• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    2016-11-04 08:53:31RezaAnsariJalalTorabi
    Acta Mechanica Sinica 2016年5期

    Reza Ansari·Jalal Torabi

    ?

    RESEARCH PAPER

    Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading

    Reza Ansari1·Jalal Torabi1

    Based on the nonlocal elasticity theory,the vibration behavior of circular double-layered graphene sheets(DLGSs)resting on the Winkler-and Pasternak-type elastic foundations in a thermal environment is investigated. The governing equation is derived on the basis of Eringen’s nonlocal elasticity and the classical plate theory(CLPT). The initial thermal loading is assumed to be due to a uniform temperature rise throughout the thickness direction.Using the generalized differential quadrature(GDQ)method and periodic differential operators in radial and circumferentialdirections,respectively,the governing equation is discretized.DLGSs with clamped and simply-supported boundary conditions are studied and the influence of van der Waals(vdW)interaction forces is taken into account. In the numerical results,the effects of various parameters such aselastic mediumcoefficients,radius-to-thicknessratio,thermal loading and nonlocal parameter are examined on both in-phase and anti-phase naturalfrequencies.The results show that the thermal load and elastic foundation respectively decreases and increases the fundamental frequencies of DLGSs.

    Circular DLGS·Vibration·Nonlocal theory· Thermal environment·Numerical solution

    ? Jalal Torabi jalal.torabii@gmail.com

    1Department of Mechanical Engineering,University of Guilan,P.O.Box 3756,Rasht,Iran

    1 Introduction

    Nanostructures are widely used in various micro-and nano-scale devices such as gas detectors,biosensors,microelectro-mechanical systems(MEMS)and nano-electromechanical systems(NEMS)due to their superior mechanical,thermal,and electrical properties[1].Among the nanostructures,carbon nanotubes(CNTs)and graphene sheets(GSs)have found a wide range ofapplications in engineering and medicine.

    There exist three main categories for the theoretical modeling of nanomaterials.One category is atomistic modeling including some methods such as classical molecular dynamics(MD),tight-binding MDand the ab initio techniques.The other category is hybrid atomistic-continuum mechanics by which one can directly incorporate the continuum treatment into the interatomic potential[2].The third approach is continuum modeling widely used in the analysis of materials at nano-scales.While conducting experiments at nanoscale is difficult,and the atomistic simulations are computationally expensive formodeling large scale nanostructures,the analysis ofnanomaterials based on the continuum mechanics is an interesting topic for researchers since the continuum models are computationally efficient and provide a reasonable accuracy.

    Classic continuum models including the beam,plate,and shellmodelshave been used to simulate CNTsand GSs[3-5]. Atvery smallsizes,lattice spacing between individualatoms becomes significantly important,and the nanostructure cannot be considered as a continuous medium.In other words,the mechanicalbehaviorofnanostructures is size-dependent. Since the classic continuum models cannot capture the size effect,some higher-order continuum theories such as the modified couple stress theory[6,7],the strain gradient the-ory[8,9],the surface stress theory[10-13],and the nonlocal elasticity theory[14-17]can be employed for the analysis of small-scale systems.In addition,Peddieson et al.[18]indicated that the nonlocal elasticity theory can be appropriately applied to nanotechnology applications.An important issue related to nonlocal models is the appropriate value of nonlocal parameters.The suitable value of the nonlocal parameter can be determined by matching the results obtained from experiments or atomistic methods such as MD simulations to those of nonlocal models.In this regard,some attempts have been made for calibrating the nonlocal parameter in some nonlocal models[19-22].

    In addition to the direct applications of GSs in different fields,they are the basic structural elements for carbon nanotubes,fullerenes,and nanorings Thus,understanding the mechanicalbehaviorof GSs is ofgreatimportance in designing MEMS and NEMS.Application of nonlocal elasticity theory has been reported by many researchers in the static and dynamic analyses of GSs.

    To be noted is that Gibson et al.[23]indicated employing the nonlocal elasticity theory results in accurate prediction of vibration behavior of nanostructures.Bending,vibration,and buckling ofrectangularand circular GSs have been studied by differentresearchers[24-34].Forexample,Arash and Wang[35]investigated the vibration of single-and doublelayered graphene sheets(SLGSs and DLGSs)using the nonlocal elasticity theory and molecular dynamics simulations.The nonlocal parameter was calibrated through the verification of natural frequency obtained by the nonlocal elasticity theory and molecular dynamics simulations. Employing the differential quadrature method and the nonlocal elasticity theory,Pradhan and Kumar[36]studied the vibration of orthotropic rectangular graphene sheets. The effects of nonlocal parameters,material properties,and boundary conditions on the non-dimensional frequency of GSs were presented.In addition,Jomehzadeh and his coworkers[37,38]investigated the large amplitude vibration of DLGSs resting on a nonlinear polymer matrix.Using Hamilton’s principle and von-Karman’s nonlinear geometricalmodel,the governing equations of DLGSs were obtained. The influences of nonlocal parameters and nonlinear behavior of a polymer matrix on the nonlinear vibration analysis of DLGSs were considered.

    Using the nonlocal continuum model,the effects of small scale on the vibration of quadrilateral nanoplates were studied by Babaei and Shahidi[39].The Galerkin method is employed to obtain the non-dimensional natural frequencies of skew,rhombic,trapezoidal,and rectangular nanoplates. Moreover,considering the nonlocalelasticity theory,Murmu et al.[40]studied the effects of a magnetic field on the vibration of rectangular SLGSs resting on elastic foundations. The results reveal that the in-plane magnetic field increases the natural frequencies of the SLGSs.Also,Mohammadi et al.[41]examined the free vibration of embedded circular and annular SLGSs employing the nonlocal continuum model.Furthermore,Mohammadi and his co-workers investigated the influence of thermo-mechanical pre-load on the vibration behavior of embedded SLGSs[42].

    The free vibration behaviorofrectangularGSs undershear in-plane loads was studied by Mohammadi et al.[43]based on the nonlocalelasticity theory.They employed the differentialquadrature method to solve the problem.In thatwork,the influences ofsurrounding elastic medium and boundary conditions were studied on the vibrations of orthotropic SLGSs. Asemi et al.[44]investigated the axisymmetric buckling of circular SLGS by decoupling the nonlocal equations of Eringen theory.The governing equations were derived using equilibrium equations of the circular plate in polar coordinates,and the Galerkin method wasimplemented to compute the buckling loads.

    Then Shen et al.[45]presented the nonlinear vibration analysis of rectangular DLGSs in thermal environments using MDsimulationsand the nonlocalelasticity.The nonlinear von-Karman relations were considered and the nonlocal parameterwas calibrated by equating the naturalfrequencies of GSs obtained from the MD simulations and those from the nonlocal plate model.In addition,the nonlocal vibration of DLGSs-based resonators was studied by Shi et al.[46]. By utilizing the nonlocal thin plate theory,both the in-phase mode(IPM)and the anti-phase mode(APM)of vibrational behavior of DLGSs with simply-supported boundary conditions were investigated.Employing the finite strip method and considering the van der Waals(vdW)effect,Sarrami-Foroushani and Azhari[47]analyzed the nonlocal vibration and stability behaviors of single-and multi-layered rectangular GSs.

    In the present study,the nonlocal vibration behavior of embedded circular DLGSs subjected to thermal load is studied.Based on the nonlocalelasticity theory,the classicalplate theory(CLPT),and the governing equation is derived.Both Winkler-and Pasternak-type elastic foundations are taken into account.A uniform temperature rise throughout the thickness direction is considered as a thermal loading.An efficient numerical method is employed to solve the governing equation and obtain the naturalfrequencies ofthe DLGSs. Using the generalized differential quadrature method and periodic differential operators in radial and circumferential directions,respectively,the governing equation is discretized in two directions.Employing the generalized differential quadrature(GDQ)method in the circumferential direction one should satisfy the periodicity condition on the boundary. While applying the periodic differential operators in the circumferentialdirection,the periodicity condition willbe satisfied by itself.DLGSswith clamped(C)and simply-supported(S)boundary conditions are studied.Furthermore,considering the vdW interaction forces between layers of DLGSs,the effects of elastic medium and thermal loadings on both in-phase and anti-phase natural frequencies were examined.

    2 Governing equations

    Unlike the classical continuum mechanics,which states that the stress tensor at a reference point x can be defined by the strain tensor at that point,based on the nonlocal elasticity theory proposed by Eringen[14],the stress at a reference point x of a body is a function of the strain field at every point in the medium.According to the nonlocal elasticity theory,the nonlocal stress tensor can be defined as

    where σij,?ij,and Cijklare elements of the stress,strain,and fourth-order elasticity tensor,respectively.Kernel functionis the nonlocal modulus which depends on the Euclidean distance,and a material constant α=e0a/l,where e0,a,and l are the material constant,internal characteristic lengths,and external characteristic lengths,respectively.The parameter e0a is the nonlocalparameter which captures the size effect in the behavior of the nanoscale structures.Eringen defined the kernel functionas

    where K0is the modified Bessel function and x·x presents the neighborhood distance[14].Considering Eqs.(1)and(2),the differential form of the constitutive relation could be obtained as

    where is the Laplacian operator.On the basis of Eq.(3)and considering the CLPT,the plane stress condition and thermal effects,the stress-strain relations are written as

    Fig.1 A continuum plate model of the circular graphene sheet

    where E,G,ν,and α are Young’s modulus,shear modulus,Poisson’s ratio,and the coefficient of thermal expansion,respectively.A continuum plate model of the circular graphene sheet and associated coordinates are shown in Fig.1.Based on the classical plate theory,the threedimensional displacement components U,V,and W are assumed as

    where u,v,and w are the displacement components of the middle surface of the graphene sheet,and t denotes time. Since neglecting the displacements of the middle surface along the radial and circumferential directions,i.e.,u=0,v=0,does not affect the transverse vibration behavior of GSs,the strain fields can be expressed as

    where z denotes the distance from the middle surface.The stress resultants can be given as

    Substituting Eqs.(4)-(6)into Eq.(7)gives

    From Eqs.(3)-(7),the governing equation of vibration of a pre-loaded circular plate resting on a Pasternak-type elastic foundation can be derived as

    where h,P,ρ,Kw,and Kgare thickness,distributed transverse pressure,density,Winklermodulus,and shearmodulus of the surrounding elastic medium,respectively.In addition,are stress resultants due to initial thermal loading.Assuming uniform temperature rise throughout the thickness direction and considering the linear equilibrium equation of the plate,the thermal stress resultants on the basis of the theory of thermal elasticity,can be written as

    Using Eqs.(8),(10),and(11),the equation ofmotion in terms of lateral deflection can be obtained as

    Since a DLGS is composed of two layers of GS,Eq.(13)can be extended into two equations for the upper and lower layers as

    where the superscripts 1 and 2 indicate the upper and lower layers of the circular DLGSs,respectively.In addition,P1and P2are the applied pressure on the GSs through the vdW interaction forces,which can be given as

    where c is the vdW interaction coefficient between two layers,which can be obtained from the Lennard-Jones pair potential as[46]

    where a is the characteristic internal length of the C-C bond. ζ=2.968 MeV and δ=0.3407 nm are parameters chosen to fit the physical properties of GSs and(j= 1,2).

    3 Solution procedure

    The equationsofmotion ofDLGSs resting on an elastic foundation and subjected to initial thermal loading are obtained based on the nonlocal CLPT.Using the GDQ method in radial direction and periodic differential matrix operators in the circumferential direction,the governing equation(14)will be discretized in two dimensions to find the natural frequency of DLGSs.In this regard,the GDQ method and periodic differential operators will be presented in the next section.

    3.1GDQ method

    On the basis of the GDQ method[48],the n-th derivative of f(r)can be obtained as a linear sum of the function,i.e.,

    in which Nris the numberoftotaldiscrete grid pointsused in the process of approximation in the r direction andthe weighting coefficients. A column vector F can be defined as shows

    where frjdenotes the nodal value of f(r)at r=rj.A differential matrix operator based on Eq.(17)can be written in the form

    In Eq.(20),n is the orderofdifferentiation andis obtained by[49]

    in which Iris an Nr×Nridentity matrix and

    Previous studies revealed thatthe Chebyshev-Gauss-Lobatto grid point distribution has the most convergence and stability among the other grid distributions.Thus,using this grid distribution,the mesh in the radialdirection can be generated as

    where R is the radius of the circular GSs.

    3.2Periodic differential operators

    To find out the periodic response of circular GSs in the circumferential direction,the general governing equation is discretized overthe circumferentialdirection via periodic differentialmatrix operators.Using this method,the periodicity condition will be naturally satisfied,and one does not need to impose the periodicity condition on differential operators. Considering an unbounded grid with periodic grid points between 0 and 2π and employing the derivatives of periodic sinc function,as a base function in a collocation method,the spectral differentiation matrix operators are obtained.The periodic differential matrix operators are defined as[49]

    where the coefficients ai,jand bi,jare given as

    where Nθis the number of grid points in the circumferential direction.

    3.3Discretization of governing equation

    The equation of motion of DLGSs will be discretized using the GDQ method and periodic differential matrix operator. The nodal values of lateral deflection of each GS layers are given as

    where Iθis an Nθ×Nθidentity matrix and?denotes the Kronecker product.Using Eqs.(27)and(28)and assuming

    harmonic solution in time domain,i.e.and,the governing equation(14)can be written as

    in which?0=Iθ?Irand

    Substituting the boundary conditions into the stiffness and inertia matrices and solving the set of linear Eq.(29),the two kinds of natural frequencies of DLGSs ωIPMand ωAPMare obtained.The subscripts IPM and APM denote the inphase mode and anti-phase mode,respectively.Considering Eq.(29),two sets of linear algebraic equations for IPM and APM natural frequencies can be written as

    4 Results and discussion

    On the basis of Eringen’s nonlocal elasticity and the classical plate theory,the vibration analysis of embedded circular DLGSs was carried out in a thermal environment. The mechanical properties of GSs are assumed as follows: Young’s modulus E=1 TPa,the mass density ρ= 2300 kg/m3,Poisson’s ratio ν=0.3,the thermal expansion coefficient for high temperature case α=1.1×10-6?C-1,and the thickness of GSs h=0.34 nm[42].The effects of Winkler and Pasternak coefficients of elastic foundation are taken into account.In this regard,non-dimensional coefficients of elastic medium are defined as

    Since the vibrational behavior of GSs is studied under initial thermal loading,the natural frequency of the structure becomes zero when the thermal loading meets its critical value.Both the IPM and the APM of natural frequency are assessed according to Eq.(33).

    The accuracy of the present work is verified by the given results for the non-dimensional natural frequency of SLGSs by Mohammadi et al.[41].Comparison of dimensionlessfrequencies for various nonlocal parameters is presented in Table 1.Moreover,the influences of various elastic foundation coefficients on the dimensionless frequency of SLGS are compared in Table 2.The results of both tables are in good agreement.

    Table 1 Comparison of dimensionless frequency parameters for two different boundary conditions and nonlocal parameters(R=10 nm)

    Table 2 Comparison of dimensionless frequency parameters for variouselastic foundation coefficientsand nonlocalparametersforclamped boundary condition(R=20 nm)

    Table 4 Changes of IPM natural frequencies(THz)of clamped DLGS forvariousthermalloadingsand nonlocalparameters(R/h=50,kw= 0,kg=0)

    The effects of elastic foundation coefficients and nonlocal parameter on IPM and APM natural frequencies of simply-supported DLGSs for different mode numbers are presented in Table 3.The values of nonlocal parameter are assumed to be 0(corresponding to the classical/local continuum model)and 2nm.The results show that the increase of the nonlocalparameterconsiderably reduces the IPMnatural frequencies.For APM,however,the effect of nonlocal parameter on the fundamental frequency is almost negligible due to the influential effect of the vdW interaction forces.The nonlocality continues to affect APM frequencies at higher mode numbers.In addition,itcan be seen thatthe increase of the elastic foundation coefficients increases the natural fre-quencies,whereas,these changes decrease at higher mode numbers.

    Table 3 Changes of IPM and APM natural frequencies(THz)of simply-supported DLGS for various elastic foundation coefficients and nonlocal parameters(R/h=10)

    Table 5 Changes of IPM natural frequencies(THz)of DLGS for different thermal loadings and boundary conditions(R/h=10)

    Fig.2 IPM natural frequencies versus mode numbers(R/h=10,kw=0,kg=0)

    Variations ofIPMnaturalfrequency ofclamped DLGSsin respect to increase of the temperature differences and nonlocal parameters are given in Table 4.The results indicate that the natural frequencies decrease by increasing the temperature difference.At higher mode numbers,the influences of thermal loading are weakened.

    IPM natural frequencies of DLGSs for different nonlocal parameters,boundary conditions,elastic foundation coefficients and thermal loadings are presented in Table 5.In addition to whatwas mentioned above,itisseen thatthe presence of elastic foundation decreases the effects of thermal loading on the fundamental frequency of the simply supported GSs.

    The variations of IPM and APM natural frequencies of clamped and simply-supported GSs versus mode numbers for various nonlocal parameters are shown in Figs. 2 and 3,respectively.It is observed that the natural frequencies of the DLGSs are more sensitive to nonlocal parameter at higher mode numbers.Furthermore,considering the clamped boundary condition makes the GSs stiffer and results in higher natural frequency in comparison with simply-supported one.

    Fig.3 APM natural frequencies versus mode numbers(R/h=10,kw=0,kg=0)

    Fig.4 IPM fundamental frequencies versus radius-to-thickness ratio(kw=0,kg=0)

    The changes of IPM and APM natural frequencies of clamped and simply-supported GSs versus the radius-tothickness ratios for various nonlocal parameters are demonstrated in Figs.4 and 5.The results reveal that the effects of nonlocal parameter at higher R/h ratios can be neglected,which is in agreement with nonlocal elasticity theory.Moreover,the vdW interaction forces play an important role on size dependency of APM natural frequencies and decrease the effects of nonlocal parameter.

    Figure 6 depicts the variations of IPM fundamental frequencies of GSs versus the radius-to-thickness ratios forvarious elastic foundation coefficients.It is found that at higher R/h ratios,the influences of elastic medium coefficients diminish.

    Fig.5 APM third natural frequency versus radius-to-thickness ratio(kw=0,kg=0)

    Fig.6 IPM natural frequencies versus radius-to-thickness ratio(e0α=1 nm)

    The variations of APM fundamental frequencies versus vdW interaction coefficients for various nonlocal parameters are plotted in Fig.7.It is observed that the quantities of vdW interaction coefficients play an important role on the size-dependency of the APM natural frequency.In addition,the higher vdW interaction coefficients lead to the higher values of natural frequency of DLGSs,as it is expected.

    Figure 8 presents the variations of IPM natural frequencies of clamped and simply-supported GSs versus the temperature differences through the thickness direction for various nonlocal parameters.The results obviously indicate that the fundamental natural frequencies of GS are size-dependent.Additionally,the fundamental frequencies decrease with the increase of thermal loading and tend to zero when the thermal loadings meet their critical values.

    Fig.7 APM natural frequencies versus vdW interaction coefficients(R/h=10,kw=0,kg=0)

    Fig.8 IPM natural frequencies versus Temperature rise(R/h=50,kw=0,kg=0)

    5 Conclusion

    The size-dependent vibration of circular DLGSs resting on an elastic foundation and subjected to thermal loading was investigated.Employing the nonlocal elasticity theory,the governing equations of DLGSs were derived.The Pasternaktype elastic foundation was considered.In addition,the thermal loading was considered to be due to a uniform temperature rise throughout the thickness direction.

    Using the generalized differential quadrature method in the radial direction and periodic differential operators in the circumferential direction,the governing equations were discretized.Considering the vdW interaction forces,both inphase and anti-phase natural frequencies were examined.

    Itwas observed thatthe nonlocalparameterhas significant effects on the natural frequencies of circular DLGSs.The higher mode numbers of IPM and APM natural frequencies are more sensitive to size-dependency.The results showed that the increase of elastic foundation coefficients increases the natural frequencies of DLGSs.Also,increase in R/h ratiosmakesthe naturalfrequency lesssensitive to increase of the elastic medium coefficients.In addition,itwas figured out that thermal loadings play an important role on the vibration analysis of DLGSs,as increase of the temperature difference yieldsto reduction offundamentalfrequency.Moreover,in the presence of an elastic foundation,considering the simply-supported boundary conditions decreases the effects of thermal loading on the fundamental frequency of the GSs.

    1.Li,X.,Bhushan,B.,Takashima,K.,etal.:Mechanicalcharacterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques.Ultramicroscopy 97,481-494(2003)

    2.Belytschko,T.,Xiao,S.P.,Schatz,G.C.,et al.:Atomistic simulations of nanotube fracture.Phys.Rev.B 65,235430(2002)

    3.Natsuki,T.,Matsuyama,N.,Shi,J.X.,et al.:Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads.Appl.Phys.A 116,1001-1007(2014)

    4.Natsuki,T.,Shi,J.X.,Ni,Q.Q.:Vibration analysis of circular double-layered graphene sheets.J.Appl.Phys.111,044310(2012)

    5.Wang,J.,He,X.,Kitipornchai,S.,et al.:Geometrical nonlinear free vibration of multi-layered graphene sheets.J.Phys.D Appl. Phys.44,135401(2011)

    6.Yang,F(xiàn).A.C.M.,Chong,A.C.M.,Lam,D.C.C.,etal.:Couple stress based strain gradient theory for elasticity.Int.J.Solids Struct.39,2731-2743(2002)

    7.Park,S.K.,Gao,X.L.:Bernoulli-Euler beam model based on a modified couple stress theory.J.Micromech.Microeng.16,2355(2006)

    8.Mindlin,R.D.,Eshel,N.N.:On first strain-gradient theories in linear elasticity.Int.J.Solids Struct.4,109-124(1968)

    9.Ansari,R.,Gholami,R.,Shojaei,M.F.,etal.:Size-dependentbending,buckling and free vibration offunctionally graded Timoshenko microbeamsbased on the mostgeneralstrain gradienttheory.Compos.Struct.100,385-397(2013)

    10.Gurtin,M.E.,Weissmüller,J.,Larche,F(xiàn).:A general theory of curved deformable interfacesin solidsatequilibrium.Philos.Mag. A 78,1093-1109(1998)

    11.Dingreville,R.,Qu,J.,Cherkaoui,M.:Surface free energy and its effect on the elastic behavior of nano-sized particles,wires and films.J.Mech.Phys.Solids 53,1827-1854(2005)

    12.Farajpour,A.,Rastgoo,A.,Mohammadi,M.:Surface effects on the mechanical characteristics of microtubule networks in living cells.Mech.Res.Commun.57,18-26(2014)

    13.Asemi,S.R.,F(xiàn)arajpour,A.:Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheetsincluding surface effects.Phys.ELow Dimens.Syst.Nanostruct.60,80-90(2014)

    14.Eringen,A.C.:On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.J.Appl.Phys. 54,4703-4710(1983)

    15.Rahmani,O.,Jandaghian,A.A.:Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory.Appl.Phys.A 119,1019-1032(2015)

    16.Moosavi,H.,Mohammadi,M.,F(xiàn)arajpour,A.,et al.:Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory.Phys.E Low Dimens.Syst.Nanostruct.44,135-140(2011)

    17.Mohammadi,M.,F(xiàn)arajpour,A.,Moradi,A.,et al.:Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermalenvironment.Compos.PartBEng.56,629-637(2014)

    18.Peddieson,J.,Buchanan,G.R.,McNitt,R.P.:Application of nonlocal continuum models to nanotechnology.Int.J.Eng.Sci.41,305-312(2003)

    19.Duan,W.H.,Wang,C.M.,Zhang,Y.Y.:Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics.J.Appl.Phys.101,24305-24305(2007)

    20.Ansari,R.,Rouhi,H.:Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocalFlugge shell theory.J.Eng.Mater.Technol.134,011008(2012)

    21.Ansari,R.,Rouhi,H.,Sahmani,S.:Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics.Int.J.Mech.Sci.53,786-792(2011)

    22.Aydogdu,M.:Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics.Int.J.Eng.Sci.56,17-28(2012)

    23.Gibson,R.F.,Ayorinde,E.O.,Wen,Y.F.:Vibrations of carbon nanotubes and their composites:a review.Compos.Sci.Technol.67,1-28(2007)

    24.Pradhan,S.C.,Phadikar,J.K.:Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models.Phys.Lett.A 373,1062-1069(2009)

    25.Mohammadi,M.,Moradi,A.,Ghayour,M.,et al.:Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium.Lat.Am.J.Solids Struct.11,437-458(2014)

    26.Shen,L.E.,Shen,H.S.,Zhang,C.L.:Nonlocal plate model for nonlinearvibration ofsingle layergraphene sheetsin thermalenvironments.Comput.Mater.Sci.48,680-685(2010)

    27.Ansari,R.,Rajabiehfard,R.,Arash,B.:Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput.Mater.Sci.49,831-838(2010)

    28.Ansari,R.,Sahmani,S.,Arash,B.:Nonlocal plate model for free vibrations of single-layered graphene sheets.Phys.Lett.A 375,53-62(2010)

    29.Shen,H.S.,Shen,L.,Zhang,C.L.:Nonlocalplatemodelfornonlinearbending ofsingle-layergraphene sheetssubjected to transverse loads in thermalenvironments.Appl.Phys.A 103,103-112(2011)

    30.Pradhan,S.C.,Murmu,T.:Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics.Comput.Mater.Sci.47,268-274(2009)

    31.Pradhan,S.C.,Phadikar,J.K.:Scale effect and buckling analysis of multilayered graphene sheets based on nonlocal continuum mechanics.J.Comput.Theor.Nanosci.7,1948-1954(2010)

    32.Farajpour,A.,Mohammadi,M.,Shahidi,A.R.,et al.:Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model.Phys.E Low Dimens.Syst.Nanostruct. 43,1820-1825(2011)

    33.Mohammadi,M.,Goodarzi,M.,Ghayour,M.,et al.:Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory.Compos.Part B Eng.51,121-129(2013)

    34.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.,et al.:Temperature effect on vibration analysis of annular graphene sheet embedded on visco-pasternak foundation.J.Solid Mech.5,305-323(2013)

    35.Arash,B.,Wang,Q.:Vibration of single-and double-layered graphene sheets.J.Nanotechnol.Eng.Med.2,011012(2011)

    36.Pradhan,S.C.,Kumar,A.:Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method.Compos.Struct.93,774-779(2011)

    37.Jomehzadeh,E.,Saidi,A.R.:A study on large amplitude vibration of multilayered graphene sheets.Comput.Mater.Sci.50,1043-1051(2011)

    38.Jomehzadeh,E.,Saidi,A.R.,Pugno,N.M.:Large amplitude vibration ofa bilayergraphene embedded in anonlinearpolymermatrix. Phys.E Low Dimens.Syst.Nanostruct.44,1973-1982(2012)

    39.Babaei,H.,Shahidi,A.R.:Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocalcontinuum models using the Galerkin method.Acta Mech.Sin.27,967-976(2011)

    40.Murmu,T.,McCarthy,M.A.,Adhikari,S.:In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach.Compos. Struct.96,57-63(2013)

    41.Mohammadi,M.,Ghayour,M.,F(xiàn)arajpour,A.:Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model.Compos.Part B Eng.45,32-42(2013)

    42.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.,et al.:Thermomechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium.Lat.Am.J.Solids Struct. 11,659-682(2014)

    43.Mohammadi,M.,F(xiàn)arajpour,A.,Goodarzi,M.:Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium.Comput.Mater. Sci.82,510-520(2014)

    44.Asemi,S.R.,F(xiàn)arajpour,A.,Borghei,M.,et al.:Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics.Lat.Am.J.Solids Struct.11,704-724(2014)

    45.Shen,H.S.,Xu,Y.M.,Zhang,C.L.:Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity.Comput. Methods Appl.Mech.Eng.267,458-470(2013)

    46.Shi,J.X.,Ni,Q.Q.,Lei,X.W.,et al.:Nonlocal vibration analysis of nanomechanical systems resonators using circular double-layer graphene sheets.Appl.Phys.A 115,213-219(2014)

    47.Sarrami-Foroushani,S.,Azhari,M.:Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects.Phys.E Low Dimens.Syst.Nanostruct.57,83-95(2014)

    48.Shu,C.:DifferentialQuadratureand itsApplication in Engineering. Springer,London(2000)

    49.Ansari,R.,Mohammadi,V.,Shojaei,M.F.,et al.:Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory.Eur.J.Mech.A Solids 45,143-152(2014)

    2 December 2015/Revised:9 February 2016/Accepted:12 April 2016/Published online:20 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    日韩精品免费视频一区二区三区 | 欧美日韩在线观看h| 免费看光身美女| 亚洲国产精品999| 日韩在线高清观看一区二区三区| 日韩精品免费视频一区二区三区 | 国产极品天堂在线| 五月伊人婷婷丁香| 日韩伦理黄色片| 国产伦精品一区二区三区视频9| 国产一区二区在线观看av| av免费在线看不卡| 欧美国产精品一级二级三级 | 丝袜在线中文字幕| 久久久久久久大尺度免费视频| 九九爱精品视频在线观看| 国产成人精品一,二区| 日韩精品免费视频一区二区三区 | 蜜臀久久99精品久久宅男| 国产精品成人在线| 亚洲欧洲国产日韩| 亚洲精品色激情综合| 2018国产大陆天天弄谢| 菩萨蛮人人尽说江南好唐韦庄| 桃花免费在线播放| 午夜激情久久久久久久| 国产亚洲91精品色在线| 丰满乱子伦码专区| 日本爱情动作片www.在线观看| 午夜福利视频精品| 国产精品熟女久久久久浪| 少妇 在线观看| 2021少妇久久久久久久久久久| 国产美女午夜福利| 色视频www国产| 晚上一个人看的免费电影| 99热这里只有精品一区| 亚洲精品乱码久久久v下载方式| 老女人水多毛片| 国产午夜精品一二区理论片| a级片在线免费高清观看视频| 欧美人与善性xxx| 高清视频免费观看一区二区| 看免费成人av毛片| 国产成人精品福利久久| 国产av码专区亚洲av| 久久99一区二区三区| 欧美精品一区二区大全| 亚洲精品日韩在线中文字幕| 在线观看免费日韩欧美大片 | av福利片在线| 国产成人91sexporn| 国产精品国产三级国产av玫瑰| 国产精品免费大片| 美女xxoo啪啪120秒动态图| av国产精品久久久久影院| 99久久综合免费| 狂野欧美白嫩少妇大欣赏| 超碰97精品在线观看| 一个人免费看片子| 91精品一卡2卡3卡4卡| 99re6热这里在线精品视频| 国产黄片美女视频| 国产成人精品久久久久久| 久久久午夜欧美精品| 成人亚洲欧美一区二区av| 精品少妇黑人巨大在线播放| www.av在线官网国产| 你懂的网址亚洲精品在线观看| 亚洲精品亚洲一区二区| 看非洲黑人一级黄片| av又黄又爽大尺度在线免费看| 97在线视频观看| 亚洲色图综合在线观看| 日韩免费高清中文字幕av| 男人爽女人下面视频在线观看| 久久99热6这里只有精品| 久久久久久久久久久丰满| 国产一区有黄有色的免费视频| 日韩精品免费视频一区二区三区 | 日本vs欧美在线观看视频 | 国产成人精品一,二区| a级片在线免费高清观看视频| 人人妻人人澡人人爽人人夜夜| 永久免费av网站大全| 亚洲精品久久久久久婷婷小说| 最黄视频免费看| 亚洲精品色激情综合| 偷拍熟女少妇极品色| 日日摸夜夜添夜夜爱| 国产精品熟女久久久久浪| a级毛色黄片| 在线亚洲精品国产二区图片欧美 | 日本欧美视频一区| 亚洲欧美成人精品一区二区| 黄色一级大片看看| 夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| 亚洲欧洲国产日韩| 中文精品一卡2卡3卡4更新| 人人妻人人添人人爽欧美一区卜| 午夜91福利影院| 久久久久国产精品人妻一区二区| 日本黄色片子视频| 国产深夜福利视频在线观看| 亚洲三级黄色毛片| 国产成人freesex在线| 国产精品久久久久久久电影| 国产黄色免费在线视频| 日韩伦理黄色片| 最近最新中文字幕免费大全7| 激情五月婷婷亚洲| 中文字幕av电影在线播放| 日日爽夜夜爽网站| 国产精品久久久久久av不卡| 老司机亚洲免费影院| 99热全是精品| 欧美 日韩 精品 国产| 久久久国产欧美日韩av| 免费看不卡的av| 久久女婷五月综合色啪小说| 两个人的视频大全免费| 精品国产乱码久久久久久小说| 五月玫瑰六月丁香| 亚洲精品久久午夜乱码| a 毛片基地| 九九爱精品视频在线观看| 赤兔流量卡办理| 精品国产一区二区三区久久久樱花| 国产黄频视频在线观看| 在线观看三级黄色| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av成人精品| 青春草国产在线视频| 久久久国产欧美日韩av| 亚洲欧美成人精品一区二区| 美女脱内裤让男人舔精品视频| av在线观看视频网站免费| 一本色道久久久久久精品综合| 黄色怎么调成土黄色| 男人和女人高潮做爰伦理| 国产无遮挡羞羞视频在线观看| 久久久国产欧美日韩av| 国产成人一区二区在线| 亚洲第一区二区三区不卡| 最新的欧美精品一区二区| 黑人高潮一二区| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 欧美 日韩 精品 国产| 久久精品熟女亚洲av麻豆精品| 亚洲成色77777| 国产精品国产三级专区第一集| 国产老妇伦熟女老妇高清| 18禁裸乳无遮挡动漫免费视频| 国产男女内射视频| 黄色毛片三级朝国网站 | 精品人妻偷拍中文字幕| 成年人免费黄色播放视频 | 美女国产视频在线观看| 狂野欧美激情性xxxx在线观看| 一本久久精品| 丝袜在线中文字幕| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 国内揄拍国产精品人妻在线| 成人漫画全彩无遮挡| 一本大道久久a久久精品| 久久久久久久国产电影| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 99久久精品热视频| av国产精品久久久久影院| 午夜激情福利司机影院| 又黄又爽又刺激的免费视频.| 老司机影院毛片| 一区在线观看完整版| 搡老乐熟女国产| 欧美xxxx性猛交bbbb| 亚洲国产毛片av蜜桃av| 熟女电影av网| 九九久久精品国产亚洲av麻豆| 久久影院123| 一级黄片播放器| 黄色欧美视频在线观看| 欧美最新免费一区二区三区| 深夜a级毛片| 久久综合国产亚洲精品| 欧美精品亚洲一区二区| 国产日韩欧美在线精品| 国产av精品麻豆| 日本wwww免费看| av在线播放精品| 国产亚洲一区二区精品| 欧美97在线视频| 美女脱内裤让男人舔精品视频| 日本wwww免费看| 卡戴珊不雅视频在线播放| 纯流量卡能插随身wifi吗| 精品人妻熟女毛片av久久网站| 日日啪夜夜撸| 欧美少妇被猛烈插入视频| 久久久久精品性色| 欧美97在线视频| 在线看a的网站| 亚洲精品色激情综合| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 成人亚洲精品一区在线观看| 国产欧美日韩综合在线一区二区 | 99热这里只有是精品在线观看| 免费黄频网站在线观看国产| 人妻一区二区av| 亚洲真实伦在线观看| 久久国产亚洲av麻豆专区| 蜜桃久久精品国产亚洲av| 国产精品.久久久| 国内揄拍国产精品人妻在线| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 日韩成人伦理影院| 国产黄频视频在线观看| 噜噜噜噜噜久久久久久91| 国产精品99久久99久久久不卡 | 丝袜脚勾引网站| 男人添女人高潮全过程视频| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 午夜福利影视在线免费观看| 精品亚洲成国产av| 欧美最新免费一区二区三区| 国产一区二区在线观看av| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 免费观看av网站的网址| 一本色道久久久久久精品综合| 国产精品嫩草影院av在线观看| 男人添女人高潮全过程视频| 精品人妻偷拍中文字幕| 99九九线精品视频在线观看视频| 久久久久国产精品人妻一区二区| 久久婷婷青草| 内射极品少妇av片p| 成年美女黄网站色视频大全免费 | 91午夜精品亚洲一区二区三区| 国产男女内射视频| 国产 精品1| a级一级毛片免费在线观看| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 水蜜桃什么品种好| 午夜免费观看性视频| 日韩人妻高清精品专区| 欧美国产精品一级二级三级 | 伊人亚洲综合成人网| 久久久精品94久久精品| 亚洲欧洲精品一区二区精品久久久 | 性色avwww在线观看| 国产精品久久久久久久久免| 内射极品少妇av片p| 日本午夜av视频| 久久 成人 亚洲| 久久久久久久大尺度免费视频| 看免费成人av毛片| 精品久久久久久久久亚洲| 免费观看性生交大片5| 极品教师在线视频| 三级经典国产精品| 一级毛片 在线播放| av在线播放精品| 国产深夜福利视频在线观看| 久久国产精品大桥未久av | 亚洲精品国产av蜜桃| 国产成人freesex在线| 久久精品国产自在天天线| 久久精品久久精品一区二区三区| 极品教师在线视频| 国产在线免费精品| 亚洲欧美成人综合另类久久久| 美女内射精品一级片tv| 精品亚洲成国产av| 人妻夜夜爽99麻豆av| 午夜久久久在线观看| 秋霞在线观看毛片| 午夜福利,免费看| 五月伊人婷婷丁香| 午夜福利视频精品| 亚洲国产精品国产精品| 高清午夜精品一区二区三区| 亚洲av福利一区| 久久精品夜色国产| 尾随美女入室| 亚洲精品日韩av片在线观看| 国产日韩一区二区三区精品不卡 | 国产精品久久久久久av不卡| videos熟女内射| 永久免费av网站大全| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 性高湖久久久久久久久免费观看| www.色视频.com| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 婷婷色麻豆天堂久久| 午夜免费鲁丝| 99久久人妻综合| 国产成人精品无人区| 国产精品三级大全| 国产视频内射| 伦理电影大哥的女人| 亚洲一级一片aⅴ在线观看| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 街头女战士在线观看网站| 黄色毛片三级朝国网站 | 久久久久久久久大av| 女性被躁到高潮视频| 熟女av电影| 精品国产一区二区久久| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲 | 99热这里只有精品一区| 国产高清不卡午夜福利| 18禁裸乳无遮挡动漫免费视频| 简卡轻食公司| a级片在线免费高清观看视频| 观看av在线不卡| 一区二区三区免费毛片| 亚洲第一av免费看| 最新的欧美精品一区二区| 亚洲欧美日韩卡通动漫| 少妇精品久久久久久久| 这个男人来自地球电影免费观看 | 精品酒店卫生间| 美女国产视频在线观看| 人妻少妇偷人精品九色| 亚洲性久久影院| 一区二区av电影网| 99久国产av精品国产电影| 欧美高清成人免费视频www| 美女主播在线视频| 午夜老司机福利剧场| 久久这里有精品视频免费| 久久99精品国语久久久| 国产成人a∨麻豆精品| 久久狼人影院| 日本av免费视频播放| 日韩欧美精品免费久久| 午夜视频国产福利| 婷婷色综合大香蕉| 丰满少妇做爰视频| 人妻 亚洲 视频| 3wmmmm亚洲av在线观看| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 精品国产乱码久久久久久小说| 春色校园在线视频观看| 国产在线男女| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说| 日日摸夜夜添夜夜添av毛片| 草草在线视频免费看| 人妻少妇偷人精品九色| 色5月婷婷丁香| 亚洲国产精品专区欧美| 亚洲欧美中文字幕日韩二区| 麻豆成人av视频| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 亚洲,欧美,日韩| 日韩三级伦理在线观看| 国产乱来视频区| 国产高清不卡午夜福利| 一级a做视频免费观看| 亚洲国产欧美日韩在线播放 | av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 少妇人妻一区二区三区视频| 亚洲欧美清纯卡通| 国产精品人妻久久久久久| 国产极品粉嫩免费观看在线 | 久久影院123| 99久久人妻综合| 亚洲av国产av综合av卡| 日韩欧美精品免费久久| 十分钟在线观看高清视频www | 亚洲美女搞黄在线观看| 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 一级爰片在线观看| 亚洲av国产av综合av卡| 亚洲高清免费不卡视频| 少妇被粗大的猛进出69影院 | 曰老女人黄片| 久久久国产精品麻豆| 男女国产视频网站| 国产爽快片一区二区三区| 久久久久久久久久久久大奶| 啦啦啦中文免费视频观看日本| 日韩电影二区| 日韩中字成人| 老司机影院成人| 伊人久久精品亚洲午夜| 在线观看三级黄色| 国产欧美日韩一区二区三区在线 | 亚洲激情五月婷婷啪啪| 久久青草综合色| h视频一区二区三区| 一区二区三区精品91| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免| 99久久精品热视频| 亚洲精品成人av观看孕妇| 国产精品久久久久久久电影| 观看美女的网站| av专区在线播放| 99久久精品热视频| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 成人影院久久| av线在线观看网站| 免费高清在线观看视频在线观看| 欧美日韩国产mv在线观看视频| 日韩欧美一区视频在线观看 | 国产91av在线免费观看| 伊人亚洲综合成人网| 精品少妇内射三级| 亚洲国产精品999| 777米奇影视久久| 丝瓜视频免费看黄片| 亚洲精品,欧美精品| av不卡在线播放| 久久久国产精品麻豆| 中国国产av一级| 午夜影院在线不卡| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 熟女电影av网| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 亚洲怡红院男人天堂| 99热这里只有是精品在线观看| 中文字幕人妻丝袜制服| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩精品一区二区| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 欧美区成人在线视频| 免费观看无遮挡的男女| 91精品一卡2卡3卡4卡| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线| 久久久久精品性色| 熟女电影av网| 国产成人免费无遮挡视频| 国产成人午夜福利电影在线观看| 久久国产精品大桥未久av | 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 久久久久久久亚洲中文字幕| 一区在线观看完整版| 国产av国产精品国产| 国产伦理片在线播放av一区| 中国三级夫妇交换| 嘟嘟电影网在线观看| 在线观看av片永久免费下载| 夜夜骑夜夜射夜夜干| h日本视频在线播放| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 精品一区二区免费观看| 亚洲国产成人一精品久久久| 欧美日韩在线观看h| 亚洲精品第二区| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 亚洲成色77777| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 国产精品免费大片| 精品久久久噜噜| 99久久精品热视频| 欧美 日韩 精品 国产| 国产亚洲5aaaaa淫片| 丝袜脚勾引网站| 成年美女黄网站色视频大全免费 | 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区 | 久久人妻熟女aⅴ| 性色avwww在线观看| 久久久国产精品麻豆| 91在线精品国自产拍蜜月| 国产毛片在线视频| 丰满乱子伦码专区| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 免费看日本二区| 国产真实伦视频高清在线观看| 国产美女午夜福利| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 王馨瑶露胸无遮挡在线观看| 欧美激情极品国产一区二区三区 | 中文字幕人妻丝袜制服| 亚洲综合精品二区| 亚洲丝袜综合中文字幕| 97超视频在线观看视频| av在线老鸭窝| 国产精品国产三级国产av玫瑰| 精品亚洲成国产av| 亚洲欧美成人综合另类久久久| 久久久久久久国产电影| 亚洲熟女精品中文字幕| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说| 免费黄色在线免费观看| 亚洲精品自拍成人| 99热6这里只有精品| 免费高清在线观看视频在线观看| 51国产日韩欧美| 在线观看av片永久免费下载| 曰老女人黄片| 熟女电影av网| 精品少妇黑人巨大在线播放| 9色porny在线观看| 国产毛片在线视频| 少妇裸体淫交视频免费看高清| 久久亚洲国产成人精品v| 偷拍熟女少妇极品色| 亚洲欧美成人精品一区二区| 日韩强制内射视频| 日本91视频免费播放| 18禁裸乳无遮挡动漫免费视频| 乱码一卡2卡4卡精品| 十分钟在线观看高清视频www | 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| av.在线天堂| 国产老妇伦熟女老妇高清| 午夜福利网站1000一区二区三区| 欧美 亚洲 国产 日韩一| 熟女电影av网| 在现免费观看毛片| 国产成人精品无人区| 乱系列少妇在线播放| 男女边摸边吃奶| 亚洲精品第二区| 亚洲一区二区三区欧美精品| a级毛色黄片| 少妇人妻一区二区三区视频| 欧美 日韩 精品 国产| 国产欧美日韩综合在线一区二区 | 久久国产精品大桥未久av | 中文字幕人妻丝袜制服| 高清欧美精品videossex| 国产免费一级a男人的天堂| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 免费黄色在线免费观看| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频 | 亚洲高清免费不卡视频| 插逼视频在线观看| 国产老妇伦熟女老妇高清| 久久久亚洲精品成人影院| 一级黄片播放器| av免费观看日本| 国产在线一区二区三区精| 久久久久视频综合| 精品视频人人做人人爽| 日韩强制内射视频| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 三级经典国产精品| 人妻人人澡人人爽人人| 国产精品一区二区性色av| 亚洲人与动物交配视频| a级毛片在线看网站| 婷婷色av中文字幕| 国产伦精品一区二区三区视频9| 少妇精品久久久久久久| 中文精品一卡2卡3卡4更新| 午夜视频国产福利| 人人澡人人妻人| 五月开心婷婷网| 精品久久久精品久久久| 国产白丝娇喘喷水9色精品| 春色校园在线视频观看| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲网站| 观看av在线不卡| av在线app专区| 亚洲欧洲日产国产| 久久av网站| 午夜福利视频精品| 99精国产麻豆久久婷婷| 亚洲成人手机| 日韩熟女老妇一区二区性免费视频| 最近中文字幕高清免费大全6| 亚洲欧美成人精品一区二区| av天堂久久9| 国产又色又爽无遮挡免| 黑人猛操日本美女一级片| 成年女人在线观看亚洲视频| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 男女边摸边吃奶| 大香蕉97超碰在线| 国产av码专区亚洲av| 亚洲国产最新在线播放| 国产成人精品福利久久|