• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A One-Dimensional Discrete Boltzmann Model for Detonation and an Abnormal Detonation Phenomenon?

    2019-01-10 06:58:34YuDongZhang張玉東AiGuoXu許愛(ài)國(guó)GuangCaiZhang張廣財(cái)andZhiHuaChen陳志華
    Communications in Theoretical Physics 2019年1期
    關(guān)鍵詞:愛(ài)國(guó)

    Yu-Dong Zhang(張玉東),Ai-Guo Xu(許愛(ài)國(guó)), Guang-Cai Zhang(張廣財(cái)),and Zhi-Hua Chen(陳志華)

    1Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    2Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Center for Applied Physics and Technology,MOE Key Center for High Energy Density Physics Simulations,College of Engineering,Peking University,Beijing 100871,China

    Abstract A one-dimensional discrete Boltzmann model for detonation simulation is presented.Instead of numerical solving Navier-Stokes equations,this model obtains the information offlow field through numerical solving specially discretized Boltzmann equation.Several classical benchmarks including Sod shock wave tube,Colella explosion problem,and one-dimensional self-sustainable stable detonation are simulated to validate the new model.Based on the new model,the influence of negative temperature coefficient of reaction rate on detonation is further investigated.It is found that an abnormal detonation with two wave heads periodically appears under negative temperature coefficient condition.The causes of the abnormal detonation are analyzed.One typical cycle of the periodic abnormal detonation and its development process are discussed.

    Key words:detonation,discrete Boltzmann model,negative temperature coefficient,abnormal detonation

    1 Introduction

    Detonation is one kind violent combustion mode accompanied with a large amount of heat release within a short time.[1]It can be treated as a shock wave driven by chemical reaction and propagates with a supersonic speed.[2]Detonation is closely related to the energy use and production safety.

    In some cases,it is necessary to generate detonation waves to improve the utilization efficiency of fuels.Because detonation possesses an approximate isovolumetric characteristic during chemical reaction,it has a higher mechanical efficiency than the general combustion mode.[3]Based on the detonation mechanism,several kinds of aeroengines conception including pulse detonation engine,[4]rotating detonation engine,[5]oblique detonation ramjetin-tube,[6]etc.have been presented and well investigated recently.While in other cases,the formation of detonation should be avoided as far as possible such as in coal mines.[7]Detonation is closely related to both the industrial production and our daily life.However,there still exists much unknown for its deep formation and propagation mechanisms.[3,8]

    It has been well known that combustion and detonation are complex chemical reaction processes with various non-equilibrium behaviors including Hydrodynamic Non-Equilibrium(HNE),Thermodynamic Non-Equilibrium(TNE)and chemical reaction non-equilibrium.[9?10]For detonation research,traditional methods are mainly by using Navier-Stokes(NS)equations to describe the flow behaviour and using phenomenological reaction rate formula to describe the reaction process.[11]In addition,high resolution difference schemes are often needed to track the detonation interface and improve the numerical accuracy.[12?13]Of course,great progress has been made on the studies of detonation by the traditional method,especially in recent years.[3,9]However,NS equations themselves are not sufficient in describing the non-equilibrium effects in the reactive flow.The coefficients of viscosity and heat conduction in NS equations are generally calculated by empirical formula,such as Sutherland equation,or measured by experiments.[14?15]This method is not accurate enough when simulating the flow phenomena with strong non-equilibrium characteristics.Compared with NS equations,Boltzmann equation is more fundamental to describe the flow process.Rooted from the non-equilibrium statistic mechanics,Boltzmann equation is a mesoscale model and contains more kinetic information.By means of the Chapman-Enskog analysis,[16]a well-known multi-scale asymptotic expansion,the Euler equations can be obtained from the Boltzmann equation when the system is exactly in its local thermodynamic equilibrium state,and the NS equations can be obtained when the system linearly,in the Knudsen number,deviates from its local thermodynamic equilibrium state.However,when the system deviates much farther from its local thermodynamic equilibrium state,NS equations will not be accurate enough and fail to capture many important flow behaviors,whereas the Boltzmann equation naturally adapts to all of the above situations.

    Unfortunately,the original Boltzmann equation is too complex to be solved directly,and some attempts have been made to simplify this model,among which the Lattice Boltzmann Model(LBM)[17?20]is a typicalone. ThefirstLBM forcombustion simulation was presented by Succi in 1997.[21]Subsequently,Filippova,[22]Yamamoto,[23]Chiavazzo,[24]Chen[25]and other researchers further developed the application of LBM to combustion simulation.However,all of those previous works aim only at simulating incompressible combustion and cannot satisfy the requirements of detonation simulation which shows pronounced compressible behaviors.Recently,Xu’s group made some attempts in simulating high speed compressible flows using LBM and developed it into a kinetic modeling method to investigate non-equilibrium characteristics.[26?30]To distinguish from the LBM aiming at numerical solving partial di ff erential equations,the kinetic modeling LBM is referred to simply as discrete Boltzmann method/model(DBM).Discrete Boltzmann method now has been well developed and widely used in various complex flow simulations including compressible flows,[31]multiphase flows,[32]Rayleigh-Taylor instability,[33?34]combustion and detonation.[35?38]The new observations brought by DBM are helpful to understand the mechanisms for formation and e ff ects of shock wave,phase transition,energy transformation,and entropy increase in various complex flows. Besides by theory,results of DBM have been con firmed and supplemented by results of molecular dynamics,[39?41]direct simulation Monte Carlo[42?43]and experiment.[44]In the system containing both material interface and mechanical interface(such as shock wave and rarefaction wave),non-equilibrium characteristics have been used to recover the main feature of real distribution function,and to provide physical criteria for discriminating various interfaces. The latter has been used to design appropriate tracking schemes for various interfaces.[28,33,45?46]In recent studies,[34,47]the correlations between the various macroscopical nonuniformity and the relevant non-equilibrium strengths in systems with Rayleigh-Taylor instability and/or Richtmyer-Meshkov instability are used to probe the material mixing processes.In 2013,the first DBM for detonation was presented[35]then a series of extensions have been made.For example,the Multiple-relaxation-time DBM[38,48]and double-distribution-function DBM[36]have been developed.However,those works are all two-dimensional model and at least 16 discrete velocities are needed.[37]The calculation efficiency is much low for some cases where the main behaviors can be described by one-dimensional model.In those cases,a one-dimensional DBM model for detonation is in demand.

    Generally speaking,during a combustion process,many species of reactants and a large number of reactions are involved.For example,the combustion of CH4in air involves 53 species and 325 reactions.[49]The reaction rate varies with the special reaction paths.A detonation process may guide the reactions into different reaction chains because of the type of fuel,shock strength,premixing homogeneity,etc.Consequently,the global reaction rates show different behaviors for different conditions and may possess a non-monotonic dependence on the temperature.Although most of the reaction rates have an exponential temperature dependence and the Arrhenius model is commonly be adopted to describe the reaction rate,the phenomenon of Negative Temperature Coefficient(NTC)in reaction rate has been observed in combustion process and has drawn great attention in recent years.[9,50?51]The existence of NTC may also cause significantly special phenomena during the detonation process.However,to the authors′knowledge,possible effects of NTC on detonation have not been well studied.In 2016,we conducted a preliminary study on the effects of NTC during detonation.[37]In that work,we found that the effect of NTC during detonation is to lower the reaction rate and delay the formation of detonation wave.In this paper,we further study the characteristics of detonation under NTC based on the one-dimensional DBM.An abnormal detonation phenomenon with two wave heads is observed and carefully studied.

    2 Model and Verification

    2.1 Discrete Boltzmann Model and Chemical Reaction Rate Model

    For the one-dimensional discrete Boltzamnn model,the evolution of the distribution function fifor the discrete velocity viis governed by Eq.(1),

    The subscript i in fiindicates the index of discrete velocity vi.The variables,t and x,are the time and spatial coordinates,respectively,and τ is the relaxation parameter.is the local equilibrium distribution function taking into account the effects of chemical reaction and can be calculated by

    where ρ,u,and T are the density,velocity,and temperature,respectively.γ is the ratio of special heats,ω is the chemical reaction rate,and Q is the amount of heat release per unit mass of reactant.Theon the right-hand of Eq.(2)can be solved by the following seven equations:

    where ηiis a free parameter introduced to describe the n extra degrees of freedom corresponding to molecular rotation and/or vibration.[27]In this paper ηi= η0for i=1,2,3 and ηi=0 for i=4,5,6,7.

    From multi-scale asymptotic expansion,we know that NS equations with chemical reactions,Eqs.(10)–(12),can be deduced from Eq.(1)under the conditions of Eqs.(3)–(9).

    where P=ρT is the pressure,e=(n+1)T/2 is the internal energy density, μ = τρT and κ =cpτρT are the coefficients of viscosity and heat conduction,respectively,the constant-pressure specific heat is cp=(n+3)/2 and the specific heat ratio is γ=(n+3)/(n+1).

    Fig.1 Discrete velocity model for one-dimensional DBM.

    Table 1 Values of discrete velocities.

    In order to solve the above seven equations,at least seven velocities are needed.The discrete velocities model adopted in this paper is shown schematically in Fig.1.The corresponding values of discrete velocities are listed in Table 1 and c0is a free parameter depends on the numerical stability.

    The chemical reaction rate ω is described by

    where k is reaction rate constant and λ indicates reaction process.It has λ=0 at the beginning of the reaction and λ=1 at the end of the reaction.Tthis defined as ignition temperature and there is no reaction happens below this threshold value.

    In addition to being able to recover to NS equations with chemical reactions,DBM provides a set of non-equilibrium measurements,which is also its advantage over the traditional hydrodynamic model.The nonequilibrium quantities are represented by the difference between the moments of distribution function and its corresponding local equilibrium distribution function at a certain time.Those non-equilibrium quantities are defined as

    Another set of non-equilibrium quantities can also be defined by the kinetic center moment in a similar way.Each of those quantities re fl ects the non-equilibrium characteristic of system from a di ff erent perspective which cannot be provided by the traditional hydrodynamic model.Those non-equilibrium quantities are signi ficant around the detonation wave front because of the e ff ects of impact compression and chemical reactions.

    2.2 Model Verification

    In order to validate the new model,several typical benchmarks are carried out.Firstly,two shock wave problems,including the Sod shock tube and Colella explosion wave problem,are simulated and compared with the Riemann solutions.Then a one-dimensional self-sustainable stable detonation is simulated and compared with CJ theoretical solutions.

    (i)Sod Shock Tube Test

    Sod shock tube is a well benchmark and has been widely used to test the ability of processing discontinue for a numerical model.The initial conditions are

    (ρ,u,T)L=(1,0,1), (ρ,u,T)R=(0.125,0,0.8),(18)where the subscripts“L” and “R” indicate the left half region and right half region,respectively.Simulation is carried out under the conditions:τ=2×10?5,?x=2× 10?4,Nx=5000,?t=5× 10?6.c0=1.2 and η0=3 are chosen to ensure numerical stability.Besides,it has n=4 so that γ=1.4.The free in flow and outflow boundary conditions are adopted in left and right boundaries,respectively,which means fi,?1=fi,0=fi,1and fi,Nx+2=fi,Nx+1=fi,Nx.In order to solve the space derivation and the time derivation in Eq.(1),the second-order nonoscillatory non-free-parameter and dissipative(NND)[52]scheme and the first-order forward difference scheme are used,respectively.Figure 2 shows the comparison of the DBM results and Riemann exact solutions at t=0.22.From Fig.2 we can see that the DBM results are well consistent with the exact solutions,so the new model can well process discontinuity in the flow field.

    Fig.2 Comparisons between DBM results and exact solutions for Sod shock tube test.(a)density ρ,(b)temperature T,(c)pressure P,(d)velocity u.The solid lines and symbols are the Riemann solutions and DBM results,respectively.

    Fig.3 Comparisons between DBM results and exact solutions for Colella explosion wave test.(a)density ρ,(b)temperature T,(c)pressure P,(d)velocity u.The solid lines are Riemann solutions and symbols indicate DBM results.

    (ii)Colella Explosion Wave Test

    Colella explosion problem is another challenging test to examine the numerical stability and precision of a model.The initial conditions are

    The simulation conditions are τ=1× 10?5,?x=2× 10?3,Nx=2000,?t=5× 10?6,and n=4(i.e.,γ =1.4).Besides,it has c0=20 and η0=16 so that the calculation is stable.The boundary conditions and difference schemes are the same with those in Fig.2.Simulation results at t=0.025 are shown in Fig.3 and the exact solutions based on Riemann analysis are also plotted for comparison.The solid lines are Riemann solutions and symbols indicate DBM results.The simulations and the exact solutions are very consistent,from which we can conclude that the new DBM is applicable to simulate flows with very high ratios of temperature(up to 105).

    (iii)Self-sustainable Stable Detonation

    As the last test,a one-dimensional self-sustainable stable detonation is simulated.Considering that there is a rigid tube full of premixed combustible gas and the initial condition in this tube is set as

    Parameters are set as τ=2×10?5,?x=2×10?4,Nx=5000,?t=5×10?6,and n=4(i.e.,γ =1.4).In order to ensure the numerical stability,it has c0=2 and η0=2.The chemical reaction rate is given by Eq.(13)and k=2000.The left boundary is set as fixed wall while the right boundary is set as outflow.The difference schemes are the same with those in Fig.2.From Fig.4(a),we can see that the self-sustained detonation with a stable wave speed is formed.Then the macroscopic quantities at sound velocity surface behind the detonation wave front are compared with the CJ theoretical values.The corresponding values are shown in Table 2 and it shows that relative errors are all less than 5.43%.So,it can be concluded that the new DBM can be used to investigate the one-dimensional detonation problem.

    Fig.4 Simulation results of self-sustained stable detonation.(a)the position of von Neumann peak of pressure where the solid line is CJ theoretical solution and the symbol is DBM result.(b)the macroscopic quantities(density,temperature,velocity,and reaction process)profiles at t=0.4.

    Table 2 Comparisons between DBM results and CJ theoretical values for stable detonation.

    3 An Abnormal Detonation Induced by Negative Temperature Coefficient

    3.1 Simulation of the Abnormal Detonation

    In order to investigate the NTC of chemical reaction rate,we adopt the following formula to describe the temperature dependence of rate constant k in Eq.(13)which has been presented in Ref.[37].

    with

    where h1and h2are the peak and valley value of k,respectively.T1and T2are values of temperature corresponding to h1and h2,respectively.In this work,we set h1=2000,h2=10,T1=1.14,T2=1.45.Besides,the ignition temperature in Eq.(13)is set as Tth=1.1.The rate constant-temperature curve is shown in Fig.5.It can be clearly seen that there is an NTC interval where the reaction rate constant decreases with the increase of temperature.

    Fig.5 Relation curve of rate constant with temperature.

    Fig.6 Comparisons between(a)the normal detonation wave and(b)the abnormal detonation wave.

    Fig.7 Profiles of non-equilibrium quantities for(a)normal detonation,(b)abnormal detonation at t=0.135,(c)abnormal detonation at t=0.145,and(d)abnormal detonation at t=0.155.

    Except the chemical reaction rate and Nx=50000,other simulation conditions are all the same with those in Fig.4.Under this chemical reaction condition,an abnormal detonation phenomenon is obtained,which is shown in Fig.6(b).The normal stable detonation processes with a constant speed and a stable waveform are also shown in Fig.6(a)for comparison.For the abnormal detonation,there is no constant wave speed and the waveform changes with time periodically.Figure 6(b)gives the evolution of the waveform in one cycle.Firstly,at a certain time,a local hotspot is generated behind the wave head.Then a local detonation wave appears and develops with a speed faster than its downstream wave front.So the new formed detonation wave chases the front wave and finally the two waves merge into an over-driven detonation wave.However,the over-driven detonation wave cannot self-sustain,so the wave velocity gradually decreases until it reaches the CJ detonation wave velocity.After that,a local hotspot generates again and a new cycle begins.

    The corresponding non-equilibrium quantities?2,?3,?3,1,and ?4,2defined in Eqs.(14)–(17)are plotted in Fig.7.For the normal detonation shown in Fig.6(a),the shape of the wave front does not depend on time so the non-equilibrium characteristics around the wave front keep unchange with time.The profiles of?2,?3,?3,1,and?4,2for the normal detonation are given in Fig.7(a).It can be seen the system deviates from the equilibrium in the opposite direction at two sides of the wave front.In fact,it has been known that the nonequilibrium quantities are close to zero near the von Neumann peak point.[28,35]However,for the abnormal detonation,the pro files of non-equilibrium quantities vary with time. Figures 7(b),7(c),and 7(d)give the profiles of non-equilibrium quantities for the abnormal detonation at three typical moments.From Fig.6,we can see the wave front of the abnormal detonation is very similar to the normal detonation at t=0.135 but the pro files of non-equilibrium quantities in Fig.7(b)and those in Fig.7(a)are much di ff erent.The non-equilibrium deviations in Fig.7(b)are always in the same direction.From Figs 7(c)and 7(d)which correspond to t=0.145 and t=0.155,respectively,double wave fronts can be observed.The non-equilibrium characteristics around the back detonation wave(the left wave)is very similar to those in Fig.7(a)and the non-equilibrium characteristics around the front detonation wave(the right wave)is similar to those in Fig.7(b).In addition,the non-equilibrium strength is more significant for the abnormal detonation than the normal detonation when two wave fronts exist.

    3.2 Analysis and Discussion about the Abnormal Detonation

    In this section,we will discuss the causes of the abnormal detonation wave.For convenience,we roughly divide the reaction into three stages according to the temperature.Those three stages are denoted as S1,S2,and S3,respectively,as shown in Fig.8.The first stage(S1)is in the low temperature region but has a fast reaction rate because of NTC.The second stage(S2)has a slower reaction rate at a specific temperature range.The third stage(S3)has a fast reaction rate at high temperature and the reaction rate increases dramatically with the increment of temperature.

    Fig.8 Three stages of chemical reaction rate.

    The development of the abnormal detonation is shown in Fig.9.At t=0.12,as shown in Fig.9(a),the detonation wave is still a normal detonation followed by a long rarefaction wave region.The temperature behind the wave head has not reached the third stages(S3).So it has only the first two stages,S1 and S2,of the chemical reaction.At t=0.13,as shown in Fig.9(b),a local hotspot appears in the rarefaction wave region and the temperature in this hotspot achieves to S3,then the third stage of chemical reaction appears.Because it has a rapid reaction rate in S3,a local detonation wave is formed and developed quickly.The local detonation wave moves forward and obtains more fuel,so it continues being strengthened and has an increasing wave speed.From Fig.9(c)we can see S3 gradually widens while S2 becomes narrower.At t=0.15,the new formed detonation wave almost catches up with the front detonation wave.At this time,S2 is nearly disappeared,which can be seen from Fig.9(d).After that,two waves merge and the overdriven detonation occurs.

    The evolution of the process from overdriven detonation to the normal detonation is shown in Fig.10.Fig.10(a)shows the overdriven detonation wave at t=0.155,which has a wave speed faster than the CJ detonation.At this time,almost all of the chemical reactions occur in S3.However,overdriven detonation cannot selfsustain and rarefaction waves would gradually form behind the wave head.At t=0.165,as shown in Fig.10(b),the temperature behind the detonation wave front begins to go down due to the effect of the rarefaction waves.When the temperature goes down to the region of S2,the second stage of the chemical reaction occurs.Then the rarefaction waves behind the wave head continue growing and temperature behind the wave keeps going down.When the temperature declines to the region of S1,the first stage of reaction occurs.As more and more fuel reacts in S1 and S2 reactions occur in S3 gradually decrease,which can be seen from Figs.10(c)and 10(d).As a result,the overall reaction rate slows down.With the chemical reaction rate slows down,the detonation wave speed gradually decreases to CJ detonation wave speed.After that,a local hotspot reappears and a new local detonation wave is developed again,which means the above process is repeated.The whole process of the development of the abnormal detonation within a period can be summarized by Fig.11.

    Fig.9 Detonation waveforms at(a)t=0.155,(b)t=0.165,(c)t=0.175,and(d)t=0.18.

    Fig.10 Detonation waveforms at(a)t=0.155,(b)t=0.165,(c)t=0.175,and(d)t=0.18.

    Fig.11 Schematic diagram of development process of the abnormal detonation.

    4 Conclusion

    In this work,we present a one-dimensional discrete Boltzmann model for detonation.The validity of the new model is veri fied by three tests.The new detonation model possesses both high computational efficiency and numerical accuracy.Based on the new model,the e ff ects of negative temperature coefficient of reaction rate in a detonation are further investigated.An abnormal detonation phenomenon is presented and its development process is analyzed.It is found that the main reason for the abnormal detonation is that the chemical reaction has three stages,namely S1,S2,and S3.The first stage,S1,is in the low temperature region but has a fast reaction rate,the second stage,S2,has a slower reaction rate at a specific temperature range,and the third stage,S3,has a fast reaction rate at high temperature and the reaction rate increases dramatically with the increase of temperature.For a normal detonation,the chemical reactions occur mainly in S1 and S2.For the abnormal detonation,however,at a certain time a local hotspot is formed as a consequence of the S3.Then a new detonation with a more violent chemical reaction appears behind the old detonation wave front.The new detonation wave has a faster speed than the wave ahead,it catches up with the front wave and f inally two waves merge.Then the speed of the detonation wave begins to slow down until it reaches a CJ detonation value.After that,the local hotspot appears again and the previous process reappears.

    猜你喜歡
    愛(ài)國(guó)
    愛(ài)國(guó)豈能怕掛頭 郭亮
    愛(ài)國(guó)擁軍矢志不渝 扶危濟(jì)困不遺余力
    公民與法治(2022年5期)2022-07-29 00:48:08
    額吉教我愛(ài)國(guó)旗
    黃河之聲(2021年9期)2021-07-21 14:56:32
    用國(guó)旗上好愛(ài)國(guó)這一課
    愛(ài)祖國(guó) 愛(ài)國(guó)旗
    愛(ài)國(guó)
    愛(ài)國(guó)學(xué)·曬佳作
    愛(ài)國(guó)學(xué)·曬佳作
    愛(ài)國(guó)是心中唱不完的歌
    青年歌聲(2017年9期)2017-03-15 03:33:18
    久久欧美精品欧美久久欧美| 欧美成狂野欧美在线观看| 国产区一区二久久| 国产在线精品亚洲第一网站| 一级黄色大片毛片| 亚洲精品久久成人aⅴ小说| 淫秽高清视频在线观看| 中文字幕人妻熟女乱码| 亚洲av中文字字幕乱码综合 | 免费女性裸体啪啪无遮挡网站| 青草久久国产| 人人澡人人妻人| 白带黄色成豆腐渣| 男人舔女人下体高潮全视频| 人成视频在线观看免费观看| 免费看日本二区| 91九色精品人成在线观看| 好男人电影高清在线观看| 免费在线观看完整版高清| 69av精品久久久久久| 国产日本99.免费观看| 国产激情欧美一区二区| 亚洲精品在线观看二区| 性色av乱码一区二区三区2| 中文字幕精品亚洲无线码一区 | 国产高清激情床上av| 免费女性裸体啪啪无遮挡网站| 免费在线观看成人毛片| 久久精品亚洲精品国产色婷小说| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 日韩欧美国产一区二区入口| 91成年电影在线观看| 一进一出抽搐动态| 成人精品一区二区免费| 国产野战对白在线观看| 69av精品久久久久久| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲五月天丁香| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 男女午夜视频在线观看| 日韩视频一区二区在线观看| 在线看三级毛片| 在线国产一区二区在线| 亚洲 国产 在线| 国产午夜精品久久久久久| 两性夫妻黄色片| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 久久精品国产清高在天天线| 在线观看日韩欧美| 国产亚洲精品一区二区www| 精品人妻1区二区| 日韩视频一区二区在线观看| 国产成人欧美在线观看| 淫妇啪啪啪对白视频| 夜夜躁狠狠躁天天躁| 国产亚洲精品一区二区www| 精品国产超薄肉色丝袜足j| 亚洲国产精品999在线| 亚洲精品粉嫩美女一区| 亚洲国产欧美一区二区综合| 午夜老司机福利片| 精品久久久久久久久久久久久 | 美女午夜性视频免费| 日韩视频一区二区在线观看| 日本一区二区免费在线视频| 日韩大尺度精品在线看网址| 久久婷婷成人综合色麻豆| 免费av毛片视频| 亚洲性夜色夜夜综合| 啪啪无遮挡十八禁网站| 变态另类成人亚洲欧美熟女| 欧美精品亚洲一区二区| 亚洲全国av大片| 欧美在线黄色| 变态另类丝袜制服| 男女视频在线观看网站免费 | av片东京热男人的天堂| 性欧美人与动物交配| 国产激情欧美一区二区| 国产成人系列免费观看| 男人的好看免费观看在线视频 | 色哟哟哟哟哟哟| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| 波多野结衣巨乳人妻| 午夜福利在线在线| 日韩欧美免费精品| 国产精品日韩av在线免费观看| 国产极品粉嫩免费观看在线| 欧美日韩瑟瑟在线播放| 亚洲av成人av| 亚洲成国产人片在线观看| 女性被躁到高潮视频| 亚洲片人在线观看| 久9热在线精品视频| 丁香六月欧美| www日本黄色视频网| 一个人观看的视频www高清免费观看 | 亚洲成人精品中文字幕电影| 国产精品 国内视频| 一本精品99久久精品77| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 亚洲第一电影网av| 男人舔奶头视频| 国内毛片毛片毛片毛片毛片| 最近最新中文字幕大全电影3 | a级毛片在线看网站| 久久热在线av| 韩国精品一区二区三区| 夜夜爽天天搞| 国产成人av激情在线播放| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 欧美国产日韩亚洲一区| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 日本 欧美在线| 欧美大码av| 欧美三级亚洲精品| 国产亚洲精品久久久久5区| 一卡2卡三卡四卡精品乱码亚洲| 久热爱精品视频在线9| 国产成年人精品一区二区| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 无人区码免费观看不卡| 亚洲专区国产一区二区| 国产三级黄色录像| 久久精品91无色码中文字幕| 高清在线国产一区| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| tocl精华| 精品国产国语对白av| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 91老司机精品| 久久欧美精品欧美久久欧美| 丝袜人妻中文字幕| 亚洲第一青青草原| 老鸭窝网址在线观看| 91老司机精品| 琪琪午夜伦伦电影理论片6080| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 女警被强在线播放| av免费在线观看网站| 中文字幕人妻丝袜一区二区| 国产v大片淫在线免费观看| 少妇 在线观看| 国产亚洲欧美在线一区二区| 日本三级黄在线观看| 身体一侧抽搐| 免费人成视频x8x8入口观看| 国产1区2区3区精品| 久久国产乱子伦精品免费另类| 亚洲精华国产精华精| 日韩大尺度精品在线看网址| av在线播放免费不卡| 91国产中文字幕| 9191精品国产免费久久| 亚洲,欧美精品.| 国产精品美女特级片免费视频播放器 | av福利片在线| www日本在线高清视频| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色| 亚洲五月色婷婷综合| 国产一区二区在线av高清观看| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观 | 老司机靠b影院| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 成人三级黄色视频| 成人手机av| 91在线观看av| 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 手机成人av网站| 亚洲精品美女久久久久99蜜臀| 欧美丝袜亚洲另类 | 亚洲专区国产一区二区| 国产亚洲精品久久久久5区| 最新美女视频免费是黄的| 亚洲真实伦在线观看| 欧美成人一区二区免费高清观看 | 亚洲欧美日韩高清在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆成人午夜福利视频| 一二三四在线观看免费中文在| 美女高潮到喷水免费观看| 精品午夜福利视频在线观看一区| 黄色 视频免费看| а√天堂www在线а√下载| 91老司机精品| 少妇被粗大的猛进出69影院| 免费看日本二区| 久久婷婷成人综合色麻豆| 亚洲欧美一区二区三区黑人| 看黄色毛片网站| 国产精品久久久久久精品电影 | 欧美黑人精品巨大| 欧美中文日本在线观看视频| 999久久久国产精品视频| 中亚洲国语对白在线视频| 亚洲av片天天在线观看| 欧美黄色片欧美黄色片| 亚洲国产精品久久男人天堂| 亚洲自拍偷在线| 久久性视频一级片| 婷婷精品国产亚洲av| or卡值多少钱| 91老司机精品| 香蕉av资源在线| e午夜精品久久久久久久| 夜夜看夜夜爽夜夜摸| 制服丝袜大香蕉在线| 黄片播放在线免费| 国产欧美日韩一区二区三| aaaaa片日本免费| 欧美三级亚洲精品| 久久精品成人免费网站| 国产熟女xx| 男女床上黄色一级片免费看| 级片在线观看| 亚洲片人在线观看| 国产亚洲欧美98| 亚洲三区欧美一区| 99久久无色码亚洲精品果冻| 中文字幕精品免费在线观看视频| 国产精品爽爽va在线观看网站 | 日韩精品免费视频一区二区三区| 女人被狂操c到高潮| 丝袜在线中文字幕| 黄片大片在线免费观看| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| aaaaa片日本免费| 欧美日韩黄片免| 国产成人精品无人区| 精品久久久久久久人妻蜜臀av| 国产蜜桃级精品一区二区三区| 亚洲免费av在线视频| 身体一侧抽搐| 青草久久国产| 婷婷亚洲欧美| 欧美日韩乱码在线| 久久久久免费精品人妻一区二区 | 国产片内射在线| 日韩成人在线观看一区二区三区| 中文字幕精品亚洲无线码一区 | 最近最新免费中文字幕在线| 亚洲av片天天在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 中文在线观看免费www的网站 | 亚洲aⅴ乱码一区二区在线播放 | 在线观看一区二区三区| 久久久久国产一级毛片高清牌| 自线自在国产av| 一区二区三区精品91| 欧美精品啪啪一区二区三区| 色综合站精品国产| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 日本一本二区三区精品| 久久天堂一区二区三区四区| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久成人网| 在线观看免费视频日本深夜| 日本 欧美在线| 超碰成人久久| 欧美性猛交黑人性爽| 夜夜躁狠狠躁天天躁| 国产免费av片在线观看野外av| 成人国语在线视频| 欧美中文综合在线视频| 亚洲精品一区av在线观看| 欧美日韩一级在线毛片| 亚洲三区欧美一区| 一区二区三区精品91| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久99热这里只有精品18| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 1024手机看黄色片| 妹子高潮喷水视频| 给我免费播放毛片高清在线观看| 国产精品免费视频内射| 1024视频免费在线观看| 麻豆成人av在线观看| 国产高清有码在线观看视频 | 国产视频一区二区在线看| 免费搜索国产男女视频| 国产精品99久久99久久久不卡| 日本a在线网址| 国产亚洲精品综合一区在线观看 | 久久久精品国产亚洲av高清涩受| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 在线观看www视频免费| 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 在线观看66精品国产| 免费搜索国产男女视频| av免费在线观看网站| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 色婷婷久久久亚洲欧美| 99久久无色码亚洲精品果冻| 欧美日韩精品网址| 久久亚洲真实| 又黄又爽又免费观看的视频| 久久亚洲真实| 国产亚洲av高清不卡| 夜夜爽天天搞| 国产亚洲av高清不卡| 欧美成人一区二区免费高清观看 | 色婷婷久久久亚洲欧美| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 欧美成人性av电影在线观看| 激情在线观看视频在线高清| 免费搜索国产男女视频| 精品不卡国产一区二区三区| 久久久久九九精品影院| 妹子高潮喷水视频| 欧美日韩一级在线毛片| 欧美又色又爽又黄视频| 国产区一区二久久| 国产又爽黄色视频| 法律面前人人平等表现在哪些方面| 日韩 欧美 亚洲 中文字幕| 精品日产1卡2卡| 丁香欧美五月| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产看品久久| 国产高清videossex| 精品国产美女av久久久久小说| 午夜久久久在线观看| 一区福利在线观看| 欧美大码av| 99热只有精品国产| 日韩大尺度精品在线看网址| АⅤ资源中文在线天堂| 国产成人精品久久二区二区免费| 成在线人永久免费视频| 亚洲最大成人中文| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 国产av又大| 亚洲精品国产区一区二| 亚洲成人久久爱视频| 97碰自拍视频| 欧美黄色淫秽网站| 午夜福利欧美成人| 欧洲精品卡2卡3卡4卡5卡区| 国产私拍福利视频在线观看| 免费在线观看日本一区| videosex国产| 欧美 亚洲 国产 日韩一| 亚洲av熟女| 国产精品国产高清国产av| 国产精品久久久久久人妻精品电影| 欧美日韩瑟瑟在线播放| 亚洲av日韩精品久久久久久密| 国产又黄又爽又无遮挡在线| 午夜福利18| 国产成人欧美在线观看| 欧美黑人精品巨大| 黄片播放在线免费| 久久久久久大精品| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 国产精品亚洲一级av第二区| 国产真实乱freesex| 此物有八面人人有两片| 女人被狂操c到高潮| 99re在线观看精品视频| 中文在线观看免费www的网站 | 少妇裸体淫交视频免费看高清 | 每晚都被弄得嗷嗷叫到高潮| 日韩一卡2卡3卡4卡2021年| 2021天堂中文幕一二区在线观 | 欧美黑人欧美精品刺激| 男男h啪啪无遮挡| 亚洲九九香蕉| 成人国产综合亚洲| 久久久久九九精品影院| 精品电影一区二区在线| 在线av久久热| 欧美黑人精品巨大| 高潮久久久久久久久久久不卡| 久久久久久久午夜电影| 99国产精品一区二区三区| 国产成人精品无人区| 侵犯人妻中文字幕一二三四区| 黄片大片在线免费观看| 成人国产一区最新在线观看| 狂野欧美激情性xxxx| 男女下面进入的视频免费午夜 | 男女下面进入的视频免费午夜 | 在线观看一区二区三区| 两个人看的免费小视频| 女性生殖器流出的白浆| 欧美精品啪啪一区二区三区| 午夜免费激情av| 欧美一区二区精品小视频在线| 在线看三级毛片| www日本黄色视频网| 伦理电影免费视频| 国产精品九九99| 国产伦一二天堂av在线观看| 亚洲精华国产精华精| 久久久久久免费高清国产稀缺| 国产精品美女特级片免费视频播放器 | 久久精品国产综合久久久| 制服丝袜大香蕉在线| 国产精品一区二区精品视频观看| 久9热在线精品视频| av中文乱码字幕在线| 校园春色视频在线观看| 在线免费观看的www视频| 国产1区2区3区精品| 日本免费a在线| 国语自产精品视频在线第100页| 青草久久国产| av天堂在线播放| 午夜福利成人在线免费观看| 99精品欧美一区二区三区四区| 看片在线看免费视频| 精品国产乱码久久久久久男人| 最近最新中文字幕大全电影3 | 50天的宝宝边吃奶边哭怎么回事| 成在线人永久免费视频| 亚洲精品一卡2卡三卡4卡5卡| tocl精华| 男女午夜视频在线观看| 在线播放国产精品三级| 黄色视频不卡| 欧美 亚洲 国产 日韩一| 一边摸一边抽搐一进一小说| 日韩免费av在线播放| 可以免费在线观看a视频的电影网站| 两个人免费观看高清视频| 黄片播放在线免费| 神马国产精品三级电影在线观看 | 亚洲专区字幕在线| 18禁裸乳无遮挡免费网站照片 | 久久性视频一级片| 免费看a级黄色片| 国产精品 欧美亚洲| 在线天堂中文资源库| 香蕉久久夜色| 俺也久久电影网| 日韩欧美国产一区二区入口| 法律面前人人平等表现在哪些方面| 波多野结衣高清作品| 中文资源天堂在线| 这个男人来自地球电影免费观看| 亚洲av成人不卡在线观看播放网| 欧美中文综合在线视频| 久久香蕉国产精品| 岛国在线观看网站| 制服诱惑二区| 97人妻精品一区二区三区麻豆 | 一a级毛片在线观看| 我的亚洲天堂| 欧美日韩乱码在线| 久久久久久免费高清国产稀缺| 国产视频内射| 亚洲激情在线av| 男男h啪啪无遮挡| 一个人观看的视频www高清免费观看 | 日本撒尿小便嘘嘘汇集6| 日韩欧美一区视频在线观看| 久久国产亚洲av麻豆专区| 69av精品久久久久久| 悠悠久久av| 婷婷丁香在线五月| 国产av不卡久久| 中文字幕精品免费在线观看视频| 禁无遮挡网站| 亚洲自拍偷在线| xxx96com| 一夜夜www| 不卡一级毛片| 欧美一级毛片孕妇| 国产av不卡久久| www日本在线高清视频| 真人一进一出gif抽搐免费| 美女大奶头视频| 夜夜躁狠狠躁天天躁| 精品免费久久久久久久清纯| 老司机靠b影院| 精品日产1卡2卡| 亚洲熟妇熟女久久| 女性被躁到高潮视频| 欧美人与性动交α欧美精品济南到| 国产又爽黄色视频| 欧美最黄视频在线播放免费| cao死你这个sao货| 精品电影一区二区在线| √禁漫天堂资源中文www| 琪琪午夜伦伦电影理论片6080| 欧美日韩精品网址| 99热6这里只有精品| 免费av毛片视频| 中文资源天堂在线| 久久九九热精品免费| 色在线成人网| 日韩大尺度精品在线看网址| 久久久久久久精品吃奶| 好男人电影高清在线观看| 日本在线视频免费播放| 久久久精品欧美日韩精品| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美98| 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 最近在线观看免费完整版| av在线播放免费不卡| 麻豆一二三区av精品| 老鸭窝网址在线观看| 好男人电影高清在线观看| 黄色丝袜av网址大全| 俄罗斯特黄特色一大片| 亚洲一区二区三区色噜噜| 色av中文字幕| 成人亚洲精品一区在线观看| 欧美成人午夜精品| 可以免费在线观看a视频的电影网站| 亚洲熟妇中文字幕五十中出| 欧美精品啪啪一区二区三区| 可以在线观看的亚洲视频| 国产av一区二区精品久久| 热re99久久国产66热| 高清毛片免费观看视频网站| 日韩成人在线观看一区二区三区| 啦啦啦韩国在线观看视频| 母亲3免费完整高清在线观看| 伊人久久大香线蕉亚洲五| 午夜久久久久精精品| 91av网站免费观看| 999精品在线视频| 欧美中文综合在线视频| 国产精品精品国产色婷婷| 亚洲中文字幕一区二区三区有码在线看 | 狠狠狠狠99中文字幕| 国产爱豆传媒在线观看 | 一区二区三区激情视频| 91麻豆av在线| 国产精品日韩av在线免费观看| 精品少妇一区二区三区视频日本电影| 女人被狂操c到高潮| 变态另类丝袜制服| 麻豆成人av在线观看| 狂野欧美激情性xxxx| av有码第一页| 日韩中文字幕欧美一区二区| 老司机福利观看| 精品久久久久久久毛片微露脸| 精品国产超薄肉色丝袜足j| 校园春色视频在线观看| 日韩视频一区二区在线观看| 色哟哟哟哟哟哟| 国产精品 欧美亚洲| 久久人妻福利社区极品人妻图片| 日韩欧美 国产精品| 亚洲欧洲精品一区二区精品久久久| 免费看美女性在线毛片视频| 国产高清视频在线播放一区| 精品久久久久久久久久久久久 | 9191精品国产免费久久| tocl精华| 少妇被粗大的猛进出69影院| 欧美绝顶高潮抽搐喷水| 久99久视频精品免费| 1024香蕉在线观看| 日韩精品中文字幕看吧| 日本撒尿小便嘘嘘汇集6| 亚洲精品美女久久av网站| av免费在线观看网站| 狂野欧美激情性xxxx| 久久久国产精品麻豆| 亚洲国产高清在线一区二区三 |