• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Computationally Hybrid Method for Solving a Famous Physical Problem on an Unbounded Domain

    2019-01-10 06:57:32ParandKalantariDelkhoshandMirahmadian
    Communications in Theoretical Physics 2019年1期

    F.A.Parand,Z.Kalantari,M.Delkhosh,and F.Mirahmadian

    1Department of Mathematics and Computer Science,Allameh Tabataba’i University,Tehran,Iran

    2Department of Computer Sciences,Shahid Beheshti University,Tehran,Iran

    3Department of Mathematics and Computer Science,Islamic Azad University,Bardaskan Branch,Bardaskan,Iran

    Abstract In this paper,a hybrid method based on the collocation and Newton-Kantorovich methods is used for solving the nonlinear singular Thomas-Fermi equation.At first,by using the Newton-Kantorovich method,the nonlinear problem is converted to a sequence of linear differential equations,and then,the fractional order of rational Legendre functions are introduced and used for solving linear differential equations at each iteration based on the collocation method.Moreover,the boundary conditions of the problem by using Ritz method without domain truncation method are satisfied.In the end,the obtained results compare with other published in the literature to show the performance of the method,and the amounts of residual error are very small,which indicates the convergence of the method.

    Key words:fractional order of rational Legendre functions,Newton-Kantorovich method,collocation method,Thomas-Fermi equation

    1 Introduction

    In the first of this section,an introduction of the spectral methods for solving the problems in the unbounded domains is presented.Then,the biography of Thomas-Fermi equation is investigated.

    1.1 The Spectral Methods

    Many of the problems in engineering sciences,astrophysics and other sciences occur in the unbounded domains.One of the best tools for solving these problems is the spectral methods.Spectral methods are one of the“big four” technologies for the numerical solution of ordinary differential equations(ODEs)which came into their own roughly in successive decades:(i)Finite Difference methods.[1?2](ii)Finite Element methods.[3](iii)Meshfree methods.[4?6](iv)Spectral methods.[7?9]The spectral methods have different approaches for solving the problems that defined in infinite and semi-infinite domains that presented in Table 1.

    Table 1 Different approaches in spectral methods.

    1.2 The Thomas-Fermi Equation

    One of the most important nonlinear ordinary differential equations in atomic physics is the Thomas-Fermi equation.This problem that defined in unbounded domain is used for determining the effective nuclear charge in heavy atoms.The Thomas-Fermi equation is given as the following[25?26]

    with the boundary conditions:

    Importance of this problem in theoretical physics is caus-ing that computing its solutions have found many attentions in scientific research.

    Also,the initial slope y′(0)of Thomas-Fermi equation plays an important role in determining many physical properties of this problem,therefore computing the value of y′(0)is very important in studies.

    In recent years,different approaches are provided for solving Thomas-Fermi equation. Baker[27]has investigated singularity of this equation and has provided an analytical solution as follows:

    where?A is the value of the first derivative at the origin.

    Mason[28]has used rational approximations to the ordinary Thomas-Fermi functions and its derivative.Graef[29]has examined oscillatory and asymptotic properties of solutions of generalized Thomas-Fermi equations with deviating.MacLeod[30]has presented two differing approximations on Chebyshev polynomials,one for small x<40,and one for large x.

    A numerical method on an unbounded interval for generation of enclosures based on monotone discretization principle and on available global bounds for the solutions of Thomas-Fermi equation have been investigated by Alzanaidi et al.[31]Development of a modification of the Adomian decomposition method that used several diagonal Pade approximates has studied by Wazwaz.[32]Also,during the years 2001 to 2011 different works for solving Thomas-Fermi problem have been presented,which some of them can be observed in Refs.[33–44].

    In the year 2013,Boyd[45]has solved Thomas-Fermi equation.At the first,by using Newton-Kantorovich iteration method he reduced the nonlinear differential equation to a sequence of linear differential equations and then utilized a collocation method based on rational Chebyshev functions for solving this problem.The Sinc-collocation method for solving the Thomas-Fermi equation has provided by Parand et al.[46]The optimal Homotopy asymptotic method has used for solving the original Thomas-Fermi equation by Marinca et al.[47]Amor et al.[48]have studied the numerical integration,Power series with Pade,Hermite-Pade approximates,Pade-Hankel method and Chebyshev polynomials for solving Thomas-Fermi equation and obtained a highly solutions for this problem.The rational second-kind Chebyshev pseudospectral method has used for solving this problem by Kilicman et al.[49]Liu et al.[50]have presented an iterative method based on Laguerre pseudospectral approximation for solving Thomas-Fermi equation.In these studies,the solution of this problem is the sum of two parts include a power series expansion and a smooth part related to the singularity.Filobello et al.[51]have used the Thomas-Fermi equation as a case study for nonlinearities distribution Homotopy perturbation method.Combination of quasilinearization method and the fractional order of rational Chebyshev functions have presented by Parand et al.[52]Parand et al.[53]combined the quasilinearization method and the fractional order of rational Euler functions for solving Thomas-Fermi equation.Parand et al.[54]combined the quasilinearization method and the fractional order of rational Bessel functions for solving Thomas-Fermi equation.Parand et al.[55]combined the quasilinearization method and the fractional order of rational Jacobi functions for solving Thomas-Fermi equation.

    2 Methodology

    In this section,the work method has been investigated.

    2.1 Fractional Order of Rational Legendre Functions

    In this section,the Legendre polynomials and their basic properties are presented and then we have introduced the fractional order of rational Legendre functions on the unbounded domain.

    (i)Legendre Polynomials

    These polynomials demonstrate as Pn(x).The Legendre polynomials have the expansion[56?57]

    The distinct feature of the Legendre polynomials is that they are mutually orthogonal in the interval[?1,1]with respect to the uniform weight function w(x)=1,as follows:

    where δmnis Kronecker delta.These polynomials satisfy the three-term recurrence relation:

    The symmetric property for these polynomials is as follows:

    Also,its derivative recurrence relation is:

    (ii)The Fractional Order of Rational Legendre Functions

    By using the change of variable(x?l)/(x+l),we can obtain rational Legendre polynomials,where l is a constant parameter and sets the length scale of the mapping.Boyd[58]has presented some techniques for finding the optimal value of l.Also,we define the fractional order of rational Legendre functions on the interval[0,+∞)by introducing the change of variable x→(xz?l)/(xz+l),l>0 and 0

    Hence,we denote these functions by

    and they obtain by using the following recurrence formula:

    The derivative recurrence relation for these functions is as follows:

    2.2 Newton-Kantorovich Method

    The Newton-Kantorovich Method(NKM)represents an iterative approach combined with linear approximations.This method can be used to solve nonlinear problems in various sciences.In fact,the solution of nonlinear problems can be reduced to a sequence of linear problems by using this method.The advantage of the Newton-Kantorovich method for solving systems of nonlinear equations is its speed of convergence once a sufficiently accurate approximation is known.Some researchers have presented this technique in their lectures.[45,59?61]

    Let L(m)(y(x))be one particular differential equation as follows:

    where L(m)is the di ff erential operator of order m,andis a nonlinear function containing x,y(x),y(1)(x),y(2)(x),...,y(m?1)(x).The Newton-Kantorovich method yields the linear equations as follows:

    where fy(j)is the derivate ofwith respect to y(j).

    2.3 Collocation Method

    One of the simple approaches to weighted residuals method is collocation method.[62]Therefore,we need to explain the method of weighted residuals at the first.Consider the initial-boundary-value problem of a differential equation

    on a domain D for a function u(x)with boundary condition B(u)=0 and initial condition I(u)=0.To solving this equation,first make the approximate solution un+1(x)as a finite sum of known functions

    where the ?j(x)are called trial functions and ajare unknown coefficients.To solving Eq.(4),inserting the series expression(5)into Eq.(4)and define the residual function as follows:

    To determine the n+1 unknown coefficients aj,the method of weighted residuals requires that the residual function Res(x)multiplied with n+1 test function wk(x)and integrated over the domain should vanish:

    There exist various methods to choose the test functions.Here,we only mention the one most common approaches,namely the collocation method.In this method,a set of n+1 collocation points is chosen in the domain D on which the residual Res(x)is required to vanish

    The consequence of this expression is that Eq.(4)is fulfilled exactly in the collocation points,L(un(x))|x=xk=0.Thus,the test functions become

    with δ being the Dirac delta function

    2.4 Solving Thomas-Fermi Equation

    In this section,the explanation of our application for solving Thomas-Fermi equation is presented.In first,by using the Newton-Kantorovich method the nonlinear differential equation makes a sequence of linear differential equations.Afterward,the collocation method based on the fractional order of rational Legendre functions is applied for solving these linear equations.

    So,by utilizing the NKM the answer of the Thomas-Fermi equation as the solution of the following linear differential equation in the(i+1)-th iterative approximation is determined by yi+1(x):

    with the boundary conditions:

    Due to the NKM-iteration needs initial guess of y0(x),its value prescribed y0(x)=1.Now,the collocation method is used to approximate the solution of the linear differential equation(6).

    Therefore,we need to approximate the following function:

    where ai(n+1)+jare unknown coefficient and n is the degree of the fractional order of rational Legendre function.Now,we consider:

    where,the boundary conditions of Thomas-Fermi equation are satisfied and L is an arbitrary positive constant.Thus,at each iteration of the NKM,i=0,1,2,...,Max,the residual function is created by replacing yi+1(x)in the equation as follows:

    Indeed,the residual function must be minimized in the any NKM-iteration.Therefore,by replacing the nodes xk,k=0,...,n which are the zeros of the fractional order of rational Legendre functions in the above equation,we obtain n+1 linear differential equations.Ultimately,the unknown coefficients can be found by solving these equations.Mandelzweig and Tabakin[33]have proved convergence of the NKM,and also Canuto et al.[63]and Guo[64]have proved the stability and convergence analysis of spectral methods,and,we will show that our numerical results are convergent.

    3 Results and Discussion

    As mentioned,Baker[27]has presented an analytical solution in the form Eq.(3)for Thomas-Fermi problem.The construction of this equation is based on the powers of x1/2,which actually this point is the cause of the choice of z=1/2 for solving this problem.

    The numerical results for y(x)and y′(x)obtained by the present method with z=1/2,Max=25,l=4.5,L=1,and n=90 are displayed in Table 2.Also,we tabulate a list of potential y′(0)that calculated by researchers and the present method in Table 3.In this Table,accurate digits of y′(0)are in bold face.It can be observed that the obtained value y′(0)in the present method for n=90 is exact to 37 decimal places,which this point illustrates the convergence of the present method.

    The approximate solution of y(x)by using the proposed method is depicted in Figs 1(a),and 1(b)presents the graphical demonstration of the absolute value of residual error.It is clear that amounts of residual error are very small,which this indicates the high accuracy of the present method.

    Fig.1 (a)The graph of y(x). (b)The graphical demonstration of the absolute value of residual error with n=60,70,80,90 to illustrate the convergence of the method.

    Figures 2(a)and 2(b)show the graphs ofof the present method at z=1/2,n=90 and the various values ofland L,respectively.The interval that we can choose for the parameters l and L to get applicable results are depicted in these figures.In particular,the reason why we select values l=4.5 and L=1 for solving this problem can be easily seen in these figures.

    Also,Fig.2(c)indicates the graphs offor the various values of Max.It is seen that after the point Max=25,the changes in absolute errors ofare fixed.Therefore,in the present method Max=25 is the best value for solving this problem.

    Table 2 Results of y(x)and y′(x)for the various values of x and n=90.

    Table 3 Results of y′(0)in comparison with other researchers.

    Fig.2 (a)The graphs of for the various l,(b)The graphs of for the various L,(c)The graphs of for the various Max,by the present method with z=1/2 and n=90.

    4 Conclusions

    The emphasis in this paper has been on solving nonlinear singular Thomas-Fermi equation.Our overriding aim has been to show that the combination of the Newton-Kantorovich and collocation methods can be applied easily to get high-accurate results for this problem.In order to evaluate the initial slope y′(0)that is very important in this problem,we obtain a good approximation y′(0)= ?1.588 071 022 611 375 312 718 684 509 423 950 109 4 which is correct to 37 decimal places by using 90 collocation points,that is,we have obtained a more accurate solution by using fewer collocation points compared to other methods,other researchers have used 300 and 600 collocation points to obtain accuracy of 36 and 25 decimal places,respectively.Furthermore,a comparison between the obtained results of the present method and the results of variant methods that published in other lectures shows that proposed method is reliable and efficient.

    建设人人有责人人尽责人人享有的| 飞空精品影院首页| 国产激情久久老熟女| 免费女性裸体啪啪无遮挡网站| www.自偷自拍.com| 咕卡用的链子| 亚洲免费av在线视频| 人成视频在线观看免费观看| 亚洲成人免费av在线播放| 免费日韩欧美在线观看| 2018国产大陆天天弄谢| 91国产中文字幕| 免费高清在线观看日韩| 在线观看免费视频网站a站| 又紧又爽又黄一区二区| 久久综合国产亚洲精品| 日韩制服骚丝袜av| 国产精品自产拍在线观看55亚洲 | 少妇裸体淫交视频免费看高清 | 另类亚洲欧美激情| 一边摸一边做爽爽视频免费| 精品一区二区三区av网在线观看 | 国产精品麻豆人妻色哟哟久久| 一区二区三区乱码不卡18| 视频区图区小说| 91av网站免费观看| 欧美老熟妇乱子伦牲交| 国产在线一区二区三区精| 老司机亚洲免费影院| 淫妇啪啪啪对白视频 | 黄色怎么调成土黄色| 日韩精品免费视频一区二区三区| 9色porny在线观看| 国产一区二区在线观看av| 交换朋友夫妻互换小说| 亚洲精品美女久久av网站| 日韩 欧美 亚洲 中文字幕| 精品国产超薄肉色丝袜足j| 91精品伊人久久大香线蕉| 丰满迷人的少妇在线观看| 精品第一国产精品| 成人国产av品久久久| 人人妻,人人澡人人爽秒播| 手机成人av网站| 青青草视频在线视频观看| 老司机福利观看| 99精品久久久久人妻精品| 精品国产一区二区三区久久久樱花| 考比视频在线观看| 国产精品影院久久| 狂野欧美激情性bbbbbb| 美女福利国产在线| 亚洲情色 制服丝袜| 爱豆传媒免费全集在线观看| 久9热在线精品视频| 亚洲国产欧美一区二区综合| 国产精品久久久久久人妻精品电影 | 亚洲av男天堂| 一区在线观看完整版| 老鸭窝网址在线观看| www.av在线官网国产| 国产免费av片在线观看野外av| 97在线人人人人妻| 亚洲中文字幕日韩| 欧美精品啪啪一区二区三区 | 欧美精品亚洲一区二区| 热re99久久国产66热| 青春草亚洲视频在线观看| 狂野欧美激情性xxxx| 99香蕉大伊视频| 久久精品成人免费网站| 91av网站免费观看| 国产在线免费精品| 欧美老熟妇乱子伦牲交| 日韩欧美一区二区三区在线观看 | 大陆偷拍与自拍| 国产伦理片在线播放av一区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜视频精品福利| 动漫黄色视频在线观看| 国产老妇伦熟女老妇高清| 啦啦啦在线免费观看视频4| 高清在线国产一区| 老司机午夜十八禁免费视频| 男女边摸边吃奶| 久久人妻福利社区极品人妻图片| 国产精品二区激情视频| 男人添女人高潮全过程视频| 丝瓜视频免费看黄片| 黄网站色视频无遮挡免费观看| 不卡av一区二区三区| 91精品伊人久久大香线蕉| 精品一区二区三区av网在线观看 | 女性生殖器流出的白浆| 他把我摸到了高潮在线观看 | 国产精品影院久久| 999精品在线视频| 妹子高潮喷水视频| 亚洲自偷自拍图片 自拍| 黄色毛片三级朝国网站| 一区二区三区四区激情视频| 欧美少妇被猛烈插入视频| 国产男人的电影天堂91| 国产97色在线日韩免费| 亚洲一卡2卡3卡4卡5卡精品中文| 久久天躁狠狠躁夜夜2o2o| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产精品麻豆| 亚洲久久久国产精品| av视频免费观看在线观看| av在线老鸭窝| 亚洲全国av大片| 啦啦啦啦在线视频资源| 午夜激情av网站| 色婷婷久久久亚洲欧美| a级毛片在线看网站| 欧美激情 高清一区二区三区| 日韩视频在线欧美| 国产亚洲精品第一综合不卡| 在线亚洲精品国产二区图片欧美| 美女视频免费永久观看网站| 一边摸一边做爽爽视频免费| 美女国产高潮福利片在线看| 亚洲自偷自拍图片 自拍| 丝袜美足系列| 黑人欧美特级aaaaaa片| 国产男女内射视频| 精品久久蜜臀av无| 十分钟在线观看高清视频www| 亚洲熟女精品中文字幕| 欧美精品一区二区大全| 国产福利在线免费观看视频| 亚洲性夜色夜夜综合| 捣出白浆h1v1| 国产在线免费精品| 亚洲精品美女久久av网站| 深夜精品福利| 欧美老熟妇乱子伦牲交| 亚洲精品美女久久av网站| 中文字幕人妻丝袜一区二区| 精品少妇黑人巨大在线播放| 18禁国产床啪视频网站| kizo精华| 两个人免费观看高清视频| 考比视频在线观看| 久久av网站| 国产不卡av网站在线观看| 亚洲精品久久成人aⅴ小说| 久久亚洲精品不卡| 欧美黑人精品巨大| 亚洲精品一二三| 亚洲国产精品999| 亚洲成av片中文字幕在线观看| 久热这里只有精品99| 他把我摸到了高潮在线观看 | 纯流量卡能插随身wifi吗| 欧美 日韩 精品 国产| 三上悠亚av全集在线观看| 国产无遮挡羞羞视频在线观看| 一级黄色大片毛片| a级毛片黄视频| 亚洲专区字幕在线| 欧美乱码精品一区二区三区| 免费在线观看日本一区| 日日夜夜操网爽| 男男h啪啪无遮挡| 精品少妇内射三级| 高清欧美精品videossex| 亚洲专区字幕在线| 欧美人与性动交α欧美软件| 欧美精品啪啪一区二区三区 | 婷婷色av中文字幕| 丝袜喷水一区| 成年动漫av网址| 久久久久精品人妻al黑| 日韩欧美免费精品| 久久免费观看电影| 欧美日韩视频精品一区| 国产一区二区在线观看av| 亚洲精品乱久久久久久| 免费久久久久久久精品成人欧美视频| 大码成人一级视频| 午夜激情久久久久久久| 国产精品 欧美亚洲| 久久影院123| 黄色怎么调成土黄色| 日韩免费高清中文字幕av| 亚洲午夜精品一区,二区,三区| 国产精品一区二区精品视频观看| 一边摸一边做爽爽视频免费| 久久久久久久国产电影| 国产成人系列免费观看| 欧美黑人精品巨大| 日本精品一区二区三区蜜桃| 国产在线免费精品| 91av网站免费观看| 亚洲精品日韩在线中文字幕| 91国产中文字幕| 18禁黄网站禁片午夜丰满| av网站在线播放免费| 久久ye,这里只有精品| 精品少妇内射三级| 一边摸一边抽搐一进一出视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久精品94久久精品| 真人做人爱边吃奶动态| 伦理电影免费视频| 黄色毛片三级朝国网站| 亚洲国产中文字幕在线视频| 亚洲av电影在线观看一区二区三区| 久久99热这里只频精品6学生| 午夜福利视频精品| 欧美精品啪啪一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 免费观看人在逋| 大香蕉久久成人网| 日本wwww免费看| 婷婷丁香在线五月| 欧美久久黑人一区二区| 精品国产国语对白av| 五月天丁香电影| 激情视频va一区二区三区| av线在线观看网站| 人人妻人人爽人人添夜夜欢视频| 久久人妻熟女aⅴ| 免费观看av网站的网址| 最新的欧美精品一区二区| 中国国产av一级| 五月天丁香电影| 嫩草影视91久久| 考比视频在线观看| 日韩视频一区二区在线观看| 久久久国产成人免费| 777米奇影视久久| 亚洲成人手机| 一二三四在线观看免费中文在| 波多野结衣av一区二区av| 岛国毛片在线播放| a在线观看视频网站| 亚洲国产中文字幕在线视频| 女性被躁到高潮视频| av在线老鸭窝| 国产av精品麻豆| 中文字幕人妻熟女乱码| 国产精品一区二区免费欧美 | 俄罗斯特黄特色一大片| 亚洲熟女精品中文字幕| 国产男女内射视频| 脱女人内裤的视频| 亚洲欧美激情在线| 精品人妻在线不人妻| 亚洲精品中文字幕一二三四区 | 日韩人妻精品一区2区三区| 男人操女人黄网站| 丰满人妻熟妇乱又伦精品不卡| 精品卡一卡二卡四卡免费| 久久久久久免费高清国产稀缺| 人人妻,人人澡人人爽秒播| 在线精品无人区一区二区三| 国产免费福利视频在线观看| 丝袜人妻中文字幕| 人妻久久中文字幕网| 一级毛片精品| 999久久久精品免费观看国产| 国产主播在线观看一区二区| 岛国毛片在线播放| 桃红色精品国产亚洲av| 黑人猛操日本美女一级片| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩另类电影网站| 精品亚洲成国产av| 十八禁网站网址无遮挡| 久久性视频一级片| 亚洲欧洲日产国产| 亚洲自偷自拍图片 自拍| 婷婷色av中文字幕| 久久狼人影院| 精品国产乱码久久久久久男人| 人人妻人人澡人人看| av一本久久久久| 搡老熟女国产l中国老女人| 国产亚洲一区二区精品| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 成年人黄色毛片网站| 亚洲精品国产一区二区精华液| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久国产电影| av视频免费观看在线观看| 成年美女黄网站色视频大全免费| 18禁黄网站禁片午夜丰满| 久久青草综合色| 久久人人爽人人片av| 男人添女人高潮全过程视频| 国产一区二区三区在线臀色熟女 | 亚洲一码二码三码区别大吗| 热99re8久久精品国产| 国产99久久九九免费精品| 建设人人有责人人尽责人人享有的| 国产成人系列免费观看| 久久人妻福利社区极品人妻图片| 色婷婷av一区二区三区视频| 精品少妇内射三级| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 成年人黄色毛片网站| 久久久久精品国产欧美久久久 | 日韩制服丝袜自拍偷拍| 国产欧美日韩一区二区三 | 日本wwww免费看| 啦啦啦在线免费观看视频4| 欧美亚洲日本最大视频资源| 1024香蕉在线观看| 最新的欧美精品一区二区| 久久人人爽av亚洲精品天堂| 精品福利观看| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 国产男女内射视频| 国产精品一区二区精品视频观看| 欧美在线黄色| 性色av乱码一区二区三区2| 亚洲精品乱久久久久久| 老司机影院成人| 人人妻,人人澡人人爽秒播| 国产精品一区二区在线观看99| bbb黄色大片| 国产免费视频播放在线视频| 国产深夜福利视频在线观看| 午夜福利,免费看| 亚洲激情五月婷婷啪啪| www.熟女人妻精品国产| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 国产成人av教育| 在线观看舔阴道视频| 亚洲精品一区蜜桃| 少妇裸体淫交视频免费看高清 | av在线老鸭窝| 久久人妻福利社区极品人妻图片| 777米奇影视久久| 亚洲国产精品成人久久小说| 在线观看一区二区三区激情| 亚洲欧美精品自产自拍| 国产精品免费大片| 狂野欧美激情性bbbbbb| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久男人| 国产97色在线日韩免费| netflix在线观看网站| 天天影视国产精品| 精品福利永久在线观看| 免费不卡黄色视频| 亚洲av成人一区二区三| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 亚洲一区中文字幕在线| 久久精品国产亚洲av香蕉五月 | 亚洲欧美一区二区三区久久| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 人人妻人人添人人爽欧美一区卜| 美女视频免费永久观看网站| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频| 黄色视频在线播放观看不卡| kizo精华| 欧美人与性动交α欧美精品济南到| 男男h啪啪无遮挡| 国产在线观看jvid| cao死你这个sao货| av天堂久久9| 成人av一区二区三区在线看 | 久久影院123| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 久久九九热精品免费| 国产成人精品久久二区二区免费| av线在线观看网站| 叶爱在线成人免费视频播放| av又黄又爽大尺度在线免费看| 老司机影院成人| 亚洲精品久久成人aⅴ小说| 国产黄频视频在线观看| 在线观看免费高清a一片| 国产野战对白在线观看| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级| 国产无遮挡羞羞视频在线观看| 啦啦啦 在线观看视频| 免费不卡黄色视频| 国产精品久久久久久精品电影小说| 国产不卡av网站在线观看| 如日韩欧美国产精品一区二区三区| 丁香六月欧美| 免费少妇av软件| 国产精品成人在线| 9191精品国产免费久久| 欧美97在线视频| 1024视频免费在线观看| 男男h啪啪无遮挡| 男女午夜视频在线观看| 高清黄色对白视频在线免费看| 亚洲精品国产色婷婷电影| 另类精品久久| 国产av精品麻豆| 亚洲精品国产一区二区精华液| 韩国高清视频一区二区三区| av有码第一页| 777米奇影视久久| 欧美 日韩 精品 国产| 日韩视频一区二区在线观看| 亚洲第一欧美日韩一区二区三区 | 18禁黄网站禁片午夜丰满| 一区二区三区乱码不卡18| 搡老岳熟女国产| 桃红色精品国产亚洲av| 国产免费视频播放在线视频| 久久久国产欧美日韩av| 麻豆av在线久日| 一级毛片精品| 一个人免费看片子| 欧美精品人与动牲交sv欧美| 正在播放国产对白刺激| 亚洲熟女毛片儿| 亚洲久久久国产精品| 久久久精品国产亚洲av高清涩受| 高清欧美精品videossex| 久久久欧美国产精品| 最黄视频免费看| 亚洲五月色婷婷综合| 91av网站免费观看| 人人澡人人妻人| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 国产亚洲av高清不卡| 91精品三级在线观看| 日本vs欧美在线观看视频| 老司机亚洲免费影院| 亚洲国产精品999| 人人妻人人澡人人看| 在线十欧美十亚洲十日本专区| 最新的欧美精品一区二区| 日韩一卡2卡3卡4卡2021年| 99久久99久久久精品蜜桃| 母亲3免费完整高清在线观看| 女人精品久久久久毛片| 午夜激情av网站| 老汉色av国产亚洲站长工具| 国产一区二区在线观看av| 欧美激情久久久久久爽电影 | 久久久久久亚洲精品国产蜜桃av| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 一级毛片精品| 国产91精品成人一区二区三区 | 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 久久这里只有精品19| 男人爽女人下面视频在线观看| 91精品三级在线观看| 亚洲第一欧美日韩一区二区三区 | 午夜久久久在线观看| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久男人| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 久久精品亚洲熟妇少妇任你| 在线天堂中文资源库| 免费av中文字幕在线| 日韩制服丝袜自拍偷拍| 久久天躁狠狠躁夜夜2o2o| 王馨瑶露胸无遮挡在线观看| 热99久久久久精品小说推荐| 极品人妻少妇av视频| 一区二区三区激情视频| 国产成人精品久久二区二区91| 国产1区2区3区精品| 国产不卡av网站在线观看| 中文字幕色久视频| 悠悠久久av| 国产精品 国内视频| 国产成人精品久久二区二区免费| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区 | 国产精品一区二区免费欧美 | 热99re8久久精品国产| 97精品久久久久久久久久精品| 亚洲性夜色夜夜综合| 精品一区二区三区av网在线观看 | 老司机亚洲免费影院| 国产精品九九99| 国产人伦9x9x在线观看| 午夜影院在线不卡| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密| av天堂久久9| 欧美精品高潮呻吟av久久| bbb黄色大片| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 亚洲国产精品一区三区| 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 飞空精品影院首页| a在线观看视频网站| 色婷婷久久久亚洲欧美| 国产欧美日韩精品亚洲av| 欧美另类一区| 欧美av亚洲av综合av国产av| 99热国产这里只有精品6| 999久久久精品免费观看国产| av超薄肉色丝袜交足视频| 老司机影院成人| 精品国产一区二区三区久久久樱花| 一级毛片女人18水好多| 欧美黄色片欧美黄色片| 国产精品免费大片| 免费黄频网站在线观看国产| 一进一出抽搐动态| 亚洲中文字幕日韩| 电影成人av| 亚洲va日本ⅴa欧美va伊人久久 | 1024视频免费在线观看| 在线 av 中文字幕| 成在线人永久免费视频| xxxhd国产人妻xxx| 日韩电影二区| 欧美黄色淫秽网站| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 亚洲精品中文字幕一二三四区 | 久久久久久久久免费视频了| 一区福利在线观看| 狂野欧美激情性xxxx| 国产精品影院久久| 国产精品秋霞免费鲁丝片| 蜜桃国产av成人99| 国产精品 国内视频| 国产在视频线精品| 国产亚洲欧美在线一区二区| 亚洲国产精品一区三区| 国产免费av片在线观看野外av| 久久久国产一区二区| 涩涩av久久男人的天堂| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| 麻豆av在线久日| 欧美激情久久久久久爽电影 | 国产在视频线精品| 久久中文字幕一级| 99久久99久久久精品蜜桃| 国产三级黄色录像| 久久久久久久精品精品| 国产不卡av网站在线观看| √禁漫天堂资源中文www| 在线观看免费视频网站a站| 国产激情久久老熟女| 考比视频在线观看| 熟女少妇亚洲综合色aaa.| 日韩视频在线欧美| 精品久久蜜臀av无| 国产精品久久久av美女十八| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 免费在线观看黄色视频的| 在线亚洲精品国产二区图片欧美| 久久九九热精品免费| 不卡一级毛片| 如日韩欧美国产精品一区二区三区| 亚洲成人免费电影在线观看| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 99国产精品一区二区蜜桃av | 午夜福利在线免费观看网站| 日日爽夜夜爽网站| 视频区欧美日本亚洲| 91精品伊人久久大香线蕉| 五月开心婷婷网| 一级毛片精品| 亚洲av日韩精品久久久久久密| 国精品久久久久久国模美| 国产在线免费精品| 日日爽夜夜爽网站| av有码第一页| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 99国产精品99久久久久| 视频区欧美日本亚洲| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| www.999成人在线观看| 亚洲色图综合在线观看| 亚洲av日韩精品久久久久久密| 大片免费播放器 马上看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲熟妇少妇任你| 欧美精品人与动牲交sv欧美| 久热爱精品视频在线9| 91国产中文字幕| 久久久久久久大尺度免费视频| 久久久精品国产亚洲av高清涩受| av线在线观看网站| 女人精品久久久久毛片| 午夜影院在线不卡| 欧美日韩亚洲国产一区二区在线观看 | 激情视频va一区二区三区|