• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Several theorems of Helly type for spherically convex sets

    2021-12-02 06:39:50HEYiningGUOQi

    HE Yining, GUO Qi

    (School of Mathematical Sciences,SUST,Suzhou 215009,China)

    Abstract: In this paper,we introduced a kind of spherical translations and established some theorems of Helly type for spherically convex sets concerned with these spherical translations. The conclusions obtained here are analogues of those for convex sets in spherical spaces. This contributes to the further study on spherical convexity.

    Key words: spherically convex set;spherical translation;Helly theorem CLC number: O18 MR(2010) Subject Classification: 52A55 Document code: A Article ID: 2096-3289(2021)04-0023-07

    1 Introduction

    The study on convexity theory in spherical spaces has been getting more and more attentions in the recent decades (see [1-2] and the references therein). The goal of such a study is to establish a systematic theory parallel to the convexity theory in Euclidean spaces,including the basic theories of spherically convex sets and spherically convex functions (see e.g. [1-5]),the spherical convex geometric analysis (see [6-7] and the references therein) and the applications of spherical convexity theory (too many references to mention here,so,readers are referred to the references in e.g. [1-2]).

    Due to the lack of compositions and transformations on spheres,the development of spherical convexity theory is very slow in the past century. In fact,the convexity theory in spherical spaces emerged almost at the same time as the one in Euclidean spaces ([8-9]). However,the earlier work was concentrated only on the combinatorial properties of spherically convex sets,or more precisely,only on the establishment of theorems of Helly type with various kinds of spherically convex sets (see e.g.[10-13]) simply because the definitions of spherically convex sets could be given only in geometric languages in the earlier time. The theorems of Radon type and Carathéodory type for spherically convex sets are established very lately in [4] after [4-5] formulated an equivalent definition of analytic form.

    The classical Helly theorem for convex sets in the n-dimensional Euclidean space is well-known,which states that if any n+1 elements in a finite family of convex sets have a common point,then all elements in the family have a common point(see [14] or[15]). The analogues of the classical Helly theorem were also established repeatedly for various kinds of spherically convex sets (see e.g.[4,8,10-13]),and we would like to point out that the argument in [4] is the only one with analytic nature.

    As known,the various extensions,generalizations and ramifications of the classical Helly theorem for convex sets form a powerful systematic tool in combinatorial and convex geometry,etc. So it is reasonable to find the analogues of these extensions,generalizations and ramifications for spherically convex sets. However,as far as we know,there are almost no such results available in the literature. The cause of such a phenomenon is simply that there are not so many compositions and transformations on spheres,which even make it impossible to formulate such extensions,generalizations and ramifications. As a try,in this article we will introduce a kind of spherical translations and establish several theorems of Helly type for spherically convex sets concerned with these spherical translations.

    2 Notation and definitions

    As usual,Rnand Sn-1denote the n-dimensional Euclidean space and the unit sphere in Rnrespectively.“〈·,·〉” and ||·||denote the standard inner product and the norm induced by “〈·,·〉” on Rn,respectively. Often Rnis also viewed as an affine space,so,in this paper,the vectors and the points will not be distinguished intentionally. We use x,y,z,… to denote the points (or vectors) in Rnand u,v,w,… to denote points (or unit vectors) in Sn-1. The letter o always stands for the origin (or zero vector) of Rn. R,R+and R*+stand for the set of reals,nonnegative reals and positive reals respectively.

    A set of the form V∩Sn-1is called a k-sphere (0≤k≤n-1),where V is a (k+1)-dimensional subspace of Rn. Observe that a 0-sphere is of the form {x,-x} for some x∈Sn-1. A set of the form Su+:=Hu+∩Sn-1(resp. Su+:=Hu+∩Sn-1) is called an open (resp. closed) hemisphere (Su-and Su-are defined in a similar way). u,v∈Sn-1are called (a pair of) antipodes (or antipodal) if v=-u. For other notation refer to [15].

    As mentioned in introduction,various distinct spherical convexities were defined and studied in the history(see,e.g. [8-12] and the references therein),which lead to different families of spherically convex sets. We point out that except the one in [4] or [5] all other definitions were given in geometric languages. Here,following [2],we adopt the one given in [1] or [3] but with an equivalent definition of analytic form.

    The radial projection ρ:Rn→Sn-1∪{o} defined as

    is crucial in the definition of analytic form. The following properties of radial projection are trivial:

    (i) ρ °ρ=ρ,where ° denotes the composition of operators;

    (ii) ρ(tx)=ρ(x),ρ(-x)=-ρ(x) for x∈Rnand t∈R*+;

    (iii) ρ(x)=x if and only if x∈Sn-1or x=o.

    With the help of radial projection,a spherical addition “+s”on Rnwas introduced in [4-5] as:x+sy:=ρ(x+y),x,y∈Rn. Naturally,the spherically convex combination composition was also introduced in [4-5]:

    is called a spherically convex combination (an s-convex combination for brevity) of x1,x2,…,xk. When k=2,we write λx+s(1-λ)y instead of (s)(λx+(1-λ)y).

    Definition 1 A set C?Sn-1is called spherically convex(s-convex for brevity) if for any w1,w2∈C and 0≤λ≤1,λw1+s(1-λ)w2∈C whenever λw1+(1-λ)w2≠o.

    An s-convex set is called proper if it contains no antipodes.

    For C?Sn-1,denote by RC:=R+C its radial hull,which is clearly a cone. Then,in the recent decades,a popular definition of spherically convex sets is that C?Sn-1is called a spherically convex set if RCis a convex cone,i.e. RC=coneC,the convex cone generated by C (see [1,3]). The following proposition was proved in [2,4],which implies that the popular definition above is equivalent to Definition 2.1(see[2,4] for the proofs,or check directly).

    Proposition 2 Let C?Sn-1. Then C=RC∩Sn-1and

    (i) C is a (closed) s-convex set if and only if RCis a (closed) convex cone.

    (ii) C is a proper s-convex set if and only if the convex cone RCis pointed,i.e. RC∩(-RC)={o}.

    3 Gnomonic map and spherical translations

    The well known gnomonic map from an open hemisphere to an Euclidean space is a very important tool in the study on spherical convexity. In this section,we recall some properties of gnomonic maps,and then define and study the so-called spherical transformations. Following the custom,we denote Hvby Rvn-1(or simply Rv) to emphasis the fact that Hvis actually an (n-1)-dimensional Euclidean space.

    Definition 2 Let v∈Sn-1. Then the map gv:Sv+→Rvdefined by

    By Proposition 3,the following corollary is obvious.

    Corollary 1 Let C?Sv+. Then C is s-convex if and only if gv(C)?Rvis convex,where gv(C) denotes the image of C under gv.

    In fact,since both gvand gv-1are continuous,we may easily regain the following conclusions of [6].

    Proposition 4 Let v∈Sn-1. For every C?Sv+,we have

    (i) gv(C)?Rvis a convex body if and only if C is a s-convex body,i.e. gv:K(Sv+)→K(Rv) is a bijection,where K(Rv) denotes the set of convex bodies contained in Rv.

    (ii) If S?Sn-1is a k-sphere,0≤k≤n-2,with (the k-hemisphere) S∩Sv+≠?,then gv(S∩Sv+)?Rvis a kaffine subspace;Conversely,if V?Rvis a k-affine subspace,then gv-1(V)?Sv+is a k-hemisphere. Moreover v∈S∩Sv+if and only if gv(S∩Sv+) is a linear subspace.

    With the help of Proposition 4,we may define the counterpart of translations on Euclidean spaces for every open hemisphere Sv+.

    Definition 3 Let v∈Sn-1. For each translation Lb(·):=·+b on Rv,where b∈Rv,the operation Lb:Sv+→Sv+defined by

    is called a spherical translation (s-translation for brevity) on Sv+,where “°” denotes the composition of operators.

    Since Lbis closedness-preserving and convexity-preserving,by Proposition 3 and 4,the following conclusionis straightforward.

    Proposition 5 Let C∈Kp(Sv+). Then for every b∈Rv,Lb(C)∈Kp(Sv+),i.e. Lbis closedness-preserving and s-convexity-preserving.

    Denoting by L(Sv+) the set of s-translations on Sv+,we have the following Theorem.

    Theorem 1 Let v∈Sn-1. Then,

    (i) Lb°Lc=Lb+cfor all Lb,Lc∈L(Sv+). Hence,L(Sv+) is an abilian group under the compositions of operators,Moreover,the identity of L(Sv+) is Lo,and Lb-1=L-b.

    (ii) The map ψ(Lb):=Lbis a group isomorphism from L(Sv+) onto L(Rv):={Lb|b∈Rv}.

    Proof. Since L(Rv) is an abelian group and Lb°Lc=Lc°Lb=Lb+cfor all b,c∈Rv,we need only to check Lb°Lc=Lb+c. Indeed,by definition

    The similar argument for Lc°Lb=Lb+cworks as well. The proof completes. □

    4 Some theorems of Helly's type for s-convex sets

    In this section,we will establish several theorems of Helly's type,concerned with s-translations,for s-convex sets.

    Theorem 2 Let C,C1,C2,…,Cm∈Kp(Sv+). If for arbitrary i1,i2,…,in∈{1,2,…,m},there is b=bi1,…,in∈Rvsuch that LbC∩Cij≠?,j=1,2,…,n,then,there exists b*∈Rvsuch that

    Proof. Let D:=gv(C),Di:=gv(Ci) and then define

    Also,Theorem 3 reduces to Theorem 4.3 in [4] when C is a singleton. The following theorem of Helly type is the dual of Theorem 3,which can be obtained by applying Theorem 3 trickily to the family of polar s-convex sets(the polar set C⊥of an s-convex set C is defined as{u∈Sn-1|〈u,w〉≤0 for all w∈C},which is an s-convex set as well). However,we prefer to present a direct argument here.

    The proof is complete. □

    Final Remark The main contributions of this paper are the introduction of s-transformations and the establishment of several theorems of Helly type concerned with such s-translations. Of course,the s-translations defined here are not so satisfactory as one expects since they can move sets around only in a hemisphere. So,our next research topic is to find more general translations on the whole sphere and in turn more general extensions of Helly's theorem.

    亚洲男人天堂网一区| 色综合站精品国产| 国产一区二区三区在线臀色熟女| 99riav亚洲国产免费| 免费在线观看亚洲国产| 日本一本二区三区精品| 777久久人妻少妇嫩草av网站| 国产男靠女视频免费网站| 国产精品久久久人人做人人爽| 听说在线观看完整版免费高清| 母亲3免费完整高清在线观看| e午夜精品久久久久久久| 一本精品99久久精品77| 午夜两性在线视频| 国产精品免费一区二区三区在线| 丝袜人妻中文字幕| 亚洲第一电影网av| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| 午夜激情福利司机影院| 日韩欧美在线乱码| 99久久久亚洲精品蜜臀av| 国产免费av片在线观看野外av| 我要搜黄色片| 首页视频小说图片口味搜索| 欧美日韩一级在线毛片| 亚洲av中文字字幕乱码综合| 欧美+亚洲+日韩+国产| 亚洲精品美女久久久久99蜜臀| 欧美成人一区二区免费高清观看 | 欧美大码av| 曰老女人黄片| 午夜a级毛片| 国产伦人伦偷精品视频| 国产亚洲欧美98| 男男h啪啪无遮挡| 久久婷婷成人综合色麻豆| 1024香蕉在线观看| 亚洲欧美日韩高清专用| 天堂av国产一区二区熟女人妻 | 国产精品久久久久久人妻精品电影| 国产成人av教育| 亚洲欧洲精品一区二区精品久久久| 色av中文字幕| 黄色a级毛片大全视频| 婷婷精品国产亚洲av| 日韩 欧美 亚洲 中文字幕| 日本免费a在线| 很黄的视频免费| 国产激情偷乱视频一区二区| 悠悠久久av| 亚洲精品色激情综合| 日韩大码丰满熟妇| 国产成人av激情在线播放| 亚洲电影在线观看av| 宅男免费午夜| 成人手机av| 日韩欧美国产在线观看| 日本黄大片高清| 亚洲成人国产一区在线观看| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 日本免费一区二区三区高清不卡| 99在线人妻在线中文字幕| 成人手机av| 亚洲av成人精品一区久久| 日韩中文字幕欧美一区二区| 老汉色av国产亚洲站长工具| 国产日本99.免费观看| 天堂av国产一区二区熟女人妻 | 毛片女人毛片| 一区二区三区国产精品乱码| 国产野战对白在线观看| 母亲3免费完整高清在线观看| 蜜桃久久精品国产亚洲av| www日本在线高清视频| 2021天堂中文幕一二区在线观| 嫩草影院精品99| aaaaa片日本免费| 中文字幕高清在线视频| 亚洲欧美日韩无卡精品| 日本 欧美在线| 成人18禁在线播放| 精品一区二区三区视频在线观看免费| 琪琪午夜伦伦电影理论片6080| 69av精品久久久久久| 免费看美女性在线毛片视频| 岛国在线观看网站| 熟妇人妻久久中文字幕3abv| 91在线观看av| 欧美绝顶高潮抽搐喷水| 亚洲最大成人中文| 国产精品免费视频内射| 国产野战对白在线观看| 国产成年人精品一区二区| 两个人视频免费观看高清| 别揉我奶头~嗯~啊~动态视频| 国产单亲对白刺激| 国产精品电影一区二区三区| 国语自产精品视频在线第100页| 国内少妇人妻偷人精品xxx网站 | 少妇人妻一区二区三区视频| 亚洲男人天堂网一区| 男女视频在线观看网站免费 | 男人舔奶头视频| 久久天堂一区二区三区四区| 18禁美女被吸乳视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人免费av一区二区三区| 久久久久久久久免费视频了| 国产亚洲精品综合一区在线观看 | 麻豆国产97在线/欧美 | 亚洲欧美日韩高清专用| 国产日本99.免费观看| 午夜福利成人在线免费观看| 精品第一国产精品| 91九色精品人成在线观看| 动漫黄色视频在线观看| av中文乱码字幕在线| 丰满人妻一区二区三区视频av | 成人一区二区视频在线观看| 亚洲最大成人中文| 国产爱豆传媒在线观看 | 欧美另类亚洲清纯唯美| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品国产高清国产av| 久久这里只有精品中国| 麻豆国产av国片精品| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 黄色 视频免费看| 欧美一区二区国产精品久久精品 | 国产爱豆传媒在线观看 | 色老头精品视频在线观看| 五月伊人婷婷丁香| 在线观看午夜福利视频| 成人精品一区二区免费| 国产一区二区在线观看日韩 | 久久久久久久久久黄片| 老司机午夜十八禁免费视频| 亚洲色图av天堂| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| av国产免费在线观看| 国产精品久久久久久人妻精品电影| 久久人妻av系列| 12—13女人毛片做爰片一| 成在线人永久免费视频| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产 | 国产精品98久久久久久宅男小说| 亚洲国产欧洲综合997久久,| 久久这里只有精品19| 又黄又粗又硬又大视频| 国产成年人精品一区二区| 国产成人一区二区三区免费视频网站| 亚洲国产欧美网| 亚洲精品中文字幕在线视频| 国产激情偷乱视频一区二区| 欧美日韩一级在线毛片| 高清在线国产一区| 一级毛片高清免费大全| 女同久久另类99精品国产91| 亚洲国产看品久久| 色综合站精品国产| 99精品久久久久人妻精品| 国产激情久久老熟女| 夜夜躁狠狠躁天天躁| 欧美高清成人免费视频www| 超碰成人久久| 国产99白浆流出| 国产精品久久久久久精品电影| 欧美性猛交╳xxx乱大交人| 久久九九热精品免费| 日本三级黄在线观看| 久久 成人 亚洲| 久久久久国产精品人妻aⅴ院| 久久婷婷成人综合色麻豆| 他把我摸到了高潮在线观看| 母亲3免费完整高清在线观看| 欧美3d第一页| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 亚洲五月婷婷丁香| 国产激情久久老熟女| 亚洲av片天天在线观看| 18禁观看日本| 国产亚洲欧美在线一区二区| 午夜福利视频1000在线观看| 精品第一国产精品| 老司机在亚洲福利影院| www日本黄色视频网| 制服丝袜大香蕉在线| 狂野欧美白嫩少妇大欣赏| 欧洲精品卡2卡3卡4卡5卡区| 好看av亚洲va欧美ⅴa在| av免费在线观看网站| 国产不卡一卡二| 黄频高清免费视频| 午夜老司机福利片| 国产探花在线观看一区二区| 国产av麻豆久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美 国产精品| 精品乱码久久久久久99久播| 这个男人来自地球电影免费观看| 老司机午夜福利在线观看视频| 免费一级毛片在线播放高清视频| 99精品在免费线老司机午夜| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av在线| 久久精品综合一区二区三区| 久久久国产成人免费| 黄色毛片三级朝国网站| 又粗又爽又猛毛片免费看| 天堂动漫精品| 真人一进一出gif抽搐免费| 中文字幕久久专区| 少妇粗大呻吟视频| 久久久水蜜桃国产精品网| 亚洲成av人片免费观看| 亚洲人成网站高清观看| 99久久久亚洲精品蜜臀av| 欧美一区二区国产精品久久精品 | 非洲黑人性xxxx精品又粗又长| 免费无遮挡裸体视频| 国产精品九九99| 午夜福利成人在线免费观看| 神马国产精品三级电影在线观看 | 国产一级毛片七仙女欲春2| 久久中文字幕一级| 久久 成人 亚洲| 国产免费av片在线观看野外av| 精品一区二区三区四区五区乱码| 妹子高潮喷水视频| 丝袜人妻中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲人成77777在线视频| 黄色 视频免费看| 免费观看人在逋| 欧美一级a爱片免费观看看 | 久久久久久久久免费视频了| 精华霜和精华液先用哪个| 最近在线观看免费完整版| 国内精品一区二区在线观看| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 一区福利在线观看| av片东京热男人的天堂| 国产一区二区三区视频了| 黄频高清免费视频| 亚洲国产日韩欧美精品在线观看 | 啦啦啦观看免费观看视频高清| 99re在线观看精品视频| 夜夜夜夜夜久久久久| 日本黄大片高清| 亚洲黑人精品在线| 成人永久免费在线观看视频| 久久精品综合一区二区三区| 黑人欧美特级aaaaaa片| av欧美777| 精品无人区乱码1区二区| 麻豆成人av在线观看| 一个人免费在线观看电影 | 国产精品综合久久久久久久免费| 18禁裸乳无遮挡免费网站照片| 熟妇人妻久久中文字幕3abv| 国产精品自产拍在线观看55亚洲| 日日夜夜操网爽| 国内揄拍国产精品人妻在线| 可以免费在线观看a视频的电影网站| 国产精品综合久久久久久久免费| 毛片女人毛片| 国产精品久久久久久久电影 | 极品教师在线免费播放| 中文字幕av在线有码专区| 亚洲成人国产一区在线观看| 国产精品永久免费网站| 啦啦啦免费观看视频1| 午夜老司机福利片| 亚洲专区中文字幕在线| 给我免费播放毛片高清在线观看| 亚洲中文字幕日韩| 18美女黄网站色大片免费观看| 免费观看精品视频网站| 免费在线观看完整版高清| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 最近在线观看免费完整版| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 曰老女人黄片| 免费观看人在逋| 国产成人精品久久二区二区免费| 长腿黑丝高跟| 免费观看精品视频网站| 国产av不卡久久| 一本精品99久久精品77| 国产91精品成人一区二区三区| 久久精品国产99精品国产亚洲性色| 男人舔女人的私密视频| 可以在线观看的亚洲视频| 亚洲一区二区三区色噜噜| 18美女黄网站色大片免费观看| 亚洲国产精品合色在线| 国产亚洲精品久久久久5区| 精品久久久久久久人妻蜜臀av| 99热只有精品国产| 黄色丝袜av网址大全| 国产一区二区在线观看日韩 | cao死你这个sao货| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清 | 变态另类丝袜制服| 日日夜夜操网爽| 天堂动漫精品| 啦啦啦观看免费观看视频高清| 在线视频色国产色| 久久这里只有精品19| 久久久久久人人人人人| bbb黄色大片| 欧美一区二区精品小视频在线| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频 | 免费在线观看黄色视频的| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 国产99白浆流出| 黄片大片在线免费观看| 亚洲精品在线美女| 99riav亚洲国产免费| 一级黄色大片毛片| 日韩高清综合在线| 精品一区二区三区视频在线观看免费| 后天国语完整版免费观看| 欧美三级亚洲精品| 后天国语完整版免费观看| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 999久久久精品免费观看国产| 日本 欧美在线| 啦啦啦韩国在线观看视频| 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| АⅤ资源中文在线天堂| 中出人妻视频一区二区| 动漫黄色视频在线观看| 免费人成视频x8x8入口观看| 91九色精品人成在线观看| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 国产三级黄色录像| 久久精品国产综合久久久| 90打野战视频偷拍视频| 一本综合久久免费| 亚洲精品中文字幕一二三四区| 超碰成人久久| 亚洲黑人精品在线| 欧美成人午夜精品| 十八禁人妻一区二区| 国产熟女xx| 日韩三级视频一区二区三区| 亚洲成人久久爱视频| 欧美大码av| 神马国产精品三级电影在线观看 | 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 99热这里只有精品一区 | 欧美高清成人免费视频www| 亚洲欧美日韩无卡精品| 别揉我奶头~嗯~啊~动态视频| 国内精品一区二区在线观看| 中文字幕人妻丝袜一区二区| 欧美中文日本在线观看视频| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | xxx96com| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 午夜精品一区二区三区免费看| 美女免费视频网站| 久99久视频精品免费| 在线a可以看的网站| 欧美性猛交╳xxx乱大交人| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 在线观看日韩欧美| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 久久 成人 亚洲| 久久久久久久久久黄片| 特大巨黑吊av在线直播| 国产爱豆传媒在线观看 | 国产视频一区二区在线看| 我要搜黄色片| 日韩欧美在线乱码| 亚洲精品美女久久av网站| 亚洲国产精品久久男人天堂| 欧美日本亚洲视频在线播放| 国产成人av教育| 久久婷婷成人综合色麻豆| 51午夜福利影视在线观看| 岛国在线观看网站| 99riav亚洲国产免费| 不卡一级毛片| 无人区码免费观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合久久99| 久久精品aⅴ一区二区三区四区| 久久久久精品国产欧美久久久| 美女黄网站色视频| 天堂av国产一区二区熟女人妻 | 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 亚洲专区字幕在线| a级毛片在线看网站| 熟女电影av网| av福利片在线| 色在线成人网| www.熟女人妻精品国产| 国产av又大| 国产高清视频在线播放一区| 久久久久性生活片| 亚洲av成人av| 久久久精品欧美日韩精品| 熟女少妇亚洲综合色aaa.| 久久久久久九九精品二区国产 | 亚洲成a人片在线一区二区| 中文亚洲av片在线观看爽| 亚洲精品中文字幕一二三四区| 国产av麻豆久久久久久久| 久久精品国产清高在天天线| 国产单亲对白刺激| 一进一出抽搐gif免费好疼| 丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看 | 99热只有精品国产| 老司机福利观看| 午夜福利在线在线| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 搡老妇女老女人老熟妇| 欧美最黄视频在线播放免费| 99热只有精品国产| 成人18禁高潮啪啪吃奶动态图| 国产av不卡久久| 女人爽到高潮嗷嗷叫在线视频| 国产高清有码在线观看视频 | 国产成人精品无人区| 欧美成人午夜精品| 热99re8久久精品国产| 美女大奶头视频| 精品久久久久久久久久久久久| 中文字幕人妻丝袜一区二区| 91九色精品人成在线观看| 亚洲黑人精品在线| 亚洲成人久久性| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 久久 成人 亚洲| 精品免费久久久久久久清纯| 成人特级黄色片久久久久久久| 可以在线观看的亚洲视频| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 午夜福利免费观看在线| 老司机在亚洲福利影院| 成人av在线播放网站| 色在线成人网| 国产aⅴ精品一区二区三区波| 亚洲国产欧洲综合997久久,| 亚洲人成网站高清观看| 亚洲国产看品久久| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久久久免费视频了| 国产免费av片在线观看野外av| 成人亚洲精品av一区二区| 国产三级在线视频| 欧美色欧美亚洲另类二区| 999精品在线视频| 男人的好看免费观看在线视频 | 国模一区二区三区四区视频 | 黄色 视频免费看| 午夜福利在线观看吧| 国产精品免费视频内射| 亚洲精品久久国产高清桃花| 精品福利观看| 麻豆av在线久日| 女同久久另类99精品国产91| 麻豆av在线久日| 在线a可以看的网站| 这个男人来自地球电影免费观看| 变态另类成人亚洲欧美熟女| 日韩高清综合在线| 久久精品91蜜桃| 欧美乱妇无乱码| 老司机靠b影院| 在线观看日韩欧美| 波多野结衣高清无吗| 久久久久性生活片| 丁香欧美五月| 熟女少妇亚洲综合色aaa.| 国内揄拍国产精品人妻在线| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区高清亚洲精品| 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 麻豆av在线久日| 在线a可以看的网站| 桃红色精品国产亚洲av| 国产精品99久久99久久久不卡| 啪啪无遮挡十八禁网站| 白带黄色成豆腐渣| 久久亚洲真实| 免费无遮挡裸体视频| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 18禁裸乳无遮挡免费网站照片| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 一本大道久久a久久精品| 亚洲一码二码三码区别大吗| av福利片在线观看| 毛片女人毛片| 国产亚洲av高清不卡| 日本a在线网址| 久久国产精品影院| 午夜精品在线福利| 12—13女人毛片做爰片一| 三级毛片av免费| 日本五十路高清| 亚洲人成电影免费在线| 国产三级中文精品| 黄片大片在线免费观看| 久久久久久免费高清国产稀缺| 久久亚洲真实| 精品国产亚洲在线| 亚洲色图 男人天堂 中文字幕| 午夜福利高清视频| 国产69精品久久久久777片 | 日本成人三级电影网站| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 日本 欧美在线| 欧美成人午夜精品| 午夜精品在线福利| 亚洲av成人不卡在线观看播放网| 99久久国产精品久久久| 又粗又爽又猛毛片免费看| 免费在线观看黄色视频的| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 久久人人精品亚洲av| 女人被狂操c到高潮| 一级a爱片免费观看的视频| 老司机福利观看| 一进一出好大好爽视频| 两个人看的免费小视频| 波多野结衣高清作品| www日本在线高清视频| 一级作爱视频免费观看| 国产蜜桃级精品一区二区三区| 中文资源天堂在线| 亚洲欧美日韩高清专用| 久久精品aⅴ一区二区三区四区| netflix在线观看网站| 青草久久国产| 五月伊人婷婷丁香| 男男h啪啪无遮挡| 嫁个100分男人电影在线观看| 国产在线观看jvid| 精品久久久久久久人妻蜜臀av| 久久久久国内视频| 搡老岳熟女国产| 一级毛片高清免费大全| 男插女下体视频免费在线播放| 久久久国产欧美日韩av| 国内精品久久久久精免费| 亚洲七黄色美女视频| www.自偷自拍.com| 一本精品99久久精品77| 狠狠狠狠99中文字幕| 国产三级中文精品| 淫妇啪啪啪对白视频| 老鸭窝网址在线观看| 亚洲美女黄片视频| 国产av麻豆久久久久久久| 国产成人影院久久av| 90打野战视频偷拍视频| 精品国产亚洲在线| www.精华液| 亚洲九九香蕉| 欧美一区二区精品小视频在线| 亚洲天堂国产精品一区在线| 亚洲精品中文字幕一二三四区| 日韩精品青青久久久久久| 精品久久久久久久久久免费视频| 一个人观看的视频www高清免费观看 | 免费在线观看视频国产中文字幕亚洲| 99精品久久久久人妻精品|