• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-Quality de novo Genome Assembly of Huajingxian 74, a Receptor Parent of Single Segment Substitution Lines

    2021-12-04 07:38:06LiFangpingGaoYanhaoWuBingqiCaiQingpeiZhanPenglingYangWeifengShiWanxuanLiXiaohuaYangZifengTanQuanyaLuanXinZhangGuiquanWangShaokui
    Rice Science 2021年2期
    關(guān)鍵詞:隱窩絨毛長(zhǎng)度

    Li Fangping, Gao Yanhao, Wu Bingqi, Cai Qingpei, Zhan Pengling, Yang Weifeng, Shi Wanxuan, Li Xiaohua, Yang Zifeng, Tan Quanya, Luan Xin, Zhang Guiquan,Wang Shaokui

    Letter

    High-QualityGenome Assembly of Huajingxian 74, a Receptor Parent of Single Segment Substitution Lines

    Li Fangping, Gao Yanhao, Wu Bingqi, Cai Qingpei, Zhan Pengling, Yang Weifeng, Shi Wanxuan, Li Xiaohua, Yang Zifeng, Tan Quanya, Luan Xin, Zhang Guiquan,Wang Shaokui

    ()

    Rice (L.) is grown nearly worldwide and provides the staple food for more than half of the global population (Luo et al, 2017). The genomes of several cultivated rice varieties including Nipponbare (NPB)(Kawahara et al, 2013; Sakai et al, 2013), IR64 (Tanaka et al, 2020), 93-11 (Zhang et al, 2018) and R498 (Du et al, 2017) at chromosome level, and Minghui 63 and Zhenshan 97 (Zhang et al, 2016) at scaffold level have been assembled,annotated and released, among which the R498 and NPB genomes are widely used as reference genomes in rice research. However, there are thousands of rice cultivars, landraces and wild rice varieties in the world with dramatically different genetic backgrounds, and the genomes of native rice varieties in South China, which is one of the major rice production areas in China, have not beenassembled. Huajingxian 74 (HJX74) is anrice variety bred in South China Agricultural University, Guangdong Province with widely environmental adaptability and high yield (www.ricedata.cn/ variety/varis/602548.htm). HJX74 exhibits significant phenotypic and genetic differences from those varieties whose whole genomes have been properly sequenced and assembled (Fig. 1).

    In the past 30 years, a large library of single segment substitution lines (SSSLs) has been constructed using HJX74 as the receptor plant and 43 accessions that belong to 7 species of rice AA genome as donors. Hence, all these SSSLs are in the same genetic background (Zhang, 2019). The SSSL library has made a great contribution to the identification of QTLs/genes involved in disease resistance, fertility, panicle length, stress resistance, grain shape determination and so on (Wang S K et al, 2015; Fang et al, 2019; Wang et al, 2019). In addition, the SSSL library has provided a powerful platform for rice breeding by design (Luan et al, 2019; Zhao et al, 2019). The construction of a high-quality genome of the receptor parent (HJX74) of the SSSL library is therefore essential for improving the efficiency of rice genetic and mechanism studies for desirable agronomic traits, as well as accelerating the processof rice breeding by design. We produced a high-precision HJX74chromosomal genome by performingwhole-genome sequencing in the PacBio platform (Rhoads and Au, 2015), followed by the Hi-C-assisted assembly mount technology(van Berkum et al, 2010). The corresponding online platform has been constructed as well (https://RiceGenomicHJX.xiaomy.net). The sequence andassembly of the HJX74 genome will significantly enrich the understanding of rice genome and provide a powerful tool for rice studies.

    A total of 7 380 677 reads (137.31 Gb) of the HJX74 genome sequences were produced by PacBio SeqⅡ (Fig. 2-A and -B), and 51.23 Gb and 40.93 Gb of the sequence data were generated by common and Hi-C library preparation illumina sequencing, respectively. The overlapped group files (contig) consisting of 155 fasta format sequences with the size of 399.00 Mb (N50 = 14.41 Mb) (Table S1) were produced after being assembled and polished.

    Visualization of the Hi-C signals indicated that 12 square matrix areas in the Hi-C heat map displayed significant differences from the background signal corresponding to the chromosome number of the rice nuclear genome (Fig. S1). The final polished scaffold genome was constructed by the Hi-C data and the consensus sequence file spanned 398.87 Mb, and there were 108 contigs for HJX74 including 12 chromosome lengthscontigs (Fig. 2-D and Table S1). The genome assemblies recovered more than 98% of the 1 440 Benchmarking Universal single- copy orthologs (BUSCO) embryophyte genes and completely assembled more than 92.5% of the 248 embryophyte core genes from the Core Eukaryotic Genes Mapping Approach (CEGMA) database (Li et al, 2020) (Table S2). Long terminal repeat-retotransposons (LTR-RTs) assembly index (LAI) of the HJX74 genome was calculated to be 23.42, which is close to the high-quality rice genome of NPB (22.59) and R498 (23.94) (Table S3).

    本組患者采取手術(shù)治療。根據(jù)診療結(jié)果,選擇適當(dāng)?shù)氖中g(shù)治療方式,本組患者所采用的手術(shù)方法有:腸粘連松解術(shù)、乙狀結(jié)腸切除術(shù)、結(jié)腸切除術(shù)、降結(jié)腸造口、小腸部分切除術(shù)、嵌頓性疝復(fù)位+修補(bǔ)術(shù)等。

    Combining ab initio, protein and expressed sequence tag (EST) evidences with consensus gene prediction (Zhang et al, 2015), we annotated the HJX74 genome with 46 993 non-redundant genes. Among them, 39 002 genes (83.0%) form 27 202 clusters with genes from 11 otherspecies, whereas 7 991 genes present singletons in the OrthoVenn2 (Wang Y et al, 2015). The clustering analysis based on Markov Clustering (MCL) algorithm indicates high annotation reliability. Totally2 850 single-copy gene clusters were generated by the orthologous cluster analysis of direct homology in 9varieties,,andon the platform OthoVenn2 (Table S4). The phylogenetic tree constructed by using the coding region nucleic acid sequence of 2 850 single- copy lineal homologous gene clusters indicated that HJX74 was clustered in the clade ofsubspand hadthe closest genetic relationship with IR64 (Fig. 1-B and Table S5). HJX74 was genetically far from NPB and R498, even HJX74 and R498 were clustered within therice clade, which is consistent with the SNPs, InDels and persence and absence variations (PAVs) across the 12 chromosomes in HJX74 compared to NPB and R498 (Fig. 2-A and -B; Fig. S2 and Tables S6 and S7). In addition, more genes were presented in HJX74/ R498 at a peak of 0.4–0.5 than HJX74/NPB from the density curve of(Kryazhimskiy and Plotkin, 2008), which suggested more genes in HJX74 were positively selected when compared with R498 than the comparation with NPB (Fig. 2-C). The reason for this phenomenon is possiblydue to the crossbreeding between rice subspecies (and) during the HJX74 breeding process and preference toas germplasm resources for rice breeding in South China.

    Fig. 1. Phenotype (A) and phylogeney (B) of HJX74 (Huajingxian 74).

    Phylogenetic tree constructed by the maximum- likelihood method using coding sequences of single copy lineal homologous genes (the genes were showed in Table S4). Totally 12 species or varieties were used for alignment, 9 of them are cultivated rice (Nipponbare, 93-11, R498, Zhenshan 97, IR64, Minghui 63, Basmati, DomSuid and HJX74) and the other 3 are wild rice (,and).

    Fig. 2. Characteristics of Huajingxian 74 (HJX74) genome and synteny examining, SNPs (single nucleotidepolymorphisms) and InDels (Inserts/Deletes) mining,/comparison with Nipponbare (NPB) and R498.

    A, Distribution of SNPs and InDels between HJX74 and NPB (the data refer to Table S5).

    B, Distribution of SNPs and InDels between HJX74 and R498 (the data refer to Table S6).

    C,/distribution of different combinations. The verticallines represent average values of/.

    D, Chromosomal synteny among HJX74 and two reference genomes of rice.

    E, Interactive dot plot between HJX74 and NPB.

    F, Interactive dot plot between HJX74 and R498.

    G, Characteristics of the HJX74 genome. Tracks from outside to inside are the 12 chromosomes of HJX74, GC content, long terminal repeat density, and simple sequence repeat density (the data refer to Table S11).

    The relative lengths of HJX74 chromosomes are consistent with NPB and R498 (Table S3). According to the whole- genome comparison, the genome of HJX74, at the position of about 12–17 Mb on chromosome 6, showed a sequence inversion with a length of about 5 Mb compared with the NPB genome, while the HJX74 sequence was in the same order as R498 (Fig. S3). Besides, the HJX74 genome was nearly 8.1 Mb and 25.2 Mb larger than R498 (390.9 Mb) and NPB (373.8 Mb), respectively. We performed a whole-genome comparison to examine the synteny between the HJX74 and R498/NPB genomes using the python version program MCScanX (Wang et al, 2012). HJX74 showed a high degree of synteny and the same large inversion in the middle of chromosome 6 with/genomes, which was consistent with the whole-genome alignment between the HJX74 and R498/NPB genomes(Fig. 2-D to -F and Fig. S3). This phenomenon or the disorderedalignment to NPB in the same locus was also respectively detected in the genomes of, Basmati 334 and DomSufid (Choi et al, 2020; Xie et al, 2020). This long fragment staining inversion phenomenon existed in this site indeed, which suggested that the inversion might have been occurred during the process of rice subspecies differentiation. There is a about 3 Mb large-scale syntenic block between the short arms of chromosomes 11 and 12 according to the synteny plot, which was estimated to result from a duplication event 7.7 million years ago and was consistent with previous research (The Rice Chromosomes 11 and 12 Sequencing Consortia, 2005).

    There are a considerable number of PAVs between the genomes of HJX74 and NPB (Table S8 and Fig. S2-B). Comparedwith NPB, the HJX74 genome has more long-fragment insertion sequences and repeated fragment expansions (Fig. S2-B). Three NPB chromosomes (NPB-Chr.02, NPB-Chr.03 and NPB-Chr.10) with the greatest difference from HJX74 were compared. The long-term insertions (> 10 kb) and tandem/repeats contributed significantly to the longer chromosome length of HJX74 compared to NPB (Fig. S4-A to -C). This result tallies with the previous report that the chromosome length difference was most probably due to the changes in tandem/repeat regions (Kim et al, 2017). In contrast, the length of each chromosome of HJX74 was close to that of R498 with an average length difference about 0.075 Mb (Table S9).

    Then, we found that the LTR-RT length and type ratio (Gypsy/ Copia/unknown) of the HJX74 genome were similar to those of R498, but significantly different from those of NPB (Table S10). Previous research reported that the two subspecies of rice,and, have experienced independent amplification or loss of LTR-RTs after the divergence (Du et al, 2017). In this study, the chromosome structure comparison showed fewer differences in PAVs and LTR-RTs between twovarieties HJX74 and R498, but their PAVs and LTR-RTs were very different from those of NPB. Meanwhile, a total of 26 647 simple sequence repeat loci, with the number of repeating units ≥ 3 bp, were detected in 12 chromosomes of HJX74 (Fig. 2-G and Table S11), which demonstrated the promising application of the HJX74 genome in the development of molecular breeding markers.

    To encourage the use of the genome of HJX74 and other rice varieties, a platform (https://RiceGenomicHJX.xiaomy.net) supporting sequence search (Blast), gene browse, download and extraction were built with the support from the Guangdong Provincial Key Laboratory of Plant Molecular Breeding, China. The platform also collects information about the mutation sites in HJX74 and other rice genomes, and multiple rice research platforms and websites. Further improvement and development of the platform is underway to optimize its application (Fig. S5).

    由表2可知,試驗(yàn)組小鼠十二指腸絨毛長(zhǎng)度與對(duì)照組相比分別提高11.31%和8.84%(P<0.05),試驗(yàn)組小鼠十二指腸絨毛長(zhǎng)度/隱窩深度與對(duì)照組相比分別提高18.32%和14.66%(P<0.05),試驗(yàn)組隱窩深度與對(duì)照組相比差異不顯著(P>0.05),但有降低趨勢(shì)。試驗(yàn)組之間的小鼠十二指腸絨毛長(zhǎng)度、隱窩深度及V/C均差異不顯著(P>0.05)。綜上所述,預(yù)消化蛋白可以顯著提高小鼠十二指腸絨毛長(zhǎng)度和絨毛長(zhǎng)度/隱窩深度比值(P<0.05),有降低隱窩深度的趨勢(shì)(P>0.05)。

    In previous studies, considerable progress has been made by combining bioinformatics and whole genome sequencing methods (such as RNA-seq and genome-wide association study) with traditional molecular biology methods for germplasm resource mining and molecular breeding in rice (Shao et al, 2019; Groen et al, 2020). However, these technologies require a reliable reference genome. Here, we presented a highly contiguous and near-complete genome assembly for HJX74, a high-yieldingrice variety widely-grown in South China. As a platform variety, HJX74 has been implemented to construct a large SSSL library with 2 360 independent lines (Zhang, 2019). The SSSL library has an excellent application prospect in rice breeding by design and QTL/gene identifications (Zhou et al, 2017). Compared with NPB, the utilization of the HJX74 reference genome is able to detect more SNP loci or insertion/deletion sites in many PAVs while combining with whole genome sequencing technologies (Fig. S6). Our work provides a precise reference genome and an accessible utilization platform for further research based on the SSSL library. There is no doubt that this reference genome of the receptor parent of the SSSL library will contribute to simplifying the mining and identification processes of rice functional genes controlling agronomic traits of interest, thereby promoting the research and application of rice breeding by design.

    AcknowledgEments

    This study was supported by the National Key Research and Development Program of China (Grant No. 2016YFD0100406), National College Students Innovation and Entrepreneurship Foundation of China (Grant No. 201910564054), National Natural Science Foundation of China (Grant Nos. 91735304 and 31622041) and Special Project for Leading Talents in Innovation of Science and Technology of Guangdong Province, China (Grant No. 2016TX03N224). We thank Ji Zhe (Department of Plant Sciences, University of Oxford) for suggestions.

    Supplemental DatA

    這種“以寫促讀”策略中的“寫作”,是為了幫助學(xué)生有效提取、梳理、概括文本信息,厘清文章脈絡(luò),并掌握相應(yīng)的閱讀策略。閱讀和寫作的結(jié)合點(diǎn)在于對(duì)文本信息的歸類整理和思路脈絡(luò)的梳理。在教學(xué)中,可以采用畫結(jié)構(gòu)圖、畫線索圖、列提綱、做表格等形式。

    Wang X L, Liu G F, Wang Z Q, Chen S L, Xiao Y L, Yu C Y. 2019. Identification and application of major quantitative trait loci for panicle length in rice () through single-segment substitution lines, 138(3): 299–308.

    Fig. S1. Hi-C interactive heat map.

    Fig. S2. Cumulative sequence length and presence and absence variation distribution.

    Fig. S3. Interactive dot plot of Huajingxian 74 and two reference rice genomes (R498 and Nipponbare).

    因此,在深圳境內(nèi),選擇留仙洞以南的所有車站及上屋北站、光明城站和公明廣場(chǎng)站作為快車??奎c(diǎn);在東莞境內(nèi),選擇華為站、大朗西站(與東莞1號(hào)線和贛深鐵路換乘)及松山湖北站(終點(diǎn)站)作為快車停靠點(diǎn)。13號(hào)線快慢車的停站方案如圖2所示。

    Fig. S4. Presence and absence variations types and distribution of some chromosomes with significantly different lengths between Huajingxian 74 and Nipponbare.

    Fig. S5. Online platform of Huajingxian 74 genome data.

    Fig. S6. Sequence difference in presence and absence variation locus.

    Table S1. Comparison of contigs and scaffolds among Huajingxian 74 and two reference rice genomes.

    Table S2. Evaluation of Huajingxian 74 genome assembly by Benchmarking Universal single-copy ortholog and Core Eukaryotic Genes Mapping Approach.

    Rhoads A, Au K F. 2015. PacBio sequencing and its applications, 13(5): 278–289.

    Table S4. Clustering of homologous genes of 12 species of rice.

    Table S5. Single copy homologous genes of 12species.

    Table S6. Mutation site of Huajingxian 74 compared with Nipponbare.

    今年4月,云南稅務(wù)部門深化稅務(wù)、銀行信息互通,將“銀稅互動(dòng)”從“線下”拓展了“線上”,推出“云稅貸”“稅易貸”等產(chǎn)品,基于小企業(yè)納稅信息,運(yùn)用大數(shù)據(jù)分析,采取線上自助操作的純信用短期流動(dòng)資金貸款產(chǎn)品,從申請(qǐng)到貸款到賬只需要幾分鐘的時(shí)間,高效、快速解決企業(yè)融資難題。

    Table S7. Mutation site of Huajingxian 74 compared with R498.

    Table S8. Presence and absence variations length distribution.

    (三)運(yùn)用多媒體多維的展現(xiàn)文章內(nèi)容。傳統(tǒng)的教學(xué),不能夠?qū)⒙曇?、文章、圖片、影像、動(dòng)畫等各類信息有機(jī)的結(jié)合在一起,而多媒體新式教育的方式就打破了純銅教學(xué)并能夠彌補(bǔ)傳統(tǒng)教學(xué)的不足,更加形象,直觀的展現(xiàn)信息,多維展現(xiàn)課文內(nèi)容。

    Table S9. Chromosome lengths of Huajingxian 74, Nipponbare and R498.

    Table S10. Long terminal repeat-retotransposons in Huajingxian 74, R498 and Nipponbare.

    Sakai H, Lee S S, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang C C, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasaki T, Itoh T. 2013. Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics, 54(2): e6.

    Table S11. Detection of simple sequence repeat locus on Huajingxian 74 genome.

    Choi J Y, Lye Z N, Groen S C, Dai X G, Rughani P, Zaaijer S, Harrington E D, Juul S, Purugganan M D. 2020. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice, 21(1): 21.

    Du H L, Yu Y, Ma Y F, Gao Q, Cao Y H, Chen Z, Ma B, Qi M, Li Y, Zhao X F, Wang J, Liu K F, Qin P, Yang X, Zhu L H, Li S G, Liang C Z. 2017. Sequencing andassembly of a near completerice genome, 8(1): 15324.

    Fang C W, Li L, He R M, Wang D Q, Wang M, Hu Q, Ma Q R, Qin K Y, Feng X Y, Zhang G Q, Fu X L, Liu Z Q. 2019. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice, 12(1): 10.

    Groen S C, Calic I, Joly-Lopez Z, Platts A E, Choi J Y, Natividad M, Dorph K, Mauck III W M, Bracken B, Cabral C L U, Kumar A, Torres R O, Satija R, Vergara G, Henry A, Franks S J, Purugganan M D. 2020. The strength and pattern of natural selection on gene expression in rice, 578: 572–576.

    Kawahara Y, de la Bastide M, Hamilton J P, Kanamori H, Mccombie W R, Ouyang S, Schwartz D C, Tanaka T, Wu J Z, Zhou S G, Childs K L, Davidson R M, Lin H N, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee S S, Kim J, Numa H, Itoh T, Buell C R, Matsumoto T. 2013. Improvement of theNipponbare reference genome using next generation sequence and optical map data, 6(1): 4.

    Kim S, Park J, Yeom S I, Kim Y M, Seo E, Kim K T, Kim M S, Lee J M, Cheong K, Shin H S, Kim S B, Han K, Lee J, Park M, Lee H A, Lee H Y, Lee Y, Oh S, Lee J H, Choi E, Choi E, Lee S E, Jeon J, Kim H, Choi G, Song H, Lee J, Lee S C, Kwon J K, Lee H Y, Koo N, Hong Y, Kim R W, Kang W H, Huh J H, Kang B C, Yang T J, Lee Y H, Bennetzen J L, Choi D. 2017. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication, 18(1): 210–221.

    Luan X, Dai Z J, Yang W F, Tan Q Y, Lu Q, Guo J, Zhu H T, Liu G F, Wang S K, Zhang G Q. 2019. Breeding by design of CMS lines on the platform of SSSL library in rice, 39(9): 126.

    Li W, Li K, Zhang Q J, Zhu T, Zhang Y, Shi C, Liu Y L, Xia E H, Jiang J J, Shi C, Zhang L P, Huang H, Tong Y, Liu Y, Zhang D, Zhao Y, Jiang W K, Zhao Y J, Mao S Y, Jiao J Y, Xu P Z, Yang L L, Yin G Y, Gao L Z. 2020. Improved hybridgenome assembly and annotation of African wild rice,, from Illumina and PacBio sequencing reads, 13(1): e20001.

    式中:Y為可溶性膳食纖維得率;X 1,X2,X3,X4 分別為料液比、堿液濃度、提取溫度、提取時(shí)間4個(gè)自變量的編碼值。

    Kryazhimskiy S, Plotkin J B. 2008. The population genetics of, 4(12): e1000304.

    Luo Y C, Ma T C, Zhang A F, Ong K H, Luo Z X, Li Z F, Yang J B, Yin Z C. 2017. Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence, 37(8): 106.

    Table S3. Long terminal repeat-retotransposons assembly index of R498, Nipponbare, 93-11 and Huajingxian 74.

    故意殺人罪在主觀方面必須存在剝奪他人生命的故意。因?yàn)榘滩〉膰?yán)重性,在認(rèn)定故意傳播艾滋病的行為人的主觀故意方面時(shí),很難排除剝奪他人生命的故意,即行為人明知自己的行為會(huì)發(fā)生致人死亡的危害結(jié)果,并希望或放任這種結(jié)果的發(fā)生。因此如果將故意傳播艾滋病認(rèn)定為故意殺人罪,那么傳播者在主觀上應(yīng)該具備殺人的故意,因此將沒(méi)有殺人故意的情況排除在外。

    Shao L, Xing F, Xu C H, Zhang Q H, Che J, Wang X M, Song J M, Li X H, Xiao J H, Chen L L, Ouyang Y D, Zhang Q F. 2019. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis, 116(12): 5653–5658.

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/rice- science; http://www.ricescience.org.

    Tanaka T, Nishijima R, Teramoto S, Kitomi Y, Hayashi T, Uga Y, Kawakatsu T. 2020.genome assembly of the indica rice variety IR64 using linked-read sequencing and nanopore sequencing, 10(5): 1495–1501.

    The Rice Chromosomes 11 and 12 Sequencing Consortia. 2005. Thesequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications., 3(1): 20.

    van Berkum N L, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny L A, Dekker J, Lander E S. 2010. Hi-C: A method to study the three-dimensional architecture of genomes, 39: e1869.

    Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality, 47(8): 949–954.

    尤其是在提倡和諧社會(huì)的今天,供電企業(yè)的營(yíng)銷服務(wù)質(zhì)量顯得尤為重要。好的營(yíng)銷服務(wù)不僅能保證客戶的安全可靠用電,還能提升企業(yè)形象,提高企業(yè)經(jīng)濟(jì)效益,有利于企業(yè)的未來(lái)發(fā)展?,F(xiàn)代供電企業(yè)必須轉(zhuǎn)變思想,放棄傳統(tǒng)的墨守成規(guī),不斷學(xué)習(xí)新時(shí)期的先進(jìn)理念,開(kāi)拓思路,勇于創(chuàng)新,以優(yōu)質(zhì)服務(wù)為企業(yè)發(fā)展之根本。在以人為本的基礎(chǔ)上,加強(qiáng)企業(yè)員工營(yíng)銷服務(wù)理論知識(shí)學(xué)習(xí),完善各項(xiàng)風(fēng)險(xiǎn)管控措施,爭(zhēng)取把供電營(yíng)銷服務(wù)提升至一個(gè)新水平,增強(qiáng)供電企業(yè)在市場(chǎng)中的競(jìng)爭(zhēng)力。

    File S1. Methods.

    (1)滿載緊急制動(dòng)減速:輸送機(jī)在緊急制動(dòng)過(guò)程中各處的膠帶張力均應(yīng)大于零,嚴(yán)防膠帶松弛、撒煤或疊帶事故。F1= 484.15 kN,F(xiàn)2= 285.2 kN ,F(xiàn)3=156 kN;

    加氫進(jìn)料泵聯(lián)鎖邏輯如圖2所示,主要聯(lián)鎖內(nèi)容包括:停液力透平聯(lián)鎖,用于防止液力透平轉(zhuǎn)速超高或熱高分液位抽空引起高壓串低壓;分別停主/備泵聯(lián)鎖,用于保護(hù)泵不發(fā)生喘振或其他泵體自身異常對(duì)泵造成的損壞;切斷泵出口總管聯(lián)鎖,用于保護(hù)裝置進(jìn)料量不低于裝置最小處理負(fù)荷量和避免泵出口總管發(fā)生流量倒流造成的高壓反串低壓。

    Wang Y, Coleman-Derr D, Chen G P, Gu Y Q. 2015. OrthoVenn: A web server for genome wide comparison and annotation of orthologous clusters across multiple species, 43: W78–W84.

    Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity, 40(7): e49.

    Xie X R, Du H L, Tang H W, Tang J N, Tan X Y, Liu W Z, Li T, Lin Z S, Liang C Z, Liu Y G. 2020. A chromosome-level genome assembly of the wild ricefacilitates tracing the origins of Asian cultivated rice.:, 5(1): 1–11.

    微信具有龐大的客群,武當(dāng)山景區(qū)的微信公眾號(hào)可以分模塊的將景區(qū)的餐飲、交通、景點(diǎn)、住宿等相關(guān)信息整合起來(lái)發(fā)布,使游客可以方便、快速獲取最需要了解的信息。景區(qū)還可以將景區(qū)內(nèi)各景點(diǎn)的導(dǎo)游講解嵌入到微信中,如太子坡、磨針井等景點(diǎn)的背景概述及講解,讓游客在游覽之余還能夠獲取知識(shí),提高游覽的質(zhì)量。

    Zhang G Q. 2019. The platform of breeding by design based on the SSSL library in rice., 41(8): 754–760.

    北京奇步自動(dòng)化控制設(shè)備有限公司是一家自動(dòng)化工程公司,以工業(yè)現(xiàn)場(chǎng)自動(dòng)化總線工程為發(fā)展方向,以“客戶創(chuàng)造價(jià)值”為宗旨,立志做自動(dòng)化領(lǐng)域一流企業(yè)。公司專業(yè)從事自動(dòng)化生產(chǎn)線系統(tǒng)集成、液壓(或氣動(dòng))工裝夾具、物流線、自動(dòng)化精密元件、專業(yè)設(shè)備的技術(shù)研發(fā)、生產(chǎn)制造和銷售服務(wù)。公司嚴(yán)格執(zhí)行國(guó)際行業(yè)標(biāo)準(zhǔn),認(rèn)真踐行ISO9001質(zhì)量體系標(biāo)準(zhǔn)和要求,以高質(zhì)量、標(biāo)準(zhǔn)化的產(chǎn)品以及完善的售后服務(wù),贏得口碑,樹(shù)立品牌。

    Zhang J W, Chen L L, Xing F, Kudrna D A, Yao W, Copetti D, Mu T, Li W M, Song J M, Xie W B, Lee S, Talag J, Shao L, An Y, Zhang C L, Ouyang Y D, Sun S, Jiao W B, Lv F, Du B G, Luo M Z, Maldonado C E, Goicechea J L, Xiong L Z, Wu C Y, Xing Y Z, Zhou D X, Yu S B, Zhao B, Wang G W, Yu Y, Luo Y J, Zhou Z W, Hurtado B E P, Danowitz A, Wing R A, Zhang Q F. 2016. Extensive sequence divergence between the reference genomes of two eliterice varieties Zhenshan 97 and Minghui 63, 113: E5163–E5171.

    Zhang Q, Liang Z, Cui X A, Ji C M, Li Y, Zhang P X, Liu J R, Riaz A, Yao P, Liu M, Wang Y P, Lu T G, Yu H, Yang D L, Zheng H K, Gu X F. 2018. N-6-methyladenine DNA methylation inandrice genomes and its association with gene expression, plant development, and stress responses, 11(12): 1492–1508.

    Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. 2015. Sequencing of allotetraploid cotton (L. acc. TM-1) provides a resource for fiber improvement, 33(5): 531–537.

    Zhao H W, Sun L L, Xiong T Y, Wang Z Q, Liao Y, Zou T, Zheng M M, Zhang Z, Pan X P, He N, Zhang G Q, Zhu H T, Liu Z Q, He P, Fu X L. 2019. Genetic characterization of the chromosome single-segment substitution lines ofandand identification of QTLs for yield-related traits, 39(4): 51.

    Zhou Y L, Xie Y H, Cai J L, Liu C B, Zhu H T, Jiang R, Zhong Y Y, Zhang G L, Tan B, Liu G F, Fu X L, Liu Z Q, Wang S K, Zhang G Q, Zeng R Z. 2017. Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons, 130(6): 1191–1205.

    11 August 2020;

    18 September 2020

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.09.010

    Wang Shaokui (shaokuiwang@scau.edu.cn)

    猜你喜歡
    隱窩絨毛長(zhǎng)度
    針刀松解、撬撥結(jié)合側(cè)隱窩注射治療神經(jīng)根型頸椎病的臨床觀察
    1米的長(zhǎng)度
    絨毛栗色鼠尾草根化學(xué)成分的研究
    中成藥(2018年10期)2018-10-26 03:41:06
    愛(ài)的長(zhǎng)度
    怎樣比較簡(jiǎn)單的長(zhǎng)度
    DNA甲基轉(zhuǎn)移酶在胚胎停育絨毛組織中的表達(dá)差異及臨床意義
    不同長(zhǎng)度
    讀寫算(上)(2015年6期)2015-11-07 07:17:55
    成人心包后上隱窩128層螺旋CT表現(xiàn)及臨床意義
    腰椎間盤摘除術(shù)聯(lián)合側(cè)隱窩擴(kuò)大減壓術(shù)治療腰椎間盤突出癥合并側(cè)隱窩狹窄的療效分析
    七味白術(shù)散對(duì)菌群失調(diào)腹瀉小鼠腸絨毛和隱窩的影響
    精品国内亚洲2022精品成人| 免费一级毛片在线播放高清视频| 一边摸一边抽搐一进一小说| 黄色女人牲交| 婷婷亚洲欧美| 日韩欧美在线二视频| 色精品久久人妻99蜜桃| 久久这里只有精品中国| 久久久久国产精品人妻aⅴ院| 成人三级做爰电影| 色播亚洲综合网| 亚洲片人在线观看| 麻豆成人av在线观看| 欧美高清成人免费视频www| 高清在线国产一区| 可以在线观看的亚洲视频| 欧美性猛交╳xxx乱大交人| 午夜免费成人在线视频| 亚洲午夜理论影院| 少妇的丰满在线观看| 岛国在线免费视频观看| 亚洲国产精品合色在线| 高潮久久久久久久久久久不卡| 久久草成人影院| 一本久久中文字幕| 嫩草影院精品99| 国内揄拍国产精品人妻在线| 妹子高潮喷水视频| 欧美最黄视频在线播放免费| 亚洲人与动物交配视频| 国产一区二区激情短视频| 欧美又色又爽又黄视频| 国产免费男女视频| 亚洲国产中文字幕在线视频| 十八禁人妻一区二区| 久久久水蜜桃国产精品网| 亚洲精品中文字幕在线视频| 成人一区二区视频在线观看| 最近在线观看免费完整版| 国产成人精品久久二区二区91| 一个人免费在线观看的高清视频| 男人舔女人下体高潮全视频| 身体一侧抽搐| 一本大道久久a久久精品| 少妇的丰满在线观看| 亚洲五月天丁香| 男女床上黄色一级片免费看| 嫩草影视91久久| 无限看片的www在线观看| 精品国产乱子伦一区二区三区| 中文字幕精品亚洲无线码一区| 少妇裸体淫交视频免费看高清 | 国产亚洲精品第一综合不卡| 久久久久国产精品人妻aⅴ院| 精品一区二区三区av网在线观看| 久久久久性生活片| cao死你这个sao货| 88av欧美| 国产三级在线视频| 国产精品一区二区精品视频观看| 99热这里只有是精品50| 中文字幕精品亚洲无线码一区| 亚洲欧美一区二区三区黑人| 精品乱码久久久久久99久播| 2021天堂中文幕一二区在线观| 在线观看66精品国产| 国产99久久九九免费精品| 亚洲免费av在线视频| 男女之事视频高清在线观看| 国产av不卡久久| 精华霜和精华液先用哪个| 日本黄色视频三级网站网址| 中文字幕久久专区| 老司机午夜十八禁免费视频| 99国产精品一区二区蜜桃av| 国产成年人精品一区二区| 美女大奶头视频| 三级国产精品欧美在线观看 | 国内久久婷婷六月综合欲色啪| 久久午夜亚洲精品久久| 亚洲九九香蕉| 国产91精品成人一区二区三区| 99re在线观看精品视频| 每晚都被弄得嗷嗷叫到高潮| 成人特级黄色片久久久久久久| 国产精品99久久99久久久不卡| 久久精品国产综合久久久| 人妻丰满熟妇av一区二区三区| 国产精品电影一区二区三区| 两个人看的免费小视频| 亚洲国产中文字幕在线视频| 很黄的视频免费| 精品熟女少妇八av免费久了| 欧美成狂野欧美在线观看| 啪啪无遮挡十八禁网站| 51午夜福利影视在线观看| 亚洲精品美女久久av网站| 国产主播在线观看一区二区| 欧美日本亚洲视频在线播放| 亚洲精品在线美女| 我的老师免费观看完整版| 国产亚洲精品久久久久久毛片| 在线十欧美十亚洲十日本专区| 搡老熟女国产l中国老女人| 日韩欧美在线乱码| 亚洲 欧美一区二区三区| 国产av一区在线观看免费| 老熟妇乱子伦视频在线观看| 欧美高清成人免费视频www| 黄色毛片三级朝国网站| 精品国内亚洲2022精品成人| 99精品在免费线老司机午夜| 国产激情欧美一区二区| 黄色丝袜av网址大全| 国产69精品久久久久777片 | 久久久国产精品麻豆| 亚洲18禁久久av| 久久精品aⅴ一区二区三区四区| 欧美又色又爽又黄视频| 日本黄色视频三级网站网址| 成人特级黄色片久久久久久久| 一边摸一边做爽爽视频免费| 国产精品乱码一区二三区的特点| 熟妇人妻久久中文字幕3abv| 欧美高清成人免费视频www| 精品国产乱子伦一区二区三区| 叶爱在线成人免费视频播放| 51午夜福利影视在线观看| 久久精品91无色码中文字幕| 99久久国产精品久久久| 最新在线观看一区二区三区| 中文在线观看免费www的网站 | 国产一区二区三区视频了| 制服诱惑二区| 在线观看免费日韩欧美大片| 日韩大码丰满熟妇| 亚洲精品久久国产高清桃花| 黄频高清免费视频| 久久精品综合一区二区三区| 99热只有精品国产| 国产主播在线观看一区二区| 国产亚洲精品第一综合不卡| 国产高清视频在线播放一区| 一二三四在线观看免费中文在| 韩国av一区二区三区四区| 午夜精品一区二区三区免费看| 日本三级黄在线观看| 两人在一起打扑克的视频| 少妇的丰满在线观看| 久久精品国产99精品国产亚洲性色| 可以免费在线观看a视频的电影网站| 欧美3d第一页| 99久久精品国产亚洲精品| 无人区码免费观看不卡| 中文字幕精品亚洲无线码一区| x7x7x7水蜜桃| 亚洲人成伊人成综合网2020| 国内精品久久久久久久电影| 操出白浆在线播放| 免费在线观看成人毛片| 亚洲成a人片在线一区二区| 免费在线观看成人毛片| 无人区码免费观看不卡| 国产真实乱freesex| 青草久久国产| 一级片免费观看大全| 欧美日韩乱码在线| av在线天堂中文字幕| 90打野战视频偷拍视频| 视频区欧美日本亚洲| 欧美一区二区国产精品久久精品 | 九色成人免费人妻av| 国产精品精品国产色婷婷| 欧美成人性av电影在线观看| 啪啪无遮挡十八禁网站| 欧美成人一区二区免费高清观看 | 国产高清有码在线观看视频 | 精品无人区乱码1区二区| 无人区码免费观看不卡| 欧美日韩福利视频一区二区| 欧美日韩福利视频一区二区| 久久久国产成人免费| 高清毛片免费观看视频网站| 中亚洲国语对白在线视频| 欧美成人性av电影在线观看| 搡老妇女老女人老熟妇| 欧美性猛交╳xxx乱大交人| 免费人成视频x8x8入口观看| 中亚洲国语对白在线视频| 一本一本综合久久| 黄色片一级片一级黄色片| 操出白浆在线播放| 久久久久性生活片| 久久草成人影院| 久久午夜综合久久蜜桃| 成人一区二区视频在线观看| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 精品国产亚洲在线| 久久精品人妻少妇| 此物有八面人人有两片| 午夜福利在线在线| 亚洲精品美女久久av网站| 色综合站精品国产| a级毛片在线看网站| 最近在线观看免费完整版| 欧美色欧美亚洲另类二区| 久久久久久亚洲精品国产蜜桃av| 熟女少妇亚洲综合色aaa.| 国产人伦9x9x在线观看| 精品第一国产精品| 99精品在免费线老司机午夜| 国产免费男女视频| 一二三四在线观看免费中文在| 亚洲精品中文字幕在线视频| 亚洲全国av大片| 国产av一区二区精品久久| 九色成人免费人妻av| 国产伦人伦偷精品视频| 久久久国产成人免费| 久久草成人影院| 91老司机精品| 午夜日韩欧美国产| 欧美激情久久久久久爽电影| 小说图片视频综合网站| 不卡一级毛片| 又粗又爽又猛毛片免费看| avwww免费| 亚洲无线在线观看| 夜夜爽天天搞| 毛片女人毛片| 国产高清videossex| 精品国内亚洲2022精品成人| 黑人操中国人逼视频| 老司机在亚洲福利影院| 夜夜看夜夜爽夜夜摸| 91字幕亚洲| 久久久国产欧美日韩av| 欧美黄色片欧美黄色片| 视频区欧美日本亚洲| 一本久久中文字幕| 99久久精品国产亚洲精品| 国产成人啪精品午夜网站| 脱女人内裤的视频| 亚洲一区二区三区不卡视频| 天天一区二区日本电影三级| 国产精品98久久久久久宅男小说| www.自偷自拍.com| 久久精品夜夜夜夜夜久久蜜豆 | 国产成人精品久久二区二区91| 久9热在线精品视频| 欧美另类亚洲清纯唯美| 成人精品一区二区免费| 亚洲专区国产一区二区| 成人国产一区最新在线观看| 国产一区二区在线观看日韩 | 日韩高清综合在线| 成人三级做爰电影| 精品高清国产在线一区| av免费在线观看网站| 人人妻,人人澡人人爽秒播| 搡老岳熟女国产| 极品教师在线免费播放| www.www免费av| 人妻久久中文字幕网| 亚洲av中文字字幕乱码综合| 国产乱人伦免费视频| 又粗又爽又猛毛片免费看| 国产蜜桃级精品一区二区三区| 国产精品自产拍在线观看55亚洲| 麻豆av在线久日| www国产在线视频色| 久久精品国产综合久久久| 国产亚洲av高清不卡| 亚洲乱码一区二区免费版| 国产精品久久久久久精品电影| 久久久久久国产a免费观看| 日韩大码丰满熟妇| 精品久久久久久成人av| 欧美乱码精品一区二区三区| 小说图片视频综合网站| 亚洲美女黄片视频| 丰满人妻一区二区三区视频av | 精品熟女少妇八av免费久了| 欧美另类亚洲清纯唯美| 国产亚洲精品综合一区在线观看 | 母亲3免费完整高清在线观看| 午夜老司机福利片| 法律面前人人平等表现在哪些方面| 真人做人爱边吃奶动态| 老司机在亚洲福利影院| 午夜福利欧美成人| 日韩欧美免费精品| av福利片在线| 亚洲在线自拍视频| 久热爱精品视频在线9| 18禁黄网站禁片免费观看直播| 99在线人妻在线中文字幕| 麻豆国产av国片精品| 国产精品一区二区免费欧美| 久久婷婷人人爽人人干人人爱| 99国产精品一区二区蜜桃av| 久久九九热精品免费| 狂野欧美白嫩少妇大欣赏| 亚洲av电影不卡..在线观看| 夜夜躁狠狠躁天天躁| 国产精品免费视频内射| 午夜影院日韩av| 久久久精品欧美日韩精品| 亚洲欧美日韩高清专用| 国产激情久久老熟女| 精品久久久久久久人妻蜜臀av| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区精品小视频在线| 亚洲av美国av| 最近最新免费中文字幕在线| 国产亚洲欧美98| 无限看片的www在线观看| www.自偷自拍.com| 99在线人妻在线中文字幕| 亚洲精品久久国产高清桃花| 欧美中文日本在线观看视频| 99久久99久久久精品蜜桃| 久久欧美精品欧美久久欧美| 亚洲精品粉嫩美女一区| 黄片大片在线免费观看| www.精华液| 国产精品一区二区三区四区免费观看 | 男女床上黄色一级片免费看| 色播亚洲综合网| 成人18禁在线播放| 三级男女做爰猛烈吃奶摸视频| 午夜影院日韩av| 极品教师在线免费播放| 国产精品美女特级片免费视频播放器 | 日本免费a在线| 桃色一区二区三区在线观看| 啦啦啦韩国在线观看视频| 亚洲成人免费电影在线观看| www日本黄色视频网| 性色av乱码一区二区三区2| 特大巨黑吊av在线直播| 亚洲午夜理论影院| 少妇粗大呻吟视频| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器 | 最近最新中文字幕大全免费视频| 久久久久性生活片| 在线观看舔阴道视频| 又粗又爽又猛毛片免费看| 亚洲精品美女久久久久99蜜臀| 男人的好看免费观看在线视频 | 亚洲乱码一区二区免费版| 午夜福利免费观看在线| 国产69精品久久久久777片 | 9191精品国产免费久久| 少妇粗大呻吟视频| 久久香蕉国产精品| 国产真实乱freesex| 中文字幕久久专区| 妹子高潮喷水视频| 18禁国产床啪视频网站| 久久精品91无色码中文字幕| 国产人伦9x9x在线观看| 黄色 视频免费看| 久久久水蜜桃国产精品网| 久久午夜亚洲精品久久| 男女那种视频在线观看| 999久久久精品免费观看国产| 日韩三级视频一区二区三区| 黄片大片在线免费观看| 91在线观看av| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 亚洲av成人精品一区久久| 亚洲人成网站在线播放欧美日韩| 亚洲成人国产一区在线观看| www.www免费av| 免费一级毛片在线播放高清视频| 97碰自拍视频| 亚洲精品国产精品久久久不卡| 首页视频小说图片口味搜索| 女人爽到高潮嗷嗷叫在线视频| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩无卡精品| 99riav亚洲国产免费| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区| videosex国产| 婷婷丁香在线五月| 在线观看www视频免费| 男女床上黄色一级片免费看| xxxwww97欧美| 国产精品一区二区三区四区免费观看 | 亚洲一区二区三区不卡视频| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| svipshipincom国产片| 久热爱精品视频在线9| 亚洲激情在线av| 禁无遮挡网站| 中文字幕av在线有码专区| 亚洲真实伦在线观看| 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 一区二区三区激情视频| 欧美一区二区国产精品久久精品 | 国产aⅴ精品一区二区三区波| 老司机靠b影院| 国产精品九九99| 成人国语在线视频| 久久精品91蜜桃| 久久香蕉国产精品| 特大巨黑吊av在线直播| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一区中文字幕在线| 午夜免费观看网址| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| 精华霜和精华液先用哪个| 亚洲全国av大片| 90打野战视频偷拍视频| 成年免费大片在线观看| 亚洲午夜精品一区,二区,三区| 午夜a级毛片| 久久九九热精品免费| 一级毛片高清免费大全| 精品久久久久久,| 麻豆av在线久日| 欧美久久黑人一区二区| 亚洲国产高清在线一区二区三| 亚洲精品粉嫩美女一区| 亚洲国产精品久久男人天堂| 精品人妻1区二区| 黄片大片在线免费观看| 国产av麻豆久久久久久久| 此物有八面人人有两片| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 久久精品国产清高在天天线| 一级作爱视频免费观看| 91九色精品人成在线观看| 亚洲美女视频黄频| 久久九九热精品免费| 国产亚洲精品一区二区www| 日本 av在线| 国产真实乱freesex| 日韩国内少妇激情av| 精品国产美女av久久久久小说| 成人av在线播放网站| 黑人操中国人逼视频| 黄色女人牲交| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品aⅴ一区二区三区四区| 久久久国产成人免费| 欧美乱色亚洲激情| 91麻豆精品激情在线观看国产| 亚洲成a人片在线一区二区| 国产亚洲av高清不卡| 琪琪午夜伦伦电影理论片6080| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 久久亚洲真实| 看黄色毛片网站| 午夜福利欧美成人| 久久香蕉激情| 无限看片的www在线观看| 欧美黑人欧美精品刺激| 桃色一区二区三区在线观看| 手机成人av网站| 久久香蕉国产精品| 成人三级做爰电影| 韩国av一区二区三区四区| 日韩av在线大香蕉| av片东京热男人的天堂| 一本精品99久久精品77| 亚洲一区二区三区不卡视频| 两个人的视频大全免费| 国产又色又爽无遮挡免费看| 91麻豆精品激情在线观看国产| 叶爱在线成人免费视频播放| 首页视频小说图片口味搜索| 久久久久免费精品人妻一区二区| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 99精品在免费线老司机午夜| 精品电影一区二区在线| av国产免费在线观看| 国产av又大| 男女那种视频在线观看| av福利片在线观看| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 美女免费视频网站| 亚洲性夜色夜夜综合| 操出白浆在线播放| 亚洲va日本ⅴa欧美va伊人久久| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆| videosex国产| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕最新亚洲高清| 欧美性长视频在线观看| 欧美av亚洲av综合av国产av| 亚洲中文av在线| 国产成人一区二区三区免费视频网站| 国产精品电影一区二区三区| 亚洲精品在线美女| 精品国产乱码久久久久久男人| 亚洲一区高清亚洲精品| 成人欧美大片| 麻豆成人av在线观看| 一区福利在线观看| 十八禁人妻一区二区| 高清在线国产一区| 又紧又爽又黄一区二区| 婷婷六月久久综合丁香| 精品久久久久久久末码| 特级一级黄色大片| 国产精品影院久久| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 日本在线视频免费播放| av免费在线观看网站| 亚洲精品色激情综合| 一级片免费观看大全| www.精华液| 亚洲精品av麻豆狂野| 女同久久另类99精品国产91| 亚洲精品色激情综合| av超薄肉色丝袜交足视频| 色尼玛亚洲综合影院| 黑人操中国人逼视频| 男女床上黄色一级片免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 免费在线观看成人毛片| 一本综合久久免费| 亚洲精品国产精品久久久不卡| 狂野欧美白嫩少妇大欣赏| 大型黄色视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 成人欧美大片| 99热只有精品国产| 成人一区二区视频在线观看| 97碰自拍视频| 精品熟女少妇八av免费久了| 91在线观看av| 舔av片在线| 色av中文字幕| 99re在线观看精品视频| 男女床上黄色一级片免费看| tocl精华| 国产1区2区3区精品| 日韩欧美一区二区三区在线观看| cao死你这个sao货| 亚洲精品国产一区二区精华液| 国产一区二区三区视频了| 他把我摸到了高潮在线观看| 99国产精品一区二区蜜桃av| 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 午夜免费观看网址| 国产亚洲av嫩草精品影院| 午夜激情av网站| 黄片小视频在线播放| 亚洲欧美日韩高清专用| 亚洲av成人一区二区三| 日本精品一区二区三区蜜桃| 可以在线观看的亚洲视频| 欧美日本视频| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频 | 一级毛片女人18水好多| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲av高清一级| 国产亚洲精品综合一区在线观看 | 精品福利观看| 久久精品国产亚洲av高清一级| 国产精品永久免费网站| 日韩精品免费视频一区二区三区| 好男人在线观看高清免费视频| 全区人妻精品视频| 成在线人永久免费视频| 精品久久久久久成人av| 18禁黄网站禁片免费观看直播| 在线观看午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 长腿黑丝高跟| 中文在线观看免费www的网站 | 午夜精品久久久久久毛片777| www日本在线高清视频| 男人的好看免费观看在线视频 | 国产精品,欧美在线| 99国产精品99久久久久| 成在线人永久免费视频| 色尼玛亚洲综合影院| 亚洲国产看品久久| 色av中文字幕| 午夜福利18| 中出人妻视频一区二区| 99久久久亚洲精品蜜臀av| 99久久国产精品久久久| 777久久人妻少妇嫩草av网站| 免费人成视频x8x8入口观看| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 级片在线观看| 亚洲,欧美精品.|