放| 亚洲成a人片在线一区二区| 欧美日韩瑟瑟在线播放| 国产成人系列免费观看| 69av精品久久久久久| 老司机福利观看| 国语自产精品视频在线第100页| 久久99热这里只有精品18| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 好男人在线观看高清免费视频 | 国产精品二区激情视频| 精品欧美国产一区二区三| 麻豆一二三区av精品| 欧美又色又爽又黄视频| 亚洲精品中文字幕一二三四区| 精品久久久久久成人av| 国产精品免费视频内射| 欧美黄色片欧美黄色片| 国产熟女午夜一区二区三区| 成人精品一区二区免费| 久久久国产欧美日韩av| 大型av网站在线播放| 亚洲国产精品久久男人天堂| 精品福利观看| 美女高潮喷水抽搐中文字幕| 国产av又大| 91九色精品人成在线观看| 美女午夜性视频免费| 老鸭窝网址在线观看| 久久人妻av系列| 国产精品综合久久久久久久免费| 90打野战视频偷拍视频| 性欧美人与动物交配| 美女国产高潮福利片在线看| 免费看a级黄色片| 黄频高清免费视频| 伦理电影免费视频| 亚洲中文字幕一区二区三区有码在线看 | 免费在线观看黄色视频的| 黑人操中国人逼视频| 巨乳人妻的诱惑在线观看| a级毛片在线看网站| 久久人妻av系列| 国内少妇人妻偷人精品xxx网站 | 日韩精品中文字幕看吧| 1024香蕉在线观看| 别揉我奶头~嗯~啊~动态视频| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 99国产精品一区二区蜜桃av| 国产人伦9x9x在线观看| 黄色 视频免费看| 黑丝袜美女国产一区| 婷婷丁香在线五月| 女人爽到高潮嗷嗷叫在线视频| 动漫黄色视频在线观看| 久久国产乱子伦精品免费另类| 88av欧美| 免费看十八禁软件| 国产视频内射| 日日夜夜操网爽| 在线观看66精品国产| 免费看a级黄色片| 免费高清视频大片| 欧美成人一区二区免费高清观看 | 久久久久免费精品人妻一区二区 | 日韩欧美国产一区二区入口| 亚洲,欧美精品.| 午夜福利在线观看吧| 观看免费一级毛片| 精品电影一区二区在线| 男女之事视频高清在线观看| 成人18禁在线播放| 一区二区三区高清视频在线| 18禁美女被吸乳视频| 观看免费一级毛片| 日韩欧美国产一区二区入口| 久久精品国产亚洲av高清一级| 最新美女视频免费是黄的| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影| 观看免费一级毛片| 欧美又色又爽又黄视频| 亚洲一码二码三码区别大吗| 精品第一国产精品| 婷婷精品国产亚洲av在线| 亚洲国产欧美一区二区综合| 国产精品电影一区二区三区| 美女大奶头视频| 后天国语完整版免费观看| 国产伦一二天堂av在线观看| 18禁国产床啪视频网站| 国产日本99.免费观看| 国产精品一区二区精品视频观看| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 精品国产亚洲在线| 亚洲九九香蕉| 精品久久久久久久久久免费视频| 日本五十路高清| 又大又爽又粗| 91在线观看av| 国产精品免费一区二区三区在线| 亚洲人成伊人成综合网2020| 日本成人三级电影网站| 国产亚洲欧美在线一区二区| 亚洲第一欧美日韩一区二区三区| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 级片在线观看| 久久人人精品亚洲av| 久久久久国内视频| 91九色精品人成在线观看| 在线免费观看的www视频| 国产97色在线日韩免费| 亚洲中文字幕日韩| 免费女性裸体啪啪无遮挡网站| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 国产精品久久视频播放| 人人妻人人看人人澡| 久久精品国产清高在天天线| 亚洲一区高清亚洲精品| 欧美日韩黄片免| 亚洲av熟女| 成人精品一区二区免费| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 99国产综合亚洲精品| 黄片播放在线免费| www日本黄色视频网| 99精品久久久久人妻精品| 国语自产精品视频在线第100页| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品久久男人天堂| 国产精品影院久久| 在线观看午夜福利视频| 无限看片的www在线观看| 老汉色av国产亚洲站长工具| svipshipincom国产片| 亚洲精品一区av在线观看| 久久性视频一级片| 欧美精品啪啪一区二区三区| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 亚洲第一av免费看| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩一区二区三| 最近最新免费中文字幕在线| 91在线观看av| 十八禁网站免费在线| 色av中文字幕| 亚洲av成人不卡在线观看播放网| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看 | 自线自在国产av| 午夜免费激情av| 亚洲精品国产精品久久久不卡| 欧美成人免费av一区二区三区| 精品电影一区二区在线| 十八禁人妻一区二区| 欧美激情久久久久久爽电影| 久久久久久久午夜电影| 欧美久久黑人一区二区| 亚洲第一av免费看| 人人妻人人澡人人看| 精品国产亚洲在线| 男女视频在线观看网站免费 | 少妇熟女aⅴ在线视频| a级毛片a级免费在线| 精品一区二区三区av网在线观看| 久久精品aⅴ一区二区三区四区| 两人在一起打扑克的视频| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 美女国产高潮福利片在线看| 极品教师在线免费播放| 中文字幕久久专区| 免费电影在线观看免费观看| 美女扒开内裤让男人捅视频| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 12—13女人毛片做爰片一| 十八禁人妻一区二区| 曰老女人黄片| 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器 | 91字幕亚洲| 久久香蕉激情| 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 亚洲 欧美一区二区三区| 国产私拍福利视频在线观看| 精品午夜福利视频在线观看一区| www.自偷自拍.com| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 日日干狠狠操夜夜爽| 欧美日本视频| 女性生殖器流出的白浆| 欧美一级a爱片免费观看看 | 亚洲第一青青草原| 国产成人啪精品午夜网站| 欧美在线黄色| 亚洲成国产人片在线观看| 嫩草影视91久久| av福利片在线| 日韩欧美 国产精品| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕| 在线观看舔阴道视频| 国产三级黄色录像| 久久热在线av| 亚洲成人国产一区在线观看| 久久久久精品国产欧美久久久| 日韩精品免费视频一区二区三区| 性欧美人与动物交配| 午夜免费成人在线视频| 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址| 国产精品 国内视频| 搞女人的毛片| 欧美日韩中文字幕国产精品一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲成av片中文字幕在线观看| 高清在线国产一区| 少妇被粗大的猛进出69影院| 成人18禁在线播放| 男女做爰动态图高潮gif福利片| 久久久久国产一级毛片高清牌| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| ponron亚洲| 精品欧美国产一区二区三| 亚洲成人免费电影在线观看| 男女视频在线观看网站免费 | 一级黄色大片毛片| 日韩高清综合在线| 亚洲中文字幕日韩| 99riav亚洲国产免费| 中文亚洲av片在线观看爽| 又大又爽又粗| 亚洲五月色婷婷综合| 国产成人影院久久av| 精品不卡国产一区二区三区| 日韩av在线大香蕉| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 中文字幕精品免费在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 好看av亚洲va欧美ⅴa在| av有码第一页| 国产1区2区3区精品| videosex国产| 黄色毛片三级朝国网站| 久久久久久大精品| 人人妻人人看人人澡| av在线天堂中文字幕| 国产精品亚洲美女久久久| 91av网站免费观看| 91在线观看av| 少妇裸体淫交视频免费看高清 | √禁漫天堂资源中文www| 日韩成人在线观看一区二区三区| 午夜激情福利司机影院| 91字幕亚洲| x7x7x7水蜜桃| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类 | 国产精品二区激情视频| 午夜免费鲁丝| 亚洲精品国产精品久久久不卡| 看片在线看免费视频| 久久久久久国产a免费观看| 男男h啪啪无遮挡| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻| 亚洲无线在线观看| 国产精品亚洲美女久久久| 久久人妻福利社区极品人妻图片| 久久久久免费精品人妻一区二区 | 国产区一区二久久| 日韩成人在线观看一区二区三区| 精品欧美一区二区三区在线| 欧美在线黄色| 伦理电影免费视频| 国产成年人精品一区二区| 我的亚洲天堂| 国产精品九九99| 久久精品国产综合久久久| 日本免费a在线| 亚洲av五月六月丁香网| a在线观看视频网站| 悠悠久久av| aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 精品日产1卡2卡| 国产av一区二区精品久久| 国产片内射在线| 国产精品二区激情视频| 看片在线看免费视频| 国产精品av久久久久免费| 欧美性长视频在线观看| 免费搜索国产男女视频| 精品少妇一区二区三区视频日本电影| 男人的好看免费观看在线视频 | 国产高清视频在线播放一区| 99久久国产精品久久久| 国产在线观看jvid| 欧美一级毛片孕妇| 欧美午夜高清在线| 一级毛片女人18水好多| 90打野战视频偷拍视频| 亚洲最大成人中文| 在线观看午夜福利视频| 亚洲成人久久性| 免费在线观看成人毛片| 国产又色又爽无遮挡免费看| 亚洲欧洲精品一区二区精品久久久| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 亚洲九九香蕉| 国语自产精品视频在线第100页|