李鴻強(qiáng),龍建輝,任俊姣,張吉寧
(1.太原理工大學(xué) 地球科學(xué)與工程學(xué)院,山西 太原 030024;2.山西省勘察設(shè)計研究院有限公司,山西 太原 030013;3.山西冶金巖土工程勘察有限公司,山西 太原 030002)
20世紀(jì)60年代法國工程師HENRI VIDAL[1]提出現(xiàn)代加筋土理論并成功在法國修建世界上第一座加筋土擋墻后,該技術(shù)引起了世界各國工程界、學(xué)術(shù)界的重視,其發(fā)展速度相當(dāng)快,應(yīng)用范圍也日益廣泛。1988年之后,我國各行業(yè)相繼出版了土工合成材料應(yīng)用的相關(guān)技術(shù)標(biāo)準(zhǔn)、規(guī)范和指南,對主要加筋土結(jié)構(gòu)的設(shè)計應(yīng)用等進(jìn)行了規(guī)定和說明,對我國土工合成材料加筋土結(jié)構(gòu)的應(yīng)用起到了積極的推動作用。加筋土擋墻作為一種柔性支擋結(jié)構(gòu)[2-3],具有經(jīng)濟(jì)、節(jié)省場地面積、地基承載力要求低、抗震性能好等優(yōu)點(diǎn)。一直以來加筋土擋墻的應(yīng)用與研究以道路邊坡為主,近年隨著場地邊坡應(yīng)用的增多,一些學(xué)者開始了對筋土擋墻場地邊坡應(yīng)用的研究。PORTELINHA等[4]、YAZDANDOUST[5]、ALRKABY等[6]開展了一系列現(xiàn)場以及模型試驗(yàn),對加筋土擋墻的性狀進(jìn)行了研究。劉曉明等[7]通過某紅砂巖地區(qū)加筋土擋墻凸形拐角段發(fā)生的面板鼓脹現(xiàn)象及變形量測結(jié)果,分析了凸角區(qū)鼓脹變形的原因。KI等[8]通過一系列模型試驗(yàn)分析了加筋土擋墻的拐角段在不同彎曲截面下的水平位移。ZHANG等[9-11]基于極限平衡理論,分析了不同幾何參數(shù)和材料屬性下,拐角對三維斜坡穩(wěn)定性的影響;后利用變分原理導(dǎo)出的3D機(jī)制分析了斜坡凸形拐角的三維穩(wěn)定性;隨后,基于三維斜坡拐角的內(nèi)部穩(wěn)定性分析,開發(fā)了計算其所需強(qiáng)度和加固長度的分析程序。
然而國內(nèi)外關(guān)于加筋土擋墻拐角形式對拐角處變形特征影響的研究是有限的。為進(jìn)一步掌握加筋土擋墻凸形拐角段的變形特性,筆者利用FLAC3D軟件,對一座高11.9 m的紅砂巖填土加筋土擋墻進(jìn)行了數(shù)值模擬,分析了工程中常見的折角、圓角、直角3種拐角形式,并對鼓脹現(xiàn)象的成因進(jìn)行了分析,將數(shù)值計算與現(xiàn)場鼓脹變形測量結(jié)果進(jìn)行比較分析,對加筋土擋墻在拐角段的設(shè)計提出合理化建議。
紅砂巖地區(qū)某場地內(nèi)外高差7.00~16.00 m,其中K1+370~K1+730段因地表人工填土較厚且地基承載力不足,遂選用加筋土擋墻結(jié)構(gòu),其剖面結(jié)構(gòu)如圖1所示。圖2為擋土墻拐角段平面示意圖,其轉(zhuǎn)角為90°,長度6 m。該加筋土擋墻的面板采用厚度0.25 m的C25預(yù)制混凝土面板;筋帶采用CAT30020B型鋼塑復(fù)合拉筋帶,水平和豎向間距均為0.5 m;填料采用當(dāng)?shù)丶t砂巖,規(guī)定距面板0.8 m范圍內(nèi)填料壓實(shí)度不小于90%,其余范圍內(nèi)壓實(shí)度不小于95%。
圖1 加筋土擋墻結(jié)構(gòu)Fig.1 Structure of reinforcement retaining wall
圖2 拐角段平面示意Fig.2 Plan of corner section
2003年7月竣工后,逐漸發(fā)現(xiàn)擋墻有地表下沉、墻面鼓脹現(xiàn)象,鼓脹外觀如圖3所示。為解決該問題,2005年建設(shè)方對墻內(nèi)緊鄰擋土墻的地表進(jìn)行了硬化,雖然此后下沉和膨脹速率有一定的緩解,但并沒有完全阻止病害的發(fā)展。到2010年,加筋土擋墻面板的鼓脹變形已經(jīng)明顯可見,同時發(fā)現(xiàn)面板頂部的圍墻基礎(chǔ)也向墻外傾斜。
圖3 加筋土擋墻鼓脹外觀[7]Fig.3 Bulging appearance of reinforced earth retaining wall[7]
圖4 加筋土擋墻受力分析Fig.4 Stress analysis of reinforced earth retaining wall
通過FLAC3D有限差分軟件,按與原型加筋土擋墻1∶1的比例建立幾何模型,其幾何模型如圖5所示。模型沿X、Y軸方向截取的長度均為20 m,擋墻高度11.9 m,底部地基為1.5 m。凸形拐角處轉(zhuǎn)角為90°,分別以邊長(半徑)4.24 m,建立工程上常采用的折角、圓角、直角3種拐角形式(以下簡稱折角、圓角、直角)的加筋土擋墻。在模型底部固定其x、y和z軸方向的速度,面x=0固定其x軸方向的速度,面y=0固定其y軸方向的速度。
圖5 加筋土擋墻幾何模型Fig.5 Geometric model of reinforced retaining wall
通過zone單元建立地基、墻后填土的網(wǎng)格模型。采用FLAC3D系統(tǒng)自帶的Geogrid單元模擬加筋結(jié)構(gòu),土工格柵長度為10 m,豎向間距0.5 m,共24層。面板采用Liner單元進(jìn)行模擬,圖6為結(jié)構(gòu)單元幾何模型。
圖6 結(jié)構(gòu)單元幾何模型Fig.6 Geometric model of structural elements
地基和擋墻均采用Mohr-Coulomb本構(gòu)模型,擋土墻原型取當(dāng)?shù)丶t砂巖為填料,面板為0.25 m厚的C25預(yù)制混凝土面板,根據(jù)相關(guān)資料[12-14]列出的參數(shù)取值范圍,進(jìn)行了模型的參數(shù)取值。
詳細(xì)數(shù)值模型參數(shù)見表1—表3。軟件自有的Geogrid結(jié)構(gòu)單元采用CST殼有限單元,即能承受薄膜荷載而不能抵抗彎曲荷載,其可與實(shí)體單元發(fā)生直接的剪切摩擦作用,格柵法向的運(yùn)動從屬于實(shí)體單元。Liner結(jié)構(gòu)單元能承受剪力及彎矩荷載,一方面不但能承受主方向的拉壓應(yīng)力,還能模擬其與土體直接的分離再接觸,另一方面能模擬其與土體之間的摩擦相互作用。
表1 數(shù)值模型參數(shù)Table 1 Material property for numerical model
表2 Geogrid單元數(shù)值模型參數(shù)Table 2 Geogrid numerical model parameters
表3 Liner單元數(shù)值模型參數(shù)Table 3 Liner numerical model parameters
2.2.1 整體變形
圖7為3種拐角形式(折角、圓角、直角)的整體變形云圖,觀察發(fā)現(xiàn)集中變形區(qū)在擋墻的上部,且在拐角部位的變形明顯大于兩側(cè)直線段的變形。其中,圓角的最大變形達(dá)到了26.7 mm,直角最大變形為27.3 mm,折角最大變形為25.1 mm。
圖7 整體變形Fig.7 Contour of global deformation
2.2.2 豎向變形
圖8分別為3種拐角形式的豎向變形和切片云圖,切片的位置為拐角的角平分線。圓角的豎向變形達(dá)到了26.2 cm,直角為26.8 cm,折角為24.6 cm。豎向變形的集中變形區(qū)位置與整體變形的集中變形區(qū)位置一樣,都在擋墻的上部。對比豎向變形與整體變形,豎向變形不僅在變形量上與整體變形非常相近,而且他們的集中變形區(qū)域位置也相同,說明豎向變形對整體變形的發(fā)展影響很大。
圖8 豎向變形及切片F(xiàn)ig.8 Contour of vertical deformation and cutting planes
圖9為擋墻拐角段墻頂角平分線上的豎向變形,擋墻頂面的豎向變形呈“L”形,分析認(rèn)為是由于面板與土工格柵的鏈接作用,使得面板附近的土體在豎向變形上受到了限制。該限制力隨著土體與面板距離的增加逐漸減弱,豎向變形開始顯著增大??梢钥吹?,圓角的豎向變形在遠(yuǎn)離面板方向發(fā)展速度最快,最先于距面板2.9 m的位置達(dá)到豎向最大變形,折角次之,于4.8 m位置達(dá)到豎向最大變形,直角發(fā)展最慢,于6.2 m位置達(dá)到豎向最大變形。
圖9 豎向變形Fig.9 Vertical deformation
2.2.3 水平變形
圖10分別為3種拐角形式的水平變形和切片云圖,對比拐角段和兩側(cè)直線段,3種形式在其拐角段的1/4~2/3區(qū)域都呈現(xiàn)鼓脹變形[15],另外,在拐角段的頂部,3種形式的面板都有一定程度的外傾[16],這與現(xiàn)場發(fā)現(xiàn)的面板頂部的圍墻基礎(chǔ)向墻外傾斜的情況相吻合。折角的最大水平變形為7.49 cm,圓角的最大水平變形為7.66 cm,直角的最大水平變形為7.75 cm。
圖10 水平變形及切片云圖Fig.10 Contour of horizontal deformation and cutting planes
圖11為拐角段切片上面板沿墻高的水平變形。3種形式擋墻水平變形規(guī)律相同,在5 m墻高的位置達(dá)到最大鼓脹變形,在面板頂部的位置達(dá)到最大外傾變形。
圖11 水平變形Fig.11 Horizontal deformation
2.2.4 鼓脹區(qū)域
圖12為5 m高處面板的水平變形,可以看到從兩側(cè)直線段過渡到拐角段對稱中心的時候,水平變形逐漸增大,其中折角在兩個轉(zhuǎn)折的地方有相同的峰值,圓角和直角都只在中心線上有峰值。對比3條曲線發(fā)現(xiàn),從過渡段開始直角的水平變形一直小于另外2種形式,但是在接近中心線時,直角的水平變形迅速增大并超過了另外2種形式。這說明直角不利于應(yīng)力擴(kuò)散,使應(yīng)力應(yīng)變更加集中在拐角中心線附近,參與協(xié)調(diào)變形的區(qū)域更小,圖9中的鼓脹區(qū)大小直觀地體現(xiàn)了這一特征,直角的鼓脹區(qū)域面積明顯小于其他2種形式,這是直角的水平變形大于另外2種形式的原因。折角分別在2個轉(zhuǎn)折的地方有相同的峰值,可以認(rèn)為折角是2個“直角”的結(jié)合,在2個轉(zhuǎn)折的地方,水平變形迅速增大并達(dá)到峰值。折角的鼓脹區(qū)面積最大,分析認(rèn)為是2個折角為應(yīng)力應(yīng)變擴(kuò)散提供了良好的條件,這使得其最大變形小于圓角。
圖12 5 m高處水平變形Fig.12 Horizontal deformation at height of 5 m
加筋土擋墻凸形拐角段鼓脹最為顯著,經(jīng)測量,距離墻頂3 m處的墻身鼓脹量約9 cm,兩側(cè)由拐角段向直線段過渡的過渡段也各有4 m范圍對稱鼓脹,凸角兩側(cè)4 m以外段落的鼓脹已經(jīng)不明顯。即擋墻變形有以下特征:①面板中部有鼓脹變形,且鼓脹區(qū)域向兩側(cè)直線段延伸4 m;②面板頂部的圍墻基礎(chǔ)向墻外傾斜;③擋墻頂部地表在面板附近下沉嚴(yán)重。圖13為水平變形的模擬結(jié)果與測量數(shù)據(jù),圖14為擋墻的變形特征,說明用數(shù)值模型計算加筋土擋墻凸形拐角部位的變形特征是可行的。
圖13 水平變形Fig.13 Horizontal deformation
圖14 變形特征Fig.14 Deformation feature
1)數(shù)值模型計算結(jié)果與現(xiàn)場測量結(jié)果吻合較好。加筋土擋墻的變形集中在擋墻上部,其中豎向變形對整體變形的發(fā)展影響很大。3種拐角形式的最大豎向變形位置離面板的距離不同,圓角距離最近,折角居中,直角距離最遠(yuǎn)。
2)在拐角段墻高的1/4~2/3段為鼓脹區(qū),墻頂為外傾區(qū)。
3)在整體變形以及水平變形方面,尤其是在對面板形態(tài)有重要影響的水平變形上,因折角形式的結(jié)構(gòu)特征使得其在應(yīng)力應(yīng)變的擴(kuò)散上更具優(yōu)勢,從而具有3種形式中最小的最大變形值,即折角在控制變形方面較其他2種形式有更好的優(yōu)勢,建議在工程設(shè)計中應(yīng)優(yōu)先使用。