• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear integral resonant controller for vibration reduction in nonlinear systems

    2016-11-04 08:53:47EhsanOmidiNimaMahmoodi
    Acta Mechanica Sinica 2016年5期

    Ehsan Omidi·S.Nima Mahmoodi

    ?

    RESEARCH PAPER

    Nonlinear integral resonant controller for vibration reduction in nonlinear systems

    Ehsan Omidi1·S.Nima Mahmoodi1

    A new nonlinear integral resonant controller(NIRC)is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures.The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce highamplitude nonlinear vibration around the fundamental resonance frequency.The method of multiple scales is used to obtain an approximate solution for the closed-loop system. Then closed-loop system stability is investigated using the resulting modulation equation.Finally,the effectsofdifferent controlsystemparameters are illustrated and an approximate solution response is verified via numericalsimulation results. The advantages and disadvantages ofthe proposed controller are presented and extensively discussed in the results.The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode,unlike conventional second-order compensation methods. This makes the NIRC controlled system robust to excitation frequency variations.

    Active vibration control·Cantilever·High

    amplitude oscillation·Method ofmultiple scales·Nonlinear vibration·Piezoelectric actuator·Smart structure

    ? S.Nima Mahmoodi nmahmoodi@eng.ua.edu

    1Nonlinear Intelligent Structures Laboratory,Department of Mechanical Engineering,The University of Alabama,Tuscaloosa,AL 35487-0276,USA

    1 Introduction

    Flexible structures are susceptible to linear and nonlinear vibrations,which are undesirable in most cases,and their suppression is of the utmost importance.A system under vibration can be enhanced by actuation/sensing elements and a controlunit,so thatithas a smartstructure thatcan actively rejectvibrations.The performance ofthe resulting smartflexible structure is highly affected by the controller designed for the system,which works as a bridge between sensors and actuators.Essentially,the designed controller must consider the vibrational behavior of the system,the available actuators/sensors,and possible types of excitation disturbance. Piezoelectric actuators and sensors have been investigated in various studies and successfully applied to various systems[1,2].These elements are the most frequently used sources forapplying actuation powerto flexible systemsorproviding vibration position feedback.

    Various controllers have been designed for the purpose of vibration control in smart structures.Linear controllers can be used suppress low-amplitude linear vibrations;some approaches are described and investigated in Refs.[3-7]. However,proportionate controllersmustbe designed fornonlinear oscillatory smart structures that are compatible with the nonlinear frequency responses of these systems.Additionally,controlled system response and behavior cannot be obtained using typical linear methods for nonlinear systems. In many cases where exact solutions are not readily available,approximate methods are used to provide a solution for these systems,such as the method of multiple scales[8,9].The problem of nonlinear vibration and approximate solutions for these systems have been addressed in various studies[10-12].Different linear and nonlinear controllers have also been designed for such systems:cubic velocityfeedback[13],fuzzy sliding mode control[14],nonlinear positive position feedback(PPF)-based methods[15-17],a nonlinear energy sink approach[18],and delayed feedback control[19].The nonlinear dynamic response and control of fiber-metal laminated plates were studied in Ref.[20],and the active vibration isolation problem fora microelectromechanicalsystem(MEMS)device is addressed in Ref.[21].

    Many ofthe previously proposed controllers fornonlinear vibration suppression of the primary resonant frequency are second-order compensators[15-17].Although these compensators can effectively suppress the resonant frequency at its exact value,vibration amplitude in the neighboring frequency regions may even exceed the initial resonant amplitude.Because the excitation disturbance may not necessarily remain at the resonant frequency,vibrations in neighboring frequencies become a challenge,too.Additionally,these controllers have relatively complicated structures,which makes the solution preparation and controller implementation difficult.

    To avoid the complexity of second-order compensators and their high-amplitude peaks in the neighboring frequencies of resonance,a new nonlinear integral resonant controller(NIRC)is introduced in this paper.In the NIRC,a first-order nonlinear vibration compensator fed by a positive linear and a negative nonlinear position term is implemented to target the primary resonant frequency.A solution of the closed-loop system is obtained using the method of multiple scales in a multilayer fashion.A modulation equation is obtained and a stability analysis performed.The solution of the approximate method is then verified using numerical simulation results,and the influences of different control parameters on closed-loop system response are extensively investigated.The structure ofthiscontrollermakes itsuitable for nonlinear vibratory structures,such as beams and plates,in addition to MEMS systems and devices.

    2 Dynamics of the nonlinear system and NIRC

    High-amplitude oscillations are one of the primary causes of nonlinearity in responses of flexible structures.Cantilevers are prone to these vibrations more than structures with other boundary conditions because of their free end.Of the differentapproaches to applying the controlmomenton a structure to suppress these vibrations,one should use a collocated patch of piezoelectric actuators and sensors.The primary resonant mode for the model of a nonlinear vibrating system can be obtained using the geometrical deflections of the structure.This has been fully addressed in Ref.[15],and the governing equation is obtained as

    Fig.1 Time-domain block diagram representation of closed-loop system

    where u(t)is the time-dependent variable of the main system;overdot denotes differentiation with respect to t;Fc(t)is the control input;Fd=f cos(Ωt),where f is the amplitude and Ω the frequency of the external excitation;μ and ωmare the damping ratio and resonant frequency of the main system,respectively;α and β are curvature and inertia nonlinearity coefficients,respectively.Note that positive and negative values can be assigned to β based on the system characteristics.

    The NIRC consists of a first-order resonant integrator,with a combination of a positive linear and a negative nonlinear vibration displacement amplitude input.The NIRC is expressed as

    where v(t)is the variable of NIRC,ωNis the first-orderintegrator’s frequency,andλandδ are controllerinputgains.The control law is defined as Fc(t)=τv(t)for τ>0.Figure 1 shows a time-domain block diagram of a closed-loop system consisting of a main system and the NIRC;the figure also shows how different elements are connected to one another. The overalldamping ofthe systemincreaseswhen the control loop of the system is closed in accordance with the defined law.As a result,we would expect to see a significant reduction in the vibration amplitude in the frequency domain.To verify the expectations and provide a more detailed analysis of the system response,an approximate frequency domain solution is obtained in the following section.

    3 Controlled system response using method of multiple scales

    The method of multiple scales is applied to the closedloop dynamics of a system to provide a uniform nonlinear approximate solution near the fundamental resonant mode[9].Initially,two time scales are considered,T0=t and T1=εt,and the corresponding time derivatives are

    where Dn=?/?Tn,andεisa bookkeeping parameter.Equation(3)is substituted into the equations of the main system and controller,which yields

    The variables of Eqs.(4)and(5)are expanded using

    The order of Eq.(7)is chosen to be one order higher than the main systemto keep the first-orderdynamicsofthe controller at the same pace with the second-order nonlinear system model and to have all the necessary variables appear in the correct equations.The main system and controller parameters need to be scaled as follows:Separation in orders of ε yields three layers that are required for the analysis

    The solution of the homogeneous ordinary differential equation(ODE)of Eq.(8)is assumed to be in the form

    where A(T1)is a complex-valued function and cc is the complex conjugate.The solution considered for Eq.(12)is substituted into Eq.(10),and the resulting ODE is solved. The solution is then obtained as

    where the overbar denotes the complex conjugate function,and the variable C(T1)will be determined in subsequent stages of the solution.Equations(12)and(13)are substituted into Eq.(9),which yields

    Equation(14)can be solved by neglecting the secular terms that will subsequently be set equal to zero.The result is expressed as

    The solutions expressed by Eqs.(13)and(15)are used to obtain the solution of Eq.(11).The substitution yields Eq.(11)

    The solution of Eq.(16)is expressed in the form

    where the coefficients V1to V14are presented in the appendix.The secular terms in Eq.(16)should be set equal to zero,which also facilitates calculation of the term C(T1). The obtained equation is

    The solution for the ODE of Eq.(18)is obtained as

    where cvisa constant.The nextobjective isto obtain the modulation equation.To this end,the secular terms in Eq.(14)are set equal to zero,

    where σfis a small detuning parameter,defined using the detuning equation Ω=ωm+εσf.It is necessary to have this variable defined owing to the fact that the excitation frequency is close to the primary frequency of the main system. The solution of Eq.(20)is expressed in polar form using

    Equation(21)is substituted into Eq.(20)for real and imaginary parts to be separated.This yields

    A variable transformation is applied to Eqs.(22)and(23)by considering ?(t)=σft-θ(t),and the scaled parameters are restored to their original form.This yields

    4 Steady-state response and stability analysis

    To obtain the amplitude-frequency steady-state response of the controller system via the NIRC,steady-state conditions are considered as being˙a=˙?=0,which yields

    Equations(26)and(27)are squared and the two sides are summed together,which yields the final modulation equation:

    Next,a stability analysis is performed.Linearization around the equilibrium point is considered using Eqs.(24) and(25)and considering the variable vectorThe Jacobian matrix is then expressed by

    The Routh-Hurwitz stability criterion is used here to examine the stability of the closed-loop system controlled by the NIRC.The characteristic equation of the matrix is obtained first using

    for γ as an eigenvalue variable of the Jacobian matrix.Equation(30)is expressed in the form

    where the aiare the coefficients of the characteristic equation obtained from Eqs.(29)and(30).In orderforthe system to be stable,the real parts of all eigenvalues must be negative,which is satisfied by having ai>0 for i=0,1,2.To constructa stable closed-loop controlsystem,the considered gainsmustbe verified according to the obtained stability condition.Controller gain variables complying with the stability condition guarantee a stable system.

    5 NIRC controlled system results and discussions

    Finally,in this section,the performance of the proposed NIRC method is illustrated and discussed.The obtained amplitude-frequency equation is used to graphically show the effects ofdifferentcontrolsystemvariables,and the solution is subsequently verified using the numerical simulation result,followed by additional numerical results of system performance.

    In this section,the main variables of the closed-loop system will be as follows:ωm=12,μ=0.005,α=20,β=-10,ωN=12,and Ω=12.Gain values are noted for each graph separately.To choose stable gains,the equations presented in Sect.4 are used.It should be noted that stability is dependent on the control gains,amplitude,and frequency shift.Therefore,for every case based on the bandwidth of the amplitude and phase,the gain conditions are calculated. For all the cases presented in this section,the bandwidths of λ and τ gains are very large since the amplitude and phase are reasonably small.Thus the system is stable for almost all values ofgains.Forthe firstresult,the responses ofthe openand closed-loop systems are illustrated.Figure 2 shows the steady-state vibration amplitude versus changes in excitation frequency and amplitude.Two separate surfaces are depicted in Fig.2,showing the uncontrolled and NIRCcontrolled system response for controller gain values of λ=τ=15.A jump phenomenon is observed when the vibration amplitude exceeds f=0.22 in the uncontrolled system,and,owing to the selected numerical values for the nonlinear system,the graph bends toward the negative side of the frequency axis.According to the results,the NIRC is able to suppress the vibration amplitude in the neighborhood of the primary resonant frequency.Unlike conventional methods,such as positive position feedback(PPF)and nonlinear modified positive position feedback(NMPPF),discussed in Ref.[22],the NIRC controlled system shows no high-amplitude peak on eitherside ofthe fundamentalmode in the frequency domain.

    Fig.2 NIRC controlled and uncontrolled system responses

    To better analyze the suppression performance of the NIRC,F(xiàn)ig.3 isextracted from the depicted surfaces in Fig.2. Figure 3 shows the vibration amplitude and frequency of peak values for variations in the excitation amplitude,f. According to the obtained results,higher suppression levels are achieved for lower excitation amplitudes,as the suppression level reaches as high as 87.6%for f=0.5 and 62.7% for f=4.Deviation from the resonant frequency,σf,tends to grow much slower in the closed-loop NIRC system;σfincreases by 5.3 times from f=0.5 to f=4 in the uncontrolled mode,whereas it increases in the NIRC controlled system by just 2.2 times.

    Next,the effects of two control variables on system response are examined.Figure 4 shows the vibration amplitude for changes in controller gain λ(for τ=3 and f=2)and integrator frequency ωN(for λ=τ=14 and f=2)versus changes in the excitation frequency.According to Fig.4a,vibration suppression improves exponentially as this gain value moves away from zero in both the positive and negative directions.Note that the result obtained for positive gain values is slightly betterthan when using negative values. Figure 4b shows that a higher suppression level is obtained for ωN=0.This graph also shows that the peak in the suppressed graph ison the negative side ofthe frequency axis for positive values of integrator frequency,and vice versa.This is because the sign of the integrator frequency,in addition to its amplitude,changes the magnitude of the second term onthe left-hand side of Eq.(28).However,the inclination of the graph is to the negative direction in both cases.

    Fig.3 Vibration amplitudes.a Deviations from resonant frequency of peak values.b Changes in excitation amplitude in uncontrolled and NIRC controlled systems

    Fig.4 NIRC controlled system response for changes in excitation frequency(σf)versus.a Controller gain λ.b Integrator frequency ωN

    Figure 5 illustrates the effects of changes in the excitation amplitude and variations in λ(for τ=22 and σf=0.5)and ωN(for λ=τ=14 and σf=0.5)on the system response. According to Fig.5a,positive values of λ better reduce the vibration amplitude.The results presented in Fig.5b confirm the conclusion drawn from Fig.4b that the highest suppression level is achieved for ωN=0,and positive values for ωNare more effective.

    According to Eq.(28),two gain values of λ and τ are multiplied by each other where present.To investigate the effects ofchanges in both these variables on closed-loop system response,F(xiàn)ig.6 is used(for f=0.2 and σf=0.1). Based on the surface obtained,both gain values have similar effects,as expected.However,better suppression is achieved when both gains have the same signs.

    Next,the effect of the controller input term δ on system response is studied.As shown by Eq.(28),this term do not presentin the obtained approximate solution.This is because this term appears in a much higher-order layer of ε in perturbation expansion.In addition,even if the perturbation order is increased,the term will not appear in the secular terms of Eq.(14)since its frequency would be different from iωm. Hence,the effect of this controller variable is numerically investigated.MATLAB software is implemented to solve the coupled Eqs.(1)and(2)under the positive control law for different values of δ and for other control variables of λ=τ=7,f=0.1.According to the result illustrated in Fig.7,an increase in the selected value of δ provides a higher level of suppression.When the vibration amplitude is reduced to a lower level by increasing δ,the peak of the suppressed curve moves toward the negative σfaxis.Notethatany arbitrary value can be assigned to thiscontrollergain as long as the closed-loop system remains stable.

    Fig.5 NIRC controlled system response for changes in excitation amplitude(f)versus.a Controller gain λ.b Integrator frequency ωN

    Next,the obtained perturbation solution is verified using the results of numerical simulation.Figure 8 shows the controlled system response for gain values of λ= τ=1,f=0.02,for both the perturbation solution and a numerically simulated system.As shown,both graphs are in close agreement with one another,which confirms that the perturbation solution is in close agreement with a real system response.

    Finally,a numerical simulation is employed to obtain phase portraits ofthe systemfordifferentvalues ofexcitation frequency.In all illustrated results of Fig.9,the controller is switched on 45 s after the start of the process,when the system has reached steady-state.The control variables are set at λ=τ=7,δ=15,f=0.8,and nonzero initial conditions are selected.For σf=-1.5,the system is not excited at itsresonance,and the vibration amplitude is significantly lower than the maximum values ofothercases.When the controller is switched on,no significant change is observed.For other excitation frequencies,inner limit cycles are the steady-state controlled values.

    Fig.6 Closed-loop system response to changes in λ and τ

    Fig.7 Effectofcontrollerinputgain,δ,on suppressed vibration amplitude

    Fig.8 Perturbation solution verification using numerical simulation results

    Fig.9 Phase portraits of suppression process for different values of excitation frequency

    6 Conclusion

    In this paper,an NIRC was proposed for nonlinear vibration suppression in flexible structures.The NIRC,with its first-order design,provides additional damping for a closedloop systemin the neighborhood ofthe resonantfrequency.Alinear positive and a negative quadratic term of the vibration position are used asthe inputs ofthe controller,which provide more flexibility in the controller design process.A nonlinear model of a high-amplitude vibrating cantilever beam was considered,and an approximate steady-state solution was obtained via the method of multiple scales.Following an examination of the closed-loop system’s stability,results were illustrated and extensively discussed.Numerical simulation results were used to verify the analytical solution.In addition,the effects ofdifferentcontrolparameters on system response were analyzed.The NIRC has a relatively simple structure and provides a smooth closed-loop response in the neighborhood of the excitation frequency.The NIRC can be considered an effective and applicable candidate for nonlinear vibration controllers for flexible structures.

    Appendix

    The coefficients of the time-domain response of Eq.(17)are as follows

    1.Seigler,T.,Ghasemi,A.H.,Salehian,A.:Distributed actuation requirements of piezoelectric structures under servoconstraints.J. Intell.Mater.Syst.Struct.22,1227-1238(2011).doi:10.1177/ 1045389X11411222

    2.Seigler,T.,Ghasemi,A.:Specified motion ofpiezoelectrically actuated structures.J.Vib.Acoust.134,021002(2012)

    3.Daraji,A.H.,Hale,J.M.:Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams.Smart Mater.Struct.23,115018(2014)

    4.Li,S.,Li,J.,Mo,Y.etal.:Composite multi-modalvibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator.Smart Mater.Struct.23,015006(2014)

    5.Omidi,E.,Mahmoodi,S.N.:Multiple mode spatialvibration reduction in flexible beamsusing H2-and H∞-modified positive position feedback.J.Vib.Acoust.137,011004(2015)

    6.Omidi,E.,Mahmoodi,S.N.:Hybrid positive feedback control for active vibration attenuation of flexible structures.IEEE/ASME Trans.Mechatron.(2014).doi:10.1109/TMECH.2014.2354599

    7.Omidi,E.,Mahmoodi,S.N.:Consensuspositive position feedback control for vibration attenuation of smart structures.Smart Mater. Struct.24,045016(2015)

    8.Marinca,V.,Herisanu,N.:Nonlinear Dynamical Systems in Engineering:Some Approximate Approaches.Springer,New York(2012)

    9.Nayfeh,A.H.:Problems in Perturbation.Wiley,New York(1985)

    10.Hosseini,S.M.,Shooshtari,A.,Kalhori,H.:Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers. Nonlinear Dyn.78,571-583(2014)

    11.Lazarus,A.,Thomas,O.,Deü,J.:Finite element reduced order modelsfornonlinearvibrationsofpiezoelectric layered beamswith applications to NEMS.Finite Elem.Anal.Des.49,35-51(2012)

    12.Mahmoodi,S.N.,Jalili,N.,Khadem,S.E.:An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams.J.Sound and Vib.311,1409-1419(2008)

    13.Oueini,S.S.,Nayfeh,A.H.:Single-mode control of a cantilever beam under principal parametric excitation.J.Sound Vib.224,33-47(1999)

    14.Dai,L.,Sun,L.:Vibration control of a translating beam with an active control strategy on the basis of the fuzzy sliding mode control.In:Proceedings of ASME International Mechanical Engineering Congressand Exposition(IMECE),Anonymous4B(2013)

    15.Omidi,E.,Mahmoodi,S.N.:Nonlinear vibration suppression of flexible structures using nonlinear modified positive position feedback approach.Nonlinear Dyn.79,835-849(2015)

    16.El-Ganaini,W.,Saeed,N.,Eissa,M.:Positive position feedback(PPF)controller for suppression of nonlinear system vibration. Nonlinear Dyn.72,517-537(2013)

    17.Omidi,E.,Mahmoodi,S.N.:Sensitivity analysis of the nonlinear integralpositive position feedback and integralresonantcontrollers on vibration suppression of nonlinear oscillatory systems.Commun.Nonlinear Sci.Numer.Simul.22,149-166(2015)

    18.Ahmadabadi,Z.N.,Khadem,S.E.:Nonlinearvibration controlofa cantilever beam by a nonlinear energy sink.Mech.Mach.Theory. 50,134-149(2012)

    19.Zhao,Y.,Xu,J.:Effects of delayed feedback control on nonlinear vibration absorber system.J.Sound Vib.308,212-230(2007)

    20.Shao,X.,F(xiàn)u,Y.,Chen,Y.:Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field.Smart Mater.Struct.24,055023(2015)

    21.Meyer,Y.,Cumunel,G.:Active vibration Isolation with a MEMS device.Effectsofnonlinearitieson controlefficiency.SmartMater. Struct.24,085004(2015)

    22.Omidi,E.,Mahmoodi,S.N.:Nonlinear vibration control of flexible structures using nonlinear modified positive position feedback approach.In:Proceedings of ASME Dynamic Systems and Control Conference,San Antonio,TX,USA,Anonymous pp. V003T52A002(2014)

    12 December 2015/Revised:31 March 2016/Accepted:21 April 2016/Published online:25 June 2016

    ?The Chinese Society of Theoretical and Applied Mechanics;Institute of Mechanics,Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

    搡女人真爽免费视频火全软件| 乱码一卡2卡4卡精品| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 国产精品伦人一区二区| 在线观看美女被高潮喷水网站| 最新的欧美精品一区二区| 在线观看av片永久免费下载| 99热全是精品| 久久人妻熟女aⅴ| 亚洲精品乱码久久久v下载方式| av不卡在线播放| 国产亚洲精品久久久com| 免费观看无遮挡的男女| 伦理电影免费视频| 久久久久视频综合| 久久久久久伊人网av| 成年美女黄网站色视频大全免费 | 国产综合精华液| 亚洲伊人久久精品综合| 国产成人精品久久久久久| 精品酒店卫生间| 国产精品麻豆人妻色哟哟久久| 另类精品久久| 亚洲综合精品二区| 夫妻午夜视频| 日本wwww免费看| 国产黄频视频在线观看| 曰老女人黄片| 自拍欧美九色日韩亚洲蝌蚪91 | 啦啦啦中文免费视频观看日本| 久久人人爽人人爽人人片va| 各种免费的搞黄视频| 亚洲综合色惰| 国产一区二区在线观看日韩| 街头女战士在线观看网站| 国产免费福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 午夜免费观看性视频| 少妇精品久久久久久久| 久久久久久久国产电影| a级毛色黄片| 丝袜脚勾引网站| 亚洲成人手机| 一级毛片久久久久久久久女| av又黄又爽大尺度在线免费看| 街头女战士在线观看网站| 免费观看在线日韩| 国产在线免费精品| 日韩视频在线欧美| 精品人妻一区二区三区麻豆| 亚洲国产成人一精品久久久| 亚洲欧美中文字幕日韩二区| 91久久精品国产一区二区成人| 免费久久久久久久精品成人欧美视频 | 在线观看国产h片| 国产亚洲欧美精品永久| 久久99蜜桃精品久久| 熟女电影av网| 女性生殖器流出的白浆| 久久亚洲国产成人精品v| 欧美 日韩 精品 国产| 少妇 在线观看| 99久久精品国产国产毛片| 久久韩国三级中文字幕| 国产精品一区二区在线不卡| 亚洲av男天堂| 欧美日韩在线观看h| 我的老师免费观看完整版| 色94色欧美一区二区| 中文资源天堂在线| 在线观看人妻少妇| 久久精品国产亚洲av天美| 欧美 日韩 精品 国产| 成人无遮挡网站| 久久青草综合色| 美女xxoo啪啪120秒动态图| 有码 亚洲区| av免费观看日本| 亚洲av中文av极速乱| 日韩欧美 国产精品| 在线看a的网站| 岛国毛片在线播放| 伦精品一区二区三区| a级一级毛片免费在线观看| 国产精品蜜桃在线观看| 丝袜脚勾引网站| 在现免费观看毛片| 一本大道久久a久久精品| 一本久久精品| 六月丁香七月| 王馨瑶露胸无遮挡在线观看| 好男人视频免费观看在线| 3wmmmm亚洲av在线观看| 久久热精品热| 中文字幕人妻丝袜制服| 色94色欧美一区二区| 亚洲av二区三区四区| av.在线天堂| 日韩av不卡免费在线播放| 午夜福利网站1000一区二区三区| 插逼视频在线观看| 少妇高潮的动态图| 黄色配什么色好看| 免费观看在线日韩| 黑丝袜美女国产一区| 老司机影院毛片| 免费观看在线日韩| 三级经典国产精品| 黄色日韩在线| 免费大片黄手机在线观看| 久久久久久久久久成人| 国产成人freesex在线| 一个人看视频在线观看www免费| 成人二区视频| 婷婷色av中文字幕| 男人狂女人下面高潮的视频| 亚洲综合精品二区| 久久影院123| 日韩中文字幕视频在线看片| 日韩大片免费观看网站| av免费在线看不卡| 日韩大片免费观看网站| 久久久国产一区二区| 国产伦精品一区二区三区视频9| 日韩大片免费观看网站| 十分钟在线观看高清视频www | 69精品国产乱码久久久| 日韩精品有码人妻一区| 2018国产大陆天天弄谢| 国产男女内射视频| 一级毛片久久久久久久久女| 久久97久久精品| 少妇猛男粗大的猛烈进出视频| 久久 成人 亚洲| 国产免费一区二区三区四区乱码| 精品卡一卡二卡四卡免费| 校园人妻丝袜中文字幕| 国产免费视频播放在线视频| videossex国产| 简卡轻食公司| 中文字幕亚洲精品专区| 久久国产精品男人的天堂亚洲 | 欧美少妇被猛烈插入视频| 亚洲精品国产色婷婷电影| 久久97久久精品| 美女内射精品一级片tv| 一本一本综合久久| 国产老妇伦熟女老妇高清| 久久人人爽人人片av| 嫩草影院入口| 天堂8中文在线网| 国产亚洲欧美精品永久| 欧美日韩精品成人综合77777| 伦理电影大哥的女人| 大香蕉久久网| 日韩熟女老妇一区二区性免费视频| 97超碰精品成人国产| 人人妻人人看人人澡| 黄色配什么色好看| h日本视频在线播放| 插逼视频在线观看| 国产成人精品久久久久久| 欧美精品一区二区大全| 国产永久视频网站| 欧美精品人与动牲交sv欧美| 亚洲欧美精品专区久久| 日韩精品有码人妻一区| 国产精品人妻久久久影院| 国产亚洲91精品色在线| 日韩av免费高清视频| 国产精品欧美亚洲77777| 久久午夜综合久久蜜桃| 男男h啪啪无遮挡| 插阴视频在线观看视频| 亚洲精品国产av成人精品| 一区二区三区乱码不卡18| 精品少妇久久久久久888优播| 黄色怎么调成土黄色| 欧美日韩国产mv在线观看视频| 一本大道久久a久久精品| 狂野欧美白嫩少妇大欣赏| 精品99又大又爽又粗少妇毛片| 一个人免费看片子| 尾随美女入室| 久久女婷五月综合色啪小说| www.av在线官网国产| 女性生殖器流出的白浆| 三级国产精品欧美在线观看| 国产精品福利在线免费观看| 精品国产乱码久久久久久小说| 亚洲欧洲国产日韩| 少妇人妻 视频| 桃花免费在线播放| 国产成人精品婷婷| av一本久久久久| 午夜福利视频精品| 国内精品宾馆在线| 免费黄色在线免费观看| 性色av一级| 老女人水多毛片| 免费少妇av软件| 久久精品久久久久久久性| 亚洲精品456在线播放app| 亚洲av不卡在线观看| 大片免费播放器 马上看| av国产久精品久网站免费入址| 国产精品三级大全| 狂野欧美激情性xxxx在线观看| 嫩草影院新地址| 日本欧美国产在线视频| 免费看av在线观看网站| 国产色爽女视频免费观看| 两个人免费观看高清视频 | 99热国产这里只有精品6| 日本wwww免费看| 99国产精品免费福利视频| 精品视频人人做人人爽| 色94色欧美一区二区| 成人毛片a级毛片在线播放| 少妇人妻久久综合中文| 久久久久久久精品精品| 久久国产亚洲av麻豆专区| 国产精品一区www在线观看| 丝袜在线中文字幕| 国产成人精品一,二区| 国产又色又爽无遮挡免| 五月开心婷婷网| 交换朋友夫妻互换小说| 如日韩欧美国产精品一区二区三区 | 国产综合精华液| 成人无遮挡网站| 麻豆乱淫一区二区| 中文在线观看免费www的网站| 国产精品人妻久久久久久| 性高湖久久久久久久久免费观看| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| av福利片在线| 高清av免费在线| 国产高清有码在线观看视频| 中文字幕制服av| 国产精品.久久久| 精品国产一区二区久久| 少妇猛男粗大的猛烈进出视频| 蜜桃久久精品国产亚洲av| 在线精品无人区一区二区三| 少妇丰满av| 9色porny在线观看| 亚洲人成网站在线播| 久久久久久久久久成人| 久久久久久久久久久久大奶| 久久久久人妻精品一区果冻| 性色av一级| 高清视频免费观看一区二区| 欧美日韩在线观看h| 国产成人精品婷婷| 中文字幕精品免费在线观看视频 | 欧美区成人在线视频| 欧美亚洲 丝袜 人妻 在线| www.色视频.com| 日韩成人av中文字幕在线观看| 黄片无遮挡物在线观看| 人体艺术视频欧美日本| 婷婷色麻豆天堂久久| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区| 亚洲va在线va天堂va国产| 啦啦啦啦在线视频资源| 涩涩av久久男人的天堂| 日日摸夜夜添夜夜添av毛片| 国产av精品麻豆| 国产精品成人在线| 自拍欧美九色日韩亚洲蝌蚪91 | tube8黄色片| 伦理电影大哥的女人| 亚洲精品视频女| 日韩制服骚丝袜av| 国产精品女同一区二区软件| 色婷婷久久久亚洲欧美| 99热这里只有精品一区| 日日摸夜夜添夜夜添av毛片| 亚洲电影在线观看av| 国产精品成人在线| 一级片'在线观看视频| 少妇猛男粗大的猛烈进出视频| 久久精品夜色国产| 国产亚洲av片在线观看秒播厂| 一个人看视频在线观看www免费| 日韩欧美 国产精品| 亚洲怡红院男人天堂| 校园人妻丝袜中文字幕| 水蜜桃什么品种好| 日本91视频免费播放| 看免费成人av毛片| 久久久午夜欧美精品| 成人国产av品久久久| 人妻人人澡人人爽人人| 日本黄色片子视频| 又黄又爽又刺激的免费视频.| 国产欧美亚洲国产| 在线观看av片永久免费下载| www.色视频.com| 久久久久久久精品精品| 狂野欧美白嫩少妇大欣赏| 在线观看人妻少妇| 国产欧美亚洲国产| 久久99精品国语久久久| 国产亚洲91精品色在线| 丰满少妇做爰视频| 狠狠精品人妻久久久久久综合| 免费看光身美女| 成人毛片a级毛片在线播放| 久久久久久伊人网av| 亚洲,一卡二卡三卡| 久久99热6这里只有精品| 欧美97在线视频| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 色视频在线一区二区三区| 狂野欧美白嫩少妇大欣赏| 黄片无遮挡物在线观看| 日韩av在线免费看完整版不卡| 国产一区二区在线观看av| 日本爱情动作片www.在线观看| 亚洲四区av| 丁香六月天网| 成人亚洲欧美一区二区av| 又大又黄又爽视频免费| 久久人人爽av亚洲精品天堂| 国产精品久久久久久精品电影小说| 91成人精品电影| av天堂中文字幕网| 亚洲欧美成人综合另类久久久| 一级毛片久久久久久久久女| 三级国产精品片| 亚洲人成网站在线观看播放| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 国产精品熟女久久久久浪| 又爽又黄a免费视频| 女人久久www免费人成看片| 亚洲天堂av无毛| 欧美性感艳星| 韩国高清视频一区二区三区| a级一级毛片免费在线观看| 两个人的视频大全免费| 黑人高潮一二区| 欧美 亚洲 国产 日韩一| 精品亚洲成a人片在线观看| 波野结衣二区三区在线| 国产欧美日韩综合在线一区二区 | 国产淫片久久久久久久久| 一个人免费看片子| 高清午夜精品一区二区三区| 国产伦精品一区二区三区视频9| 久久97久久精品| 一级av片app| 高清视频免费观看一区二区| 一区二区三区精品91| 少妇裸体淫交视频免费看高清| 丰满饥渴人妻一区二区三| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久久久大奶| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久av不卡| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 欧美精品一区二区免费开放| 国产黄片视频在线免费观看| 久久久久久久大尺度免费视频| 伦理电影大哥的女人| 极品人妻少妇av视频| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 亚洲av二区三区四区| 久久久久久久久大av| 春色校园在线视频观看| 欧美精品高潮呻吟av久久| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片| 国语对白做爰xxxⅹ性视频网站| 91成人精品电影| 精品熟女少妇av免费看| 日韩三级伦理在线观看| 精品一区二区三区视频在线| 成人午夜精彩视频在线观看| 亚洲精品乱码久久久久久按摩| 久久午夜综合久久蜜桃| 啦啦啦啦在线视频资源| 黄色配什么色好看| 国产精品国产三级国产av玫瑰| 成年人午夜在线观看视频| a级一级毛片免费在线观看| 国产黄频视频在线观看| 91精品伊人久久大香线蕉| 国产一区有黄有色的免费视频| 寂寞人妻少妇视频99o| 色哟哟·www| 国产精品一区www在线观看| 国产成人一区二区在线| 久久久久精品久久久久真实原创| 我要看黄色一级片免费的| 精品人妻熟女毛片av久久网站| 欧美精品一区二区免费开放| 午夜老司机福利剧场| a级一级毛片免费在线观看| 久久国产乱子免费精品| 99九九线精品视频在线观看视频| 狠狠精品人妻久久久久久综合| 免费av不卡在线播放| av又黄又爽大尺度在线免费看| 久久精品国产亚洲网站| 成年人免费黄色播放视频 | 国产伦精品一区二区三区视频9| 我要看黄色一级片免费的| 久久婷婷青草| 色婷婷av一区二区三区视频| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 国产午夜精品一二区理论片| 国产精品无大码| 天美传媒精品一区二区| 国产 精品1| 秋霞伦理黄片| 久久久午夜欧美精品| 久久 成人 亚洲| 中文在线观看免费www的网站| 国产成人精品久久久久久| 亚洲,一卡二卡三卡| 亚洲av成人精品一区久久| 久久久久久久久久人人人人人人| 在线观看三级黄色| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 韩国av在线不卡| 国产欧美亚洲国产| 777米奇影视久久| 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| 色哟哟·www| 亚洲国产欧美日韩在线播放 | 国产黄片视频在线免费观看| 国产成人精品一,二区| 亚洲精品亚洲一区二区| 男女国产视频网站| 免费在线观看成人毛片| 大陆偷拍与自拍| 观看美女的网站| videos熟女内射| 两个人的视频大全免费| 精品久久久久久久久av| 色婷婷久久久亚洲欧美| 国产在线男女| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 内射极品少妇av片p| 日韩制服骚丝袜av| 下体分泌物呈黄色| 九草在线视频观看| 2018国产大陆天天弄谢| 国产一级毛片在线| 亚洲欧洲日产国产| 久久久久久久久久久久大奶| 观看美女的网站| 久久久国产欧美日韩av| 国产亚洲5aaaaa淫片| 午夜91福利影院| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 啦啦啦啦在线视频资源| 国产免费福利视频在线观看| 日日爽夜夜爽网站| 少妇的逼水好多| 亚洲怡红院男人天堂| 乱系列少妇在线播放| 女性生殖器流出的白浆| 日韩av免费高清视频| 三上悠亚av全集在线观看 | 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 热re99久久国产66热| 尾随美女入室| 黑人高潮一二区| 国产欧美日韩一区二区三区在线 | 黄色日韩在线| 成人影院久久| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 男人和女人高潮做爰伦理| www.av在线官网国产| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 国产精品无大码| 精品人妻熟女av久视频| 欧美三级亚洲精品| 精品卡一卡二卡四卡免费| 国产成人freesex在线| 伦理电影免费视频| 一个人免费看片子| 亚洲av成人精品一二三区| 久久99热6这里只有精品| 两个人的视频大全免费| 人妻人人澡人人爽人人| 在线播放无遮挡| 中文精品一卡2卡3卡4更新| 中文在线观看免费www的网站| 一区在线观看完整版| a 毛片基地| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 青春草国产在线视频| 国产免费一级a男人的天堂| 免费观看性生交大片5| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| av网站免费在线观看视频| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 国产 一区精品| 三级国产精品片| 一级,二级,三级黄色视频| 丝袜脚勾引网站| 大话2 男鬼变身卡| 能在线免费看毛片的网站| 黑丝袜美女国产一区| 卡戴珊不雅视频在线播放| 久久av网站| 久久影院123| 伦精品一区二区三区| 久久精品久久精品一区二区三区| 尾随美女入室| 久久99热这里只频精品6学生| 欧美+日韩+精品| 日本av手机在线免费观看| 久久久久国产网址| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 精品一区在线观看国产| 中文字幕久久专区| xxx大片免费视频| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| 国产一级毛片在线| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 亚洲av日韩在线播放| 久久韩国三级中文字幕| 亚洲第一av免费看| 久久久午夜欧美精品| 99九九在线精品视频 | 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频 | 亚洲精品视频女| 热re99久久国产66热| 蜜桃在线观看..| 国产亚洲欧美精品永久| 男人狂女人下面高潮的视频| 国产av精品麻豆| 久久午夜综合久久蜜桃| 一级爰片在线观看| 欧美日韩精品成人综合77777| 欧美 亚洲 国产 日韩一| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 日本黄色片子视频| 高清午夜精品一区二区三区| 成人影院久久| 色视频www国产| 插逼视频在线观看| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| 国产免费福利视频在线观看| 18禁在线播放成人免费| 久久精品国产a三级三级三级| 伊人亚洲综合成人网| 啦啦啦视频在线资源免费观看| 黄色欧美视频在线观看| 国产一区二区三区av在线| 看十八女毛片水多多多| 观看美女的网站| 欧美人与善性xxx| 午夜免费鲁丝| 亚洲国产日韩一区二区| 丰满乱子伦码专区| 久久久精品免费免费高清| 国产成人精品婷婷| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 亚洲av成人精品一区久久| 日韩中文字幕视频在线看片| 久久久a久久爽久久v久久| 一本色道久久久久久精品综合| 国产色爽女视频免费观看| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 高清av免费在线| 久热这里只有精品99| 免费av中文字幕在线| 欧美变态另类bdsm刘玥| 成人特级av手机在线观看|