• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Covering and illumination of convex bodies

    2021-12-02 06:37:52WUSenlinHEChan

    WU Senlin, HE Chan

    (School of Science,North University of China,Taiyuan 030051,China)

    Abstract: After a survey of classical results on Hadwiger’s covering conjecture,a long-standing open problem from convex and discrete geometry,we introduced two approaches to attack this conjecture and their related results. The first approach is Chuanming Zong’s quantitative program,which is theoretically feasible if Hadwiger’s covering conjecture is true. The other tries to confirm this conjecture by attacking it for high-dimensional centrally symmetric convex bodies,whose feasibility depends on the affirmative answer to a problem posedby P. Soltan.

    Key words: convex body;covering functional;Hadwiger’s covering conjecture;Soltan’s problem

    1 Introduction

    Hadwiger’s covering conjecture is a long-standing open problem from convex and discrete geometry,which has been studied by a large number of research papers,chapters of monographs (e.g.,[1-3]),and surveys (e.g.,[4-7]). Despite of the efforts of mathematicians including K. Bezdek,V.G. Boltyanski,H. Hadwiger,M. Lassak,F(xiàn).W.Levi,G.Livshyts,H.Martini,I.Papadoperakis,C.A.Rogers,O.Schramm,P.Soltan,V.Soltan,K. Tikhomirov,and Chuanming Zong,this conjecture is only completely solved in the two-dimensional situation and it is widely open even in R3. In this article,we briefly introduce this conjecture and classical known results,and mainly focus on more recent results in this direction and on two possible approaches towarding the complete solution of this conjecture.

    We denote by Knthe family of nonempty compact convex subsets of Rn,and by Kmn(0≤m≤n) the set of compact convex subsets of Rnwhose affine dimension is m. Each member of Knnis called a convex body,i.e.,a convex body in Rnis a compact convex set having interior points. For each K∈Kn,we denote by affK,intK,relintK,bdK,and relbdK the affine hull,interior,relative interior,boundary,and relative boundary of K,respectively.

    For two subsets A and B of Rn,and any λ∈R,we put

    For each x∈Rn,we denote the set A+{x} by A+x and call it a translate of A. For each λ∈(0,1) and each point x∈Rn,the set λA+x is called a smaller homothetic copy of A.

    For each K∈Kn,we put

    where cardD is the cardinality of D,i.e.,c(K) is the minimum number of translates of relintK needed to cover K.Note that,the definition of c(K) here is slightly more general than that in the literature,namely,c(K) here is defined on Kninstead of Knn. Concerning the least upper bound of c(K) over Knn,there is a long standing conjecture:

    Conjecture 1 (Hadwiger’s covering conjecture) For each integer n≥1 and each K∈Knn,we have

    the equality holds if and only if K∈Knnis a parallelotope.

    This conjecture is completely solved when n=2,see [8],and it is widely open even when n=3. See the monographs [1-3],and the surveys [4-7] for the history,known results,and relevant references of this conjecture.

    2 The functional c(K)

    2.1 Different interpretations of c(K)

    A unit vector in Rnis called a direction. Suppose that K∈Kn,x∈relbdK,and u is a direction. If there exists a positive number λ such that

    then we say that x is illuminated by u. Let A be a subset of relbdK and D be a set of directions. If each point in A is illuminated by at least one direction in D,then we say that A is illuminated by D. Put

    The following lemma is mentioned in[9] without a detailed proof. For the reader’s convenience,we include a proof given in [10] (in Chinese).

    Lemma 1 Suppose that K∈Kn,c∈Rn,and 0≤α≤β≤γ. Then

    Proof. We only consider the case when β>0. Let z be an arbitrary point in (αK+(1-α)c)∩(γK+(1-γ)c).Then there exist two points x and y in K such that

    Now we are ready to prove the following:

    Proposition 1 Let K∈Kn. If relbdK≠?,then

    Proof. Put m=c(K) and m′=c1(K). Then there exists a set C={ci|i∈[m]} of m points such that K?relintK+C. For each point x∈relbdK,there exists i∈[m] such that x∈relintK+ci. Clearly,ci≠o. Thus

    i.e.,x is illuminated by the direction -ci/||ci||. It follows that relbdK can be illuminated by

    which implies that m′≤m. Thus c1(K)≤c(K).

    It is clear that c(K)≤c3(K). By Lemma 2.3 in [11],we have c2(K)≤c1(K).

    In the rest we show that c3(K)≤c2(K). Put m=c2(K). Then there exist a number λ∈(0,1) and a set C={ci|i∈[m]} of m points such that

    By the definition of m,

    which implies that

    Let c0be a point in relintKC. For each i∈[m],the ray from cipassing through c0intersects relbdK in a point yi.Then there exists a number αi∈(0,1) such that

    Put

    Then γ∈(0,1). For each point x∈K,there exists a point z∈relbdK and a number η∈[0,1] such that x=ηc0+(1-η)z. Assume,without loss of generality,that z∈λK+(1-λ)c1. By Lemma 1

    which shows that x∈γK+(1-γ)c1. It follows that

    Hence c3(K)≤c2(K)=m,as claimed. □

    Thus,for each K∈Knsatisfying relbdK≠?,c(K) is the minimum number of directions needed to illuminate relbdK,the minimum number of smaller homothetic copies of K needed to cover K,as well as the minimum number of smaller homothetic copies of K needed to cover relbdK.

    It is shown in [12] that,when K∈Knncontains o in its interior,c(K) equals the least cardinality of a collection H of hyperplanes such that each exposed face of the polar body K*of K can be separated strictly from o by at least one hyperplane in H. Thus,Conjecture 1 has the following “dual” version (cf. [3]):

    Conjecture 2 Let K∈Knn(n≥3) and p be an arbitrary interior point of K. Then there exists a collection H of 2nhyperplanes such that each exposed face of K and p can be strictly separated by at least one hyperplane in H. Furthermore,2nhyperplanes are necessary only if K is the convex hull of n line segments having linearly independent directions which intersect at the common relative interior point p.See,e.g.,[12-15] for progresses towarding the solution of Conjecture 2.There are further interpretations of c(K),see,e.g.,[5] and [7].

    2.2 Known upper bounds of c(K)

    In 1955,F(xiàn).W. Levi (see [8]) proved that

    and c(K)=4 if and only if K is a parallelogram. He also pointed out that c(K)=n+1 whenever K∈Knnis smooth(at each boundary point of K,there exists a unique supporting hyperplane),and c(K)=2nwhen K∈Knnis a parallelotope.

    M. Lassak proved that c(K)≤8 holds for each centrally symmetric K∈K33,see[16]. However,centrally symmetric three-dimensional convex bodies satisfying c(K)=8 have not been characterized.

    In [17],B.V. Dekster proved that,if K ∈K33is symmetric about a plane,then c(K)≤8. It is shown by M. Lassak (cf. [18]) that c(K)≤6 whenever K∈K33is a body of constant width (see [19] for more information about this special class of convex bodies). However,it is conjectured that c(K)=4 holds for each three-dimensional convex body of constant width. For general three dimensional convex bodies,I. Papadoperakis proved that c(K)≤16,see [20]. Using I. Papadoperakis’ approach,A. Prymak and V. Shepelska proved that (see [21])

    and they remarked that substantial improvements of these estimations,which are better than those provided by M. Lassak in [9],will need new ideas. For general n≥2,C.A. Rogers and Chuanming Zong proved the following There are also many estimations of c(K) for special classes of convex bodies.

    If K∈Knnis the sum of finitely many segments then K is called a zonotope;if K∈Knnis the limit(with respect to the Hausdorff metric dH(·,·),see(1) below) of a sequence of zonotopes,then K is called a zonoid.H. Martini proved that

    holds for each zonotope K∈Knnwhich is not a parallelotope (see [23]). V. Boltyanski and P.S. Soltan (see [24])obtained the same estimation for zonoids. Later,V. Boltyanski showed that this estimation is valid also for belt bodies (see [25]).

    O. Schramm [26] proved that

    holds for each K∈Knnhaving constant width. This estimation yields c(K)≤2nfor n-dimensional bodies of constant width when n≥16.

    2.3 The upper semicontinuity of c(K)

    Hadwiger’s covering conjecture is hard partially because c(K) is upper semicontinuous. For two subsets L and M of Rn,the Hausdorff distance dH(L,M) between them is given by

    where B2nis the unit ball of Rn. Concerning the continuity of c(K),we have the following result (see,e.g.,Theorem 34.9 of [1]):

    Theorem 1 (Upper semicontinuity) For each K1∈Knn,there exists a positive δ=δK1such that

    Therefore,verifying Hadwiger’s covering conjecture for a dense subset of the metric space(Knn,dH(·,·))does not provide a complete solution. In fact,we already know that c(K)=n+1 for each K∈Knnwith smooth boundary,and this class of convex bodies are dense in (Knn,dH(·,·)).

    3 Covering functionals and Zong’s quantitative program

    Since c(K) is an affine invariant,it is more natural to measusre the difference between two convex bodies using the Banach-Mazur metric. For two convex bodies K1and K2,put

    where Anis the set of all non-sigular affine transformations on Rn. The number dBM(K1,K2) is called the Banach-Mazur distance between K1and K2. It is clear that dBM(K1,K2)=0 if and only if K1and K2are affinely equivalent.Denote by ~ the affine equivalence,and by[K] the equivalence class of K∈Knn. For each pair of convex bodies K1and K2,put

    Then (Knn/~,dBM) is a compact metric space.

    Using dBM(·,·),G. Livshyts and K. Tikhomirov proved that,for each K[0,1]nthat is sufficiently close to[0,1]nin dBM(·,·),we have c(K)≤2n-1(see [27]).

    For each K∈Knnand each m∈N,we put

    and Γm([K])=Γm(K). Since c(K) equals the the least number of smaller homothetic copies of K needed to cover K,c(K)≤m if and only if Γm(K)<1. Concerning the continuity of Γm(·),Chuanming Zong proved the following:

    Theorem 2([28]) For each ε>0,and each pair of convex bodies K,L∈Knnsatisfying dBM(K,L)≤ln(1+ε),we have

    Hence Γm(·) is uniformly continuous on (Knn/~,dBM). K. Bezdek and M.A. Khan proved that Γm(·) is Lipschitz continuous. More precisely,they showed that (see [29])

    Now it is clear that

    Based on these observations,Chuanming Zong proposed the following program to attack Hadwiger’s covering conjecture.

    (?。〨et a good guess c^nof cnby estimating Γ2n(K) for special classes of convex bodies.

    (ⅱ)Choose a suitable ε>0 and construct an ε-net N of Knn.

    (ⅲ)For each K∈N verify that Γ2n(K)≤c^n.

    As pointed out in [7],this is the first attempt at a computer-based resolution of Hadwiger’s covering conjecture. It is feasible if (2) holds true,and it is more promising for lower dimensional situations.

    We note that,after proving (2),we still need to characterize n-dimensional convex bodies satisfying c(K)=2n.

    Known estimations of Γm(·).

    Although there is still no characterization of convex bodies in Knnsatisfying c(K)=2n,Chan He et al. proved the following result concerning the greatest lower bound for Γ2n(K) (see [30])

    and “=” holds if and only if K~[0,1]n.

    For the Euclidean disc B22,triangle Δ,tetrahedron T,cross-polytope B13,and the Euclidean ball B23,precise values of Γm(·) for paricular choices of m are known,see Table 1.

    Table 1 Known precise values of Γm(·)

    For each pair of positive integers m and n,put

    When n=2,the precise values of Γ-(n,m) and Γ+(n,m) are known for some particular m. See Table 2.

    Table 2 Known values of Γ-(2,m) and Γ+(2,m)

    In particular,M. Lassak proved that Γ7(K)=1/2 holds for each centrally symmetric K∈K22(cf. [31]).

    When n≥3,estimating Γm(K)is more difficult.This situation can be seen from the following estimation(cf.[32])

    One can also use the knowledge of covering functionals for lower dimensional convex bodies to estimate Γm(K) for higher dimensional convex bodies. In this direction,Donghai Ji et al. observed that,if K∈Knnand C=K×[-1,1],then

    Note that the estimation (3) is not always best possible. Characterizing the situation when the inequality in(3) becomes equality is still open and interesting.

    If K∈Knnis symmetric about the origin o,then (Rn,||·||K) is a Banach space having K as the unit ball,where

    is the gauge or the Minkowski functional of K. Let ε∈[0,2],u∈bdK. The number

    is called the directional modulus of convexity. For each u∈bdK and each number λ>0,put

    Since λ(P) plays an important role in the estimation above,the authors proved the following properties for λ(P).

    (?。㊣f dimP≥1,then λ(P)≤1/2.

    (ⅱ)If P∈Knn,then λ(P)≥1/(n+1);the equality holds if and only P is a simplex.

    (ⅲ)If P is centrally symmetric and planar,then λ(P)=1/2.

    (ⅳ)If P is centrally symmetric,then λ(P)=min{λ(F)|F is a facet of P}.

    (ⅴ)If P is three-dimensional,centrally symmetric,and each facet of P is also centrally symmetric,then λ(P)=1/2.

    4 Another possible approach

    In this section,we present another possible approach to attack Conjecture 1 and related results. The authors learnt from H. Martini the following problem posed by P. Soltan.

    Problem 1 Suppose that T=-B∈Knnand K=conv((T×{1})∪(B×{0})). Is it true that c(K)=c(T)+c(B)=2c(T)?

    then K∈K33is a cube and c(K)=c(T)+c(B). Senlin Wu and Ying Zhou showed that (cf. [11]):

    (?。ヽ(K)≤c(T)+c(B);

    (ⅱ)if T is a translate of B,then c(K)=c(T)+c(B)=2c(T);

    (ⅲ)if T+c?relintB holds for some point c∈Rn-1,then c(K)=1+c(B);

    In particular,they solved Conjecture 1 for three-dimensional convex bodies constructed by (5).

    丰满乱子伦码专区| 天堂中文最新版在线下载 | 国产 一区精品| 日韩成人av中文字幕在线观看| 久久久国产成人精品二区| 三级国产精品欧美在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线观看播放| 精品久久久久久电影网 | 白带黄色成豆腐渣| 免费大片18禁| 真实男女啪啪啪动态图| 99在线人妻在线中文字幕| 国产淫语在线视频| 1024手机看黄色片| 97热精品久久久久久| 五月玫瑰六月丁香| 中文欧美无线码| 精品国产露脸久久av麻豆 | 久久人妻av系列| 日日摸夜夜添夜夜添av毛片| 三级经典国产精品| 日本免费在线观看一区| 国产亚洲av片在线观看秒播厂 | 国产三级在线视频| 精品人妻一区二区三区麻豆| 成年女人永久免费观看视频| 网址你懂的国产日韩在线| 中文在线观看免费www的网站| 欧美成人a在线观看| 18禁在线无遮挡免费观看视频| 久久国内精品自在自线图片| 欧美zozozo另类| 一级二级三级毛片免费看| 亚洲av电影不卡..在线观看| 国产精品久久久久久久久免| 天天躁日日操中文字幕| 99国产精品一区二区蜜桃av| 69av精品久久久久久| 最近最新中文字幕大全电影3| 99久久成人亚洲精品观看| 国产精品永久免费网站| 亚洲久久久久久中文字幕| 久久国内精品自在自线图片| 国产真实乱freesex| 成人亚洲精品av一区二区| 建设人人有责人人尽责人人享有的 | 不卡视频在线观看欧美| 一级爰片在线观看| 国产乱来视频区| 亚洲av不卡在线观看| 精品99又大又爽又粗少妇毛片| 最近手机中文字幕大全| 国产高清国产精品国产三级 | 国产极品天堂在线| 白带黄色成豆腐渣| 久久久久久久久中文| 国产亚洲av片在线观看秒播厂 | 国产精品嫩草影院av在线观看| 日本欧美国产在线视频| 大香蕉久久网| 中文字幕免费在线视频6| 日韩亚洲欧美综合| 日韩av在线大香蕉| 综合色丁香网| 少妇人妻一区二区三区视频| 插逼视频在线观看| 伊人久久精品亚洲午夜| 看黄色毛片网站| 天堂中文最新版在线下载 | 亚洲av成人精品一区久久| 免费电影在线观看免费观看| av卡一久久| 蜜桃久久精品国产亚洲av| 久久鲁丝午夜福利片| 波多野结衣高清无吗| 国国产精品蜜臀av免费| 中文字幕精品亚洲无线码一区| 99热精品在线国产| 午夜福利在线在线| 综合色丁香网| 在线播放国产精品三级| h日本视频在线播放| 97人妻精品一区二区三区麻豆| 在线观看美女被高潮喷水网站| 国产精品国产三级国产专区5o | 一个人观看的视频www高清免费观看| 欧美成人精品欧美一级黄| 亚洲在久久综合| 黄片无遮挡物在线观看| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 精品不卡国产一区二区三区| 亚洲内射少妇av| 成人无遮挡网站| 99久久人妻综合| 黄色日韩在线| 欧美精品国产亚洲| 韩国av在线不卡| 免费av观看视频| 亚洲真实伦在线观看| 乱人视频在线观看| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产精品久久男人天堂| 高清午夜精品一区二区三区| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 亚洲在线观看片| 国产免费一级a男人的天堂| 床上黄色一级片| 成人性生交大片免费视频hd| 内射极品少妇av片p| 日本色播在线视频| 亚洲av熟女| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜 | 色哟哟·www| 国产黄色视频一区二区在线观看 | 亚洲国产精品成人综合色| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 亚洲伊人久久精品综合 | 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 亚洲va在线va天堂va国产| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 日韩精品有码人妻一区| or卡值多少钱| 日本欧美国产在线视频| 国产av一区在线观看免费| 99久久精品一区二区三区| 不卡视频在线观看欧美| 国产亚洲5aaaaa淫片| 日韩制服骚丝袜av| 一个人免费在线观看电影| 午夜老司机福利剧场| 韩国av在线不卡| 国产精品永久免费网站| 欧美激情久久久久久爽电影| 国产三级在线视频| 久久久久久大精品| 久久久国产成人免费| 亚洲欧美精品综合久久99| 99热这里只有是精品50| 美女脱内裤让男人舔精品视频| 只有这里有精品99| 欧美一区二区国产精品久久精品| 一本一本综合久久| 天堂影院成人在线观看| 黄色日韩在线| 成人特级av手机在线观看| 久热久热在线精品观看| 午夜福利网站1000一区二区三区| 一区二区三区四区激情视频| 国产亚洲av片在线观看秒播厂 | 在线观看一区二区三区| 午夜爱爱视频在线播放| 黄色日韩在线| 国产精品精品国产色婷婷| 成年av动漫网址| 亚洲欧美精品自产自拍| 日本免费a在线| 午夜福利成人在线免费观看| 亚洲第一区二区三区不卡| 亚洲精品国产成人久久av| 老司机福利观看| 网址你懂的国产日韩在线| 国产成人精品婷婷| 老司机福利观看| 国产极品精品免费视频能看的| 九九热线精品视视频播放| 如何舔出高潮| 国产爱豆传媒在线观看| av卡一久久| 一级毛片aaaaaa免费看小| 欧美日本亚洲视频在线播放| 免费观看的影片在线观看| 国产成人午夜福利电影在线观看| 中文乱码字字幕精品一区二区三区 | 免费观看的影片在线观看| 国产成人a区在线观看| 91久久精品电影网| 国产国拍精品亚洲av在线观看| or卡值多少钱| 欧美一区二区国产精品久久精品| 在现免费观看毛片| 天堂影院成人在线观看| 亚洲第一区二区三区不卡| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 国产淫语在线视频| 久久久久精品久久久久真实原创| 中文精品一卡2卡3卡4更新| 草草在线视频免费看| 五月伊人婷婷丁香| 亚洲在久久综合| 亚洲国产日韩欧美精品在线观看| 又黄又爽又刺激的免费视频.| 免费黄色在线免费观看| 国产乱来视频区| 中文字幕制服av| 亚洲精品影视一区二区三区av| 欧美又色又爽又黄视频| 99久国产av精品| 在线免费观看的www视频| 一区二区三区乱码不卡18| 久久久久久久亚洲中文字幕| 日本免费一区二区三区高清不卡| 乱人视频在线观看| 成人二区视频| 97超碰精品成人国产| 国产成人freesex在线| www日本黄色视频网| 日韩强制内射视频| 日韩 亚洲 欧美在线| 国产精品电影一区二区三区| 国产精品一区二区性色av| 国产精品三级大全| 久久99热6这里只有精品| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 少妇裸体淫交视频免费看高清| 麻豆乱淫一区二区| 99久久九九国产精品国产免费| 精品国产一区二区三区久久久樱花 | 午夜福利成人在线免费观看| 欧美人与善性xxx| 欧美又色又爽又黄视频| 免费观看性生交大片5| 国产真实乱freesex| 一级爰片在线观看| 日韩一本色道免费dvd| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影小说 | 久久久久久久亚洲中文字幕| 国产高潮美女av| 国产亚洲91精品色在线| 一夜夜www| 在线播放国产精品三级| 三级男女做爰猛烈吃奶摸视频| 国产成人91sexporn| 午夜亚洲福利在线播放| 日韩亚洲欧美综合| 亚洲av不卡在线观看| 高清午夜精品一区二区三区| 高清日韩中文字幕在线| 熟女人妻精品中文字幕| 一级爰片在线观看| 日韩欧美 国产精品| 最近视频中文字幕2019在线8| 简卡轻食公司| 国产人妻一区二区三区在| 丝袜喷水一区| 全区人妻精品视频| 日本wwww免费看| 美女xxoo啪啪120秒动态图| 欧美成人免费av一区二区三区| 亚洲国产精品合色在线| 黄片wwwwww| 亚洲乱码一区二区免费版| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 高清视频免费观看一区二区 | 九九久久精品国产亚洲av麻豆| 日本爱情动作片www.在线观看| 亚洲图色成人| 人妻夜夜爽99麻豆av| 日韩成人av中文字幕在线观看| 日本三级黄在线观看| 亚洲在久久综合| 成人三级黄色视频| 久久久精品欧美日韩精品| 国产一级毛片七仙女欲春2| 男女边吃奶边做爰视频| 国产中年淑女户外野战色| 亚洲三级黄色毛片| 日日啪夜夜撸| 偷拍熟女少妇极品色| 美女高潮的动态| 可以在线观看毛片的网站| 九草在线视频观看| 天天一区二区日本电影三级| 国产探花极品一区二区| 麻豆久久精品国产亚洲av| 久久久成人免费电影| 日日干狠狠操夜夜爽| 啦啦啦啦在线视频资源| 欧美一级a爱片免费观看看| 一级毛片电影观看 | 超碰97精品在线观看| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 国产视频首页在线观看| 久热久热在线精品观看| 久久精品国产亚洲av涩爱| 午夜日本视频在线| 国产精品女同一区二区软件| 亚洲一区高清亚洲精品| 欧美激情国产日韩精品一区| 男人舔女人下体高潮全视频| 97热精品久久久久久| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 国产乱人偷精品视频| 3wmmmm亚洲av在线观看| 国产精品久久久久久久久免| 国产精品无大码| 亚洲欧美一区二区三区国产| 日韩欧美 国产精品| 一本久久精品| 夫妻性生交免费视频一级片| 日日干狠狠操夜夜爽| 日韩成人伦理影院| 一级二级三级毛片免费看| 大又大粗又爽又黄少妇毛片口| 七月丁香在线播放| 亚洲av不卡在线观看| 国产精品福利在线免费观看| 最近2019中文字幕mv第一页| 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 欧美激情国产日韩精品一区| 综合色丁香网| 日日摸夜夜添夜夜添av毛片| 噜噜噜噜噜久久久久久91| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 乱码一卡2卡4卡精品| 搡女人真爽免费视频火全软件| 久热久热在线精品观看| 91av网一区二区| 久久久久性生活片| 国产亚洲5aaaaa淫片| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 久99久视频精品免费| 在线天堂最新版资源| 欧美激情在线99| 亚洲性久久影院| 国产 一区精品| 建设人人有责人人尽责人人享有的 | 亚洲乱码一区二区免费版| 欧美xxxx性猛交bbbb| 永久免费av网站大全| 一级毛片我不卡| 亚洲人成网站在线观看播放| 热99在线观看视频| 午夜激情欧美在线| 插逼视频在线观看| 校园人妻丝袜中文字幕| 成人综合一区亚洲| 国产一区二区三区av在线| videossex国产| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 亚洲国产精品成人久久小说| 免费无遮挡裸体视频| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 亚洲第一区二区三区不卡| 超碰av人人做人人爽久久| 久久人妻av系列| 人人妻人人澡欧美一区二区| 中文乱码字字幕精品一区二区三区 | 久久久久久久亚洲中文字幕| 中文精品一卡2卡3卡4更新| 天堂网av新在线| 97超视频在线观看视频| 亚洲在线观看片| 国产精品一区二区三区四区久久| 一级毛片aaaaaa免费看小| 国产成人福利小说| 小蜜桃在线观看免费完整版高清| 中国国产av一级| 国产亚洲精品av在线| 激情 狠狠 欧美| 中国美白少妇内射xxxbb| av在线天堂中文字幕| 国产成人一区二区在线| 日本爱情动作片www.在线观看| 搞女人的毛片| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 午夜老司机福利剧场| 国产熟女欧美一区二区| 中文乱码字字幕精品一区二区三区 | 成年女人看的毛片在线观看| 久久久久网色| 国产乱人视频| 国产69精品久久久久777片| 精品人妻视频免费看| 久久草成人影院| 黄片wwwwww| 九九爱精品视频在线观看| 久久婷婷人人爽人人干人人爱| 亚洲国产精品国产精品| 97超视频在线观看视频| 美女被艹到高潮喷水动态| 欧美一区二区国产精品久久精品| 亚洲性久久影院| 日本爱情动作片www.在线观看| 少妇熟女aⅴ在线视频| av在线播放精品| 色综合色国产| 亚洲综合精品二区| 纵有疾风起免费观看全集完整版 | 干丝袜人妻中文字幕| 91av网一区二区| 精品99又大又爽又粗少妇毛片| 精品国产三级普通话版| 观看免费一级毛片| 有码 亚洲区| 日韩欧美在线乱码| 在线观看美女被高潮喷水网站| 天天一区二区日本电影三级| videossex国产| 全区人妻精品视频| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 少妇被粗大猛烈的视频| 天堂影院成人在线观看| 高清av免费在线| 久久久欧美国产精品| 青青草视频在线视频观看| 久久鲁丝午夜福利片| 美女内射精品一级片tv| 国产免费一级a男人的天堂| 成人av在线播放网站| 日日啪夜夜撸| 久久久久久久国产电影| 91av网一区二区| 桃色一区二区三区在线观看| 日韩中字成人| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| 欧美高清性xxxxhd video| 婷婷色麻豆天堂久久 | 日韩视频在线欧美| 波多野结衣高清无吗| 久久国内精品自在自线图片| 国产精品乱码一区二三区的特点| 26uuu在线亚洲综合色| 少妇猛男粗大的猛烈进出视频 | 成人三级黄色视频| 久久久国产成人免费| 国语自产精品视频在线第100页| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一个人观看的视频www高清免费观看| 国产老妇女一区| 国产亚洲精品久久久com| 精品人妻偷拍中文字幕| 一级av片app| 搡女人真爽免费视频火全软件| 观看免费一级毛片| 欧美性猛交黑人性爽| 熟妇人妻久久中文字幕3abv| 成人无遮挡网站| 1000部很黄的大片| 亚洲一区高清亚洲精品| 免费av毛片视频| 99热精品在线国产| 我要搜黄色片| 99视频精品全部免费 在线| 在现免费观看毛片| 人人妻人人澡欧美一区二区| 亚洲图色成人| 日本猛色少妇xxxxx猛交久久| 日韩成人伦理影院| 亚洲五月天丁香| 国产免费福利视频在线观看| 成年免费大片在线观看| 久久99热这里只有精品18| 国产一区有黄有色的免费视频 | 久久6这里有精品| 你懂的网址亚洲精品在线观看 | 少妇人妻一区二区三区视频| videos熟女内射| 国国产精品蜜臀av免费| 人妻制服诱惑在线中文字幕| 99久国产av精品国产电影| 又粗又爽又猛毛片免费看| 国产精品伦人一区二区| 国产成人免费观看mmmm| 国产又色又爽无遮挡免| 综合色丁香网| 中文亚洲av片在线观看爽| 最近2019中文字幕mv第一页| 少妇被粗大猛烈的视频| 国产色爽女视频免费观看| 国产精品爽爽va在线观看网站| 黄色一级大片看看| 国产精品熟女久久久久浪| 日产精品乱码卡一卡2卡三| 欧美高清性xxxxhd video| 又粗又硬又长又爽又黄的视频| 91狼人影院| 精品久久久久久久末码| 久久热精品热| 国产精品蜜桃在线观看| 国产精品国产三级国产av玫瑰| 人人妻人人看人人澡| 卡戴珊不雅视频在线播放| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 少妇被粗大猛烈的视频| 联通29元200g的流量卡| 综合色丁香网| 亚洲第一区二区三区不卡| 麻豆精品久久久久久蜜桃| 99久久精品热视频| 小蜜桃在线观看免费完整版高清| 国产免费视频播放在线视频 | 床上黄色一级片| 一个人看视频在线观看www免费| 男人的好看免费观看在线视频| 欧美又色又爽又黄视频| 国产久久久一区二区三区| 亚洲国产欧美在线一区| 国产免费男女视频| 久久国内精品自在自线图片| 日韩欧美精品v在线| 十八禁国产超污无遮挡网站| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 少妇熟女欧美另类| 国产成人91sexporn| 亚洲人成网站在线观看播放| 精品久久久久久久末码| 久久欧美精品欧美久久欧美| 尤物成人国产欧美一区二区三区| 国产亚洲最大av| av天堂中文字幕网| 一级黄片播放器| 亚洲伊人久久精品综合 | 国产精品一及| 91狼人影院| 久久午夜福利片| 麻豆久久精品国产亚洲av| 99久国产av精品| 国产av不卡久久| 精品酒店卫生间| 成人性生交大片免费视频hd| 最新中文字幕久久久久| 午夜视频国产福利| 免费搜索国产男女视频| 日韩一本色道免费dvd| 国产久久久一区二区三区| 男女国产视频网站| 亚洲成人av在线免费| 人妻系列 视频| 久久久久久久久大av| 亚洲无线观看免费| 免费观看的影片在线观看| 成人三级黄色视频| 国产淫语在线视频| 欧美成人a在线观看| 亚洲精品日韩在线中文字幕| 亚洲天堂国产精品一区在线| 青青草视频在线视频观看| 亚洲欧美精品自产自拍| 91精品国产九色| 国产黄a三级三级三级人| 女人久久www免费人成看片 | 少妇被粗大猛烈的视频| 亚洲av中文字字幕乱码综合| 嫩草影院入口| 自拍偷自拍亚洲精品老妇| 最近最新中文字幕大全电影3| 观看美女的网站| av在线蜜桃| 欧美极品一区二区三区四区| 国产精品日韩av在线免费观看| 三级男女做爰猛烈吃奶摸视频| 建设人人有责人人尽责人人享有的 | 我要搜黄色片| 午夜福利网站1000一区二区三区| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 国产一区二区亚洲精品在线观看| 夫妻性生交免费视频一级片| 美女高潮的动态| 国产国拍精品亚洲av在线观看| 国产白丝娇喘喷水9色精品| 国产麻豆成人av免费视频| 国产成人免费观看mmmm| 久久精品国产亚洲av涩爱| 精品人妻熟女av久视频| 亚洲国产精品专区欧美| 欧美+日韩+精品| 亚洲欧美中文字幕日韩二区| 久久久成人免费电影| 国产伦在线观看视频一区| 久久久久网色| 久久精品久久久久久噜噜老黄 | 69人妻影院| 久久久久久九九精品二区国产| 尤物成人国产欧美一区二区三区| 观看美女的网站| 午夜福利高清视频| 老师上课跳d突然被开到最大视频| 天美传媒精品一区二区| 午夜福利网站1000一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 噜噜噜噜噜久久久久久91| 亚洲av日韩在线播放| 色尼玛亚洲综合影院| 一级毛片久久久久久久久女|