單春花,付 偉,2,唐于寒,3,郭 瑤,王強軍,杜昊軒,李明勇,劉 曼,劉中英,吳中紅
恒溫飲水系統(tǒng)促進開放舍冬季斷奶仔兔生長
單春花1,付 偉1,2,唐于寒1,3,郭 瑤1,王強軍1,杜昊軒1,李明勇4,劉 曼4,劉中英1,吳中紅1※
(1. 中國農(nóng)業(yè)大學(xué)動物科技學(xué)院,動物營養(yǎng)學(xué)國家重點實驗室,北京 100193;2. 西南民族大學(xué)畜牧獸醫(yī)學(xué)院,成都 610041;3. 昭通市畜牧獸醫(yī)技術(shù)推廣站,昭通 657000;4. 青島康大兔業(yè)發(fā)展有限公司,青島 266400)
為研究冬季飲用溫水對斷奶仔兔健康狀況和生長性能的影響,該研究選擇180只47日齡斷奶仔兔(初始體質(zhì)量(1.2±0.1) kg)隨機分為2組,溫水組通過在冬季塑料薄膜封閉的開放舍飲水管道上安裝伴熱線恒溫加熱系統(tǒng),為仔兔提供35.5 ℃的溫水,對照為無加熱系統(tǒng)的冷水組,水溫為5.8 ℃。試驗期48 d。結(jié)果表明:1)在舍內(nèi)平均氣溫8.9 ℃情況下,與冷水組相比,溫水組家兔在47~58和47~94日齡范圍的平均日增質(zhì)量分別顯著提高15.11和1.94 kg(<0.05)。2)飲用溫水顯著降低47~58日齡范圍家兔平均料質(zhì)量比(18.2%)及47~94日齡范圍家兔的腹瀉發(fā)生率(25.6%)(<0.05)。顯著下調(diào)了70日齡家兔空腸中甲狀腺激素受體和(THR和)的表達量(<0.05)。3)隨著日齡的增加,飲用溫水顯著提高了82日齡家兔血清中免疫球蛋白A(Immunoglobulin A , IgA)和總蛋白(Total protein, TP)含量(<0.05),也顯著提高了82日齡家兔盲腸菌屬的豐度,是58日齡的6.9倍(<0.05)。因此,冬季開放舍安裝恒溫飲水系統(tǒng)可通過提高機體免疫和腸道消化吸收能力,進而促進仔兔生長,改善健康狀況。
溫度;動物;開放舍;冬季;斷奶仔兔;恒溫飲水系統(tǒng);生產(chǎn)性能
開放式畜舍由于建筑成本低、利于通風(fēng)、舍內(nèi)空氣質(zhì)量良好,在中國大部分地區(qū)廣泛應(yīng)用,但其保溫性能差,在冬季較為寒冷的地區(qū)舍內(nèi)溫度過低,影響家畜生長[1-2]。寒冷氣候下,開放舍冬季水溫隨外界環(huán)境溫度的降低而降低,飲用低溫冷水也是影響家畜生長和健康的重要因素。冷水會降低動物胃腸道的溫度和微生物活性,進入動物體內(nèi)后會增加能量消耗,降低了飼料轉(zhuǎn)化效率[3]。近幾年有關(guān)家畜冬季恒溫飲水的研究越來越多,但多集中于仔豬[4]和牛[5]的研究。關(guān)于斷奶仔兔冬季恒溫飲水的研究鮮有報道。
斷奶早期仔兔一方面由于母仔分離和飼養(yǎng)環(huán)境改變,另一方面胃腸道黏膜發(fā)育及功能不完善,營養(yǎng)物質(zhì)攝取由母乳轉(zhuǎn)為飼料,容易發(fā)生斷奶應(yīng)激,導(dǎo)致幼仔兔腹瀉高發(fā)、成活率降低[6-7]。幼兔由于自身體溫調(diào)節(jié)系統(tǒng)不健全,對低溫更敏感,需要更高外界環(huán)境溫度[8]。前期研究也發(fā)現(xiàn),溫度對促進斷奶仔兔生長至關(guān)重要[9]。斷奶應(yīng)激和低溫環(huán)境的雙重作用下,幼畜會進一步發(fā)生能量消耗增強、免疫能力降低、腸道屏障功能紊亂等一系列生理和病理反應(yīng),如斷奶仔豬采食量和體質(zhì)量下降[10],斷奶仔兔死亡率和腹瀉發(fā)生風(fēng)險增加[11]。冬季提高飲水溫度可以緩解低溫對家畜的不利影響,例如冬季飲用溫水可以提高犢牛飲水量[12]、仔豬和肉牛日增質(zhì)量[13-14],改善羊瘤胃功能[15],緩解冷應(yīng)激所引起的畜禽生長性能下降、腸黏膜受損及細(xì)胞炎性因子產(chǎn)生[16]。同時,研究也發(fā)現(xiàn)開放式兔舍斷奶仔兔冬季飲用溫水可以提高其腸道有益微生物豐度,改善其腸道菌群結(jié)構(gòu)和免疫功能,進而降低家兔腹瀉發(fā)生風(fēng)險[17]。
因此,為研究冬季飲用溫水對斷奶仔兔的影響,本文選取華北地區(qū)的一棟塑料薄膜封閉的開放式兔舍,通過安裝恒溫飲水系統(tǒng)為仔兔提供溫水,比較分析了飲用溫水和冷水對斷奶仔兔生產(chǎn)性能和健康狀況的影響,以期為提高寒冷地區(qū)開放舍斷奶仔兔成活率和生產(chǎn)效率提供理論依據(jù)。
試驗于2015年12月—2016年1月在山東青島某兔場進行,試驗兔舍為塑料薄膜封閉的開放式兔舍。兔舍夜間塑料薄膜封閉,白天10:00-16:00打開塑料薄膜進行自然通風(fēng)。試驗兔舍東西走向,尺寸為50 m×2.5 m×2 m(長×寬×檐高),舍內(nèi)兔籠為層疊式三層水泥兔籠、兩列縱向布置,兔籠規(guī)格為0.6 m×0.62 m×0.3 m(長×寬×高),見圖1。
試驗選取180只體質(zhì)量(初始體質(zhì)量(1.2±0.1)kg)相近的47日齡健康斷奶仔兔,隨機分為2組,每組90只,飼養(yǎng)在同一棟塑料薄膜封閉的開放式兔舍中,每籠飼養(yǎng)3只。溫水組(WW)在兔舍前半段水管安裝伴熱線加熱系統(tǒng),即在水管外纏繞伴熱線(中國揚州,SN-EA)和6 mm厚塑料泡沫保溫薄膜,通過恒溫控制器調(diào)控水溫35.5 ℃(圖1);冷水組(CW)的飲用水未經(jīng)加熱處理,受舍內(nèi)氣溫影響大,水溫為1.6~12.3 ℃。試驗期間,2組試驗兔人工喂料,自由采食和飲水,每天10:00-10:30喂料。試驗共計48 d。
1.3.1 環(huán)境指標(biāo)及水溫測定
試驗期間,使用溫濕度自動記錄儀(型號179-TH)檢測舍內(nèi)外氣溫和相對濕度,舍內(nèi)均勻選取8個測定點(圖1),測量高度為1 m,舍外放置2個溫濕度自動記錄儀,每10 min自動記錄數(shù)據(jù)1次。采用手持氨氣測定儀(型號GT901)和二氧化碳測定儀(型號Telaire7001)于每天6:30、10:30、14:30、18:30測定舍內(nèi)氨氣(NH3)和二氧化碳(CO2)濃度,其測定位點和高度同溫濕度。試驗期間,采用插入式溫度計(型號TESTO905-T1)每3 d于11:00測定溫水組和冷水組的飲水溫度。溫水組和冷水組平均水溫分別為35.5和5.8 ℃。
1.3.2 生產(chǎn)性能指標(biāo)測定
試驗期間,每天記錄2組試驗兔的喂料量和剩料量,計算平均日采食量;在同等條件下稱量47、58、70、82、94日齡2組試驗兔的體質(zhì)量并計算平均日增質(zhì)量,計算不同階段2組試驗兔的平均料質(zhì)量比(平均料質(zhì)量比=各階段平均日采食量/平均日增質(zhì)量);每天記錄2組試驗兔的腹瀉和死亡只數(shù),并計算不同階段2組試驗兔死亡率(死亡率=各階段死亡兔子數(shù)/各階段兔子總數(shù))和腹瀉發(fā)生率(腹瀉發(fā)生率=各階段腹瀉兔子數(shù)/各階段兔子總數(shù))。
1.3.3 血清生化指標(biāo)測定
在試驗兔58、70、82日齡時,從2組中隨機選取健康家兔各15只,收集血清,-80 ℃保存,并通過酶聯(lián)免疫吸附試驗測定血清中免疫球蛋白A(IgA)、總蛋白(TP)、白細(xì)胞介素1(IL-1)、白細(xì)胞介素10(IL-10)及轉(zhuǎn)化生長因子1(TGF-1)含量。
1.3.4 組織器官稱質(zhì)量及相關(guān)基因表達
在試驗兔58、70和82日齡時,從2組中隨機選取健康家兔各15只,采用耳緣靜脈注氣法處死家兔,收集胃、盲腸內(nèi)容物,稱量脾臟、胸腺、腎上腺、胃、盲腸的質(zhì)量,計算器官指數(shù)(器官指數(shù)=器官質(zhì)量/體質(zhì)量)。用Trizol試劑提取2組試驗兔的腎上腺和空腸總RNA,根據(jù)網(wǎng)站(https://www.ncbi.nlm.nih.gov/)發(fā)表的基因序列,用Primer premier 6.0軟件設(shè)計引物,通過q-PCR法檢測腎上腺MC2R(上游引物,TCTCAGTGCCTACGAGAACTC;下游引物,TGGAGATGCTTGTTCTTGAC)、空腸中THR(上游引物,GACCATGTCAGGGTATATCC;下游引物,CGCTTCGAGTCATCTAGAAC)和THR(上游引物,AGCGAGACTCTAACCTTGAAC;下游引物,TTGGCCAAAAGTGTGTCAC)的mRNA水平,以GAPDH(上游引物,TGGTGAAGGTCGGAGTGAAC;下游引物,ATGTAGTGGAGGTCAATGAATGG)作為內(nèi)參基因。
1.3.5 腸道微生物測定
在試驗兔58、70和82日齡時,從2組中隨機選取健康家兔各15只,采用耳緣靜脈注氣法處死家兔,收集盲腸內(nèi)容物,采用16S擴增子測序及分析,具體方法參見前期發(fā)表文章[17]。
使用SPSS19.0卡方檢驗分析2組家兔的腹瀉發(fā)生率和死亡率;其他指標(biāo)通過獨立樣本檢驗進行組間比較,并采用雙因素分析方法(Two-way ANOVA)分析水溫和日齡的雙重影響。結(jié)果均以“平均值±標(biāo)準(zhǔn)誤”表示,0.05表示差異顯著,0.01表示差異極顯著。
由圖2可知,試驗期間,舍內(nèi)外氣溫日變化分別為6.6~10.1和-3.31~5.5 ℃,舍內(nèi)氣溫較低,平均8.9 ℃,低于10 ℃的時間占77.1%,舍外平均氣溫為0 ℃。舍內(nèi)平均相對濕度、NH3和CO2濃度分別為74.6%、11.4 mg/m3和0.13%。
由表1可知,飲用溫水和冷水組家兔在47~58和47~94日齡范圍平均日增質(zhì)量分別為溫水組60.58 g、冷水組45.47 g和溫水組41.00 g、冷水組39.06 g,飲用溫水分別顯著提高了33.2%(15.11 g/d)和4.97%(1.94 g/d)(0.05),與CW組相比,WW組47~58日齡范圍家兔平均料質(zhì)量比降低了18.2%(0.05)。此外,水溫和日齡交互影響家兔的平均日采食量、平均日增質(zhì)量以及平均料質(zhì)量比(0.05)。
表1 飲用溫水對斷奶仔兔生產(chǎn)性能的影響
注:1)相同日齡不同處理之間差異顯著用不同大寫字母表示(<0.05);相同處理不同日齡之間差異顯著用不同小寫字母表示(<0.05),下同。
2)47~58、47~70、47~82日齡范圍家兔的平均日增質(zhì)量和平均料質(zhì)量比來源于前期數(shù)據(jù)[17]。
Note: 1)Different uppercase letters mean significant difference in different treatments at the same age (<0.05), different lowercase letters mean significant difference in different ages at the same treatment (<0.05), the same as below.
2)The average daily weight gain and average feed to gain ratio from 47 to 58 days, 47 to 70 days, 47 to 82 days results were from previous data[17].
2組試驗兔的死亡率無明顯變化,試驗后期(71~94日齡范圍)舍內(nèi)氣溫由8.8降低至6.7 ℃時,WW組試驗兔腹瀉發(fā)生率顯著低于CW組(0.05)。另外,飲用溫水也顯著降低了整個試驗期試驗兔的腹瀉發(fā)生率,比CW組低了25.6% (0.05,表2)。
由表3可知,2組生長兔腎上腺指數(shù)、胃指數(shù)和盲腸指數(shù)隨日齡的增加顯著降低(0.05),脾臟、胸腺和盲腸質(zhì)量隨日齡的增加顯著增加(0.05),水溫對腎上腺指數(shù)、胃指數(shù)、盲腸指數(shù)影響顯著(0.05),水溫和日齡交互影響了家兔的腎上腺指數(shù)(0.05)。由表4可知,WW組70日齡試驗兔的血清IgA、TP和IL-1含量最低,較70日齡相比,82日齡家兔血清IgA和TP含量分別顯著提高了29.4%和45.4%(<0.05),血清IL-1含量顯著低于58日齡試驗兔的(0.05)。飲用溫水顯著降低了58日齡試驗兔的腎上腺指數(shù)及70日齡試驗兔的血清TGF- 1水平(<0.05),顯著提高了58日齡試驗兔的血清IL-1和IL-10水平(<0.05)。
表2 飲用溫水對斷奶仔兔腹瀉發(fā)生率和死亡率的影響
通過檢測2組試驗兔盲腸內(nèi)容物中與營養(yǎng)物質(zhì)消化吸收相關(guān)的屬水平微生物相對豐度發(fā)現(xiàn),WW組試驗兔盲腸微生物羅氏菌屬的豐度隨著日齡增加逐漸升高,尤其在82日齡時最高,是58日齡的6.9倍(0.05),而CW組試驗兔盲腸微生物厭氧支原體屬的豐度隨著日齡增加逐漸降低(0.05)。飲用溫水顯著降低了70日齡試驗兔盲腸微生物腔隙桿菌屬的豐度,以及空腸中甲狀腺激素受體和(THR和)的mRNA水平(0.05),顯著提高了82日齡試驗兔腎上腺MC2R的mRNA水平(0.05)。家兔空腸中THR和MC2R的mRNA水平受日齡、日齡和水溫的交互影響顯著(0.05)(表4和表5)。
表3 飲用溫水對斷奶仔兔器官發(fā)育的影響
表4 飲用溫水對仔兔免疫指標(biāo)及能量代謝基因的影響
表5 飲用溫水對仔兔盲腸屬水平微生物豐度的影響
家兔生產(chǎn)中,舍內(nèi)環(huán)境溫度較低時,家兔會增加飼料的攝入量,并蜷縮身體以減少熱量損失[8]。本研究中舍內(nèi)氣溫低于家兔生產(chǎn)適宜的環(huán)境溫度范圍,說明華北地區(qū)冬季開放舍采用塑料薄膜封閉保溫效果有限,造成斷奶仔兔冷應(yīng)激。冷暴露能夠提高哺乳動物腸道中與能量調(diào)節(jié)相關(guān)的微生物菌群的豐度,通過其代謝物增加能量消耗,調(diào)節(jié)體溫平衡[18]。此外,腸道中微生物羅氏菌屬和厭氧支原體屬可以發(fā)酵消化葡萄糖等碳水化合物和日糧粗脂肪,促進腸道對營養(yǎng)物質(zhì)的消化吸收,為機體生長提供能量,促進生長[19-23]。本研究中,隨著日齡的增加,飲用溫水提高了家兔盲腸微生物羅氏菌屬的豐度,而飲用冷水降低了厭氧支原體屬的豐度,這說明水溫會影響盲腸中與營養(yǎng)物質(zhì)消化吸收相關(guān)菌屬豐度,進而可能會影響家兔日增質(zhì)量。此外,飲用冷水提高了58日齡家兔腎上腺指數(shù),家兔腎上腺皮質(zhì)功能活動增強、促進蛋白質(zhì)分解及糖異生來增加產(chǎn)熱量維持體溫的恒定[24],這可能也導(dǎo)致了冷水組58日齡家兔體質(zhì)量低于溫水組。糖皮質(zhì)激素與其受體GR結(jié)合促進機體能量物質(zhì)代謝為動物生長提供能量[25],微生物可降解非淀粉多糖產(chǎn)生丙酸和丁酸[26-27],為抵御寒冷提供能量來源[28]。同期的研究也發(fā)現(xiàn)溫水飼喂上調(diào)了58日齡家兔空腸糖皮質(zhì)激素受體的mRNA水平,降低了其盲腸內(nèi)容物中屬水平微生物的豐度及丙酸、丁酸的濃度[8],這也進一步說明飲用溫水可減少斷奶早期(47~58日齡范圍)家兔的能量損失,促進其生長。同時,該階段家兔血清中IL-1水平較高,細(xì)胞因子IL-1可通過促進肌肉細(xì)胞葡萄糖轉(zhuǎn)運蛋白4(GLUT4)的易位,提高骨骼肌對葡萄糖的吸收利用,促進骨骼肌生長[29]。值得注意的是,飲用溫水顯著提高了47~94日齡范圍家兔的平均日增質(zhì)量,但兩組的體質(zhì)量在70、85和94日齡并沒有差異,原因可能是生長兔平均日增重為較小數(shù)(40~45 g),且到后期階段增重較少,當(dāng)兩組平均日增質(zhì)量同時加上一個較大的基數(shù)(斷奶體質(zhì)量約1 000 g)時,兩組間的差異就會很難達到顯著性水平。
冷應(yīng)激情況下,動物機體內(nèi)甲狀腺激素通過激活甲狀腺激素受體(THR和)動員棕色脂肪組織來調(diào)節(jié)能量消耗和產(chǎn)熱作用,進而調(diào)節(jié)全身能量穩(wěn)態(tài)[30]。研究表明,斷奶仔兔日增重與其腸道內(nèi)容物中腔隙桿菌屬的豐度呈負(fù)相關(guān)[31-32]。本研究中,飲用溫水下調(diào)了70日齡家兔空腸中THR和THR的mRNA水平,減少了家兔由于冷應(yīng)激造成的能量損耗。
隨著舍內(nèi)氣溫逐漸降低,飲用溫水顯著降低了生長后期家兔的腹瀉發(fā)生率,可能與飲用溫水提高了家兔血清中的IgA和TP的含量有關(guān)。動物腸道內(nèi)容物中腔隙桿菌屬豐度的增加已被證明與結(jié)腸炎呈正相關(guān)[33]。冷水組71~82日齡范圍家兔腹瀉高發(fā)與其盲腸內(nèi)容物中較高豐度的腔隙桿菌屬一致。冷應(yīng)激情況下,下丘腦-垂體-腎上腺軸(HPA)被激活,HPA軸興奮釋放促腎上腺皮質(zhì)激素(ACTH),進而增加糖皮質(zhì)激素的分泌,而ACTH和糖皮質(zhì)激素又通過各自受體MC2R和GR參與機體抗炎作用[34-35]。本研究中,飲用溫水降低了生長后期(70~82日齡范圍)家兔血清促炎因子TGF-1的含量,同時提高了腎上腺中促腎上腺皮質(zhì)激素受體MC2R的mRNA水平,減少了機體炎癥反應(yīng),進而降低了家兔腹瀉發(fā)生率。我們同期研究也發(fā)現(xiàn),飲用溫水提高了斷奶早期家兔空腸中糖皮質(zhì)激素受體的mRNA水平,降低了生長后期家兔空腸促炎因子IL-1和IL-12的mRNA水平,提高了其盲腸內(nèi)容物中與促炎因子負(fù)相關(guān)的微生物糞球菌屬(1、3)和紡錘鏈桿屬的豐度[17],這也進一步說明了冬季飲用溫水可降低腸道促炎因子水平、提高腸道有益微生物豐度進而降低家兔的腹瀉發(fā)生率。然而,本研究存在的不足之處在于水溫的檢測只有1個時間點(11:00),選擇本時間檢測水溫的原因是家兔在采食30~60 min 后會大量飲水。但是由于一天中舍內(nèi)環(huán)境溫度的不斷變化,可能會對不同時間的水溫造成影響。因此在后續(xù)的研究中需要補充每天不同時間飲水溫度的變化會更具有代表性。
1)伴熱線恒溫飲水系統(tǒng)可保證(35.5±1.1)℃的飲水溫度。冬季低溫環(huán)境下,飲用溫水與(5.8±2.3)℃冷水的家兔在47~58和47~94日齡范圍平均日增質(zhì)量分別為溫水組60.58 g、冷水組45.47 g和溫水組41.00 g、冷水組39.06 g,飲用溫水分別顯著提高了15.11 g/d和1.94 g/d(0.05)。
2)飲用溫水顯著降低了47~58日齡范圍家兔平均料質(zhì)量比及47~94日齡范圍腹瀉發(fā)生率,分別降低了18.2%和25.6%(0.05)。
3)隨著日齡增加,飲用溫水提高了82日齡家兔血清中IgA和TP含量,較70日齡分別提高了29.4%和45.4%;隨著日齡增加,飲用溫水顯著提高了82日齡家兔盲腸菌屬的豐度,是58日齡的6.9倍(<0.05)。
因此,冬季開放舍安裝伴熱線恒溫飲水系統(tǒng)能夠提高斷奶仔兔的平均日增質(zhì)量,降低平均料質(zhì)量比和腹瀉發(fā)生率,尤其在47~58和47~94日齡范圍飲用溫水效果最好。
[1] 高騰云,張德勛,孔慶友,等. 棚式牛舍的溫?zé)岘h(huán)境及其對乳牛產(chǎn)奶量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2000,16(4):118-121.
Gao Tengyun, Zhang Dexun, Kong Qingyou, et al. Warm weather environment of cowshed and its influence on milk yields of dairy cows[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(4): 118-121. (in Chinese with English abstract)
[2] 趙壽培,王超,趙娟娟,等. 河北省不同建筑類型羊舍環(huán)境參數(shù)的檢測與分析[J]. 家畜生態(tài)學(xué)報,2021,42(1):69-73.
Zhao Shoupei, Wang Chao, Zhao Juanjuan, et al. Detection and analysis on environmental parameters in diferent styles of shep sheds in Hebei province[J]. Journal of animal ecology, 2021, 42(1): 69-73. (in Chinese with English abstract)
[3] Nicol A M, Young B A. Short-term thermal and metabolic responses of sheep to ruminal cooling: Effects of level of cooling and physiological state[J]. Canadian Veterinary Journal La Revue Veterinaire Canadienne, 1990, 70(3): 833-843.
[4] 李澤強,趙華,陳小玲,等. 冬季飲水溫度和流速對斷奶仔豬應(yīng)激、生長性能及養(yǎng)分表觀消化率的影響[J]. 動物營養(yǎng)學(xué)報,2019,31(3):1081-1090.
Li Zeqiang, Zhao Hua, Chen Xiaoling, et al. Effects of winter drinking water temperature and flow rate on stress, growth performance and nutrient apparent digestibility in weaned piglets[J]. Journal of animal nutrition, 2019, 31(3): 1081-1090. (in Chinese with English abstract)
[5] 刁小南,王美芝,陳昭輝,等. 冬季恒溫飲水裝置和屋頂采光對提高肉牛生長速率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,28(24):164-172.
Diao Xiaonan, Wang Meizhi, Chen Zhaohui, et al. Effects of thermostatic apparatus for drinking water and roof-lighting system on improvement of growth rate of beef cattle in winter[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 28(24): 164-172. (in Chinese with English abstract)
[6] Wang J, Ni X, Wen B, et al. Bacillus strains improve growth performance via enhancing digestive function and anti-disease ability in young and weaning rex rabbits[J]. Applied Microbiology Biotechnology, 2020, 104(10): 4493-4504.
[7] El-Ashram S, Aboelhadid S M, Abdel-Kafy E M, et al. Investigation of pre-and post-weaning mortalities in rabbits bred in egypt, with reference to parasitic and bacterial causes[J]. Animals, 2020, 10(4): 537.
[8] 谷子林,秦應(yīng)和,任克良. 中國養(yǎng)兔學(xué)[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2013.
[9] Guo Y, Wang Q J, Zhang K H, et al. Night-restricted feeding improves locomotor activity rhythm and modulates nutrient utilization to accelerate growth in rabbits[J]. FASEB Journal, 2021, 35(1): e21166.
[10] 陳曦,李英英,柯翎,等. 冬季溫飲對斷奶仔豬生長性能及免疫水平的影響[J]. 福建農(nóng)業(yè)學(xué)報,2018,33(6):561-565.
Chen Xi, Li Yingying, Ke Ling, et al. Effect of warm drinking water in winter on growth and immunology of post-weaning piglets[J]. Fujian Journal of Agricultural Sciences, 2018, 33(6): 561-565. (in Chinese with English abstract)
[11] Espinosa J, Ferreras M C, Benavides J, et al. Causes of mortality and disease in rabbits and hares: A Retrospective study[J]. Animals, 2020, 10(1): 158.
[12] Huuskonen A, Tuomisto L, Kauppinen R. Effect of drinking water temperature on water intake and performance of dairy calves[J]. Journal of Dairy Science, 2011, 94(5): 2475-2480.
[13] 張智,梁麗萍,李保明,等. 冬季飲水溫度對斷奶仔豬生長性能與行為的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(20):204-209.
Zhang Zhi, Liang Liping, Li Baoming, et al. Effects of drinking water temperature on growth performance and behavior of weaned piglets in winter[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 204-209. (in Chinese with English abstract)
[14] 陳昭輝,龐超,靳薇,等. 基于水溫對肉牛生長性能影響的冬季恒溫飲水系統(tǒng)優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(24):212-218.
Chen Zhaohui, Pang Chao, Jin Wei, et al. Optimization of water supply system with constant temperature in winter based on effect of water temperature on growth performance of beef cattle[J]. Transactions of Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 118-121. (in Chinese with English abstract)
[15] 趙娟娟,張偉濤,郭偉婷,等. 飲水溫度對冬季育肥羊生產(chǎn)性能、血液理化指標(biāo)及瘤胃顯微結(jié)構(gòu)的影響[J]. 草業(yè)學(xué)報,2020,29(11):57-66.
Zhao Juanjuan, Zhang Weitao, Guo Weiting, et al. Effect of drinking water temperature on production performance, blood biochemical parameters and rumen microstructure of fatening shep in winter[J]. Journal of prataculture, 2020, 29(11): 57-66. (in Chinese with English abstract)
[16] Morton D, Verga M, Blasco A, et al. The impact of the current housing and husbandry systems on the health and welfare of farmed domestic rabbits[J]. EFSA Journal, 2005, 267: 1-31.
[17] Wang Q, Fu W, Guo Y, et al. Drinking warm water improves growth performance and optimizes the gut microbiota in early postweaning fabbits during winter[J]. Animals, 2019, 9(6): 346.
[18] Zhang X Y, Sukhchuluun G, Bo T B, et al. Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure[J]. Microbiome, 2018, 6(1): 103.
[19] Wang J, Ni X, Wen B, et al. Bacillus strains improve growth performance via enhancing digestive function and anti-disease ability in young and weaning rex rabbits[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4493-4504.
[20] Zeng B, Han S, Wang P, et al. The bacterial communities associated with fecal types and body weight of rex rabbits[J]. Scientific Reports, 2015, 5: 9342.
[21] Drouilhet L, Achard C S, Zemb O, et al. Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted feeding: I. Production traits and gut microbiota characteristics[J]. Journal of Animal Science, 2016, 94(1): 38-48.
[22] Kasahara K, Krautkramer K A, Org E, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model[J]. Nature Microbiology, 2018, 3(12): 1461-1471.
[23] Tang W, Yao X, Xia F, et al. Modulation of the gut microbiota in rats by Hugan Qingzhi tablets during the treatment of High-Fat-Diet-Induced nonalcoholic fatty liver disease[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 7261619.
[24] Tan Z, Nagata S. Superimposed cold stress-induced hypothalamic-pituitary-adrenal response during long-duration restraint stress[J]. Journal of UOEH, 2002, 24(4): 361-73.
[25] Flynn N E, Wu G. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs[J]. Journal of Nutrition. 1997, 127(5): 732-737.
[26] Reichardt N, Duncan S H, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. The ISME journal emultidisciplinary journal of microbial ecology, 2014, 8(6): 1323-1335.
[27] Louis P, Duncan S H, McCrae S I, et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J]. Journal of Bacteriology. 2004, 186(7): 2099-106.
[28] Bedford A, Gong J. Implications of butyrate and its derivatives for gut health and animal production[J]. Animal Nutrition. 2018, 4(2): 151-159.
[29] Tsuchiya M, Sekiai S, Hatakeyama H, et al. Neutrophils provide a favorable IL-1-mediated immunometabolic niche that primes GLUT4 translocation and performance in skeletal muscles[J]. Cell Reports, 2018, 23(8): 2354-2364.
[30] Mcaninch E A, Bianco A C. Thyroid hormone signaling in energy homeostasis and energy metabolism[J]. Annals of the New York Academy of Sciences, 2014, 1311: 77-87.
[31] Fang S, Chen X, Pan J, et al. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG)[J]. BMC Microbiology, 2020, 20: 116.
[32] Fang S, Chen X, Zhou L, et al. Faecal microbiota and functional capacity associated with weaning weight in meat rabbits[J]. Microbial Biotechnology. 2019, 12(6): 1441-1452.
[33] Qiu Z, Yang H, Rong L, et al. Targeted Metagenome based analyses show gut microbial diversity of inflammatory bowel disease patients[J]. Indian journal of microbiology, 2017, 57(3): 307-315.
[34] Wang W, Guo D Y, Lin Y J, et al. Melanocortin regulation of inflammation[J]. Frontiers in Endocrinology, 2019, 10: 683.
[35] Montero-Melendez T, Patel H B, Perretti M. Role of melanocortin receptors in the regulation of gouty inflammation[J]. Current Rheumatology Reports, 2011, 13(2): 138-145.
Promoting the growth of weaned rabbits in open shed in winter using thermostatic drinking system
Shan Chunhua1, Fu Wei1,2, Tang Yuhan1,3, Guo Yao1, Wang Qiangjun1, Du Haoxuan1, Li Mingyong4, Liu Man4, Liu Zhongying1, Wu Zhonghong1※
(1.,,,100193,;2.,,610041,;3.,657000,; 4..,.,266400,)
Cold stress of livestock easily occurs in open sheds of cold areas during winter, due mainly to the relatively low thermal insulation under the low temperature conditions. As such, cold drinking water can further deteriorate the health and growth of young livestock. The objective of this study was to investigate the effect of drinking warm water in winter on the health and growth performance of weaned rabbits. A total of 180 weaned rabbits (47 days of age) with similar body weight (initial body weight 1.2±0.1 kg) were randomly assigned to two groups, either warm water (WW) or cold water (CW) (90 rabbits in each group). An electrical heating wire was also used to heat the warm water, where the water pipe was covered with insulated foam coating. A thermostatic controller was selected to remain at a constant temperature (35.5 ± 1.1 ?C) during the experiment. The cold water was prepared at (5.8 ± 2.3)?C without heating. A 48-day test was carried out to measure various indicators. The results showed that: 1) The indoor average air temperature was (8.9±3.2)℃ during the experiment. The average daily weight gain of rabbits in warm water group was significantly higher than that in cold water group during 47-58 days and 47-94 days, respectively, by 15.11 kg/d and 1.94 kg/d (<0.05).. 2) The feed-weight ratio of rabbits was significantly lower in the warm water group than that in the cold water group during 47~58 days (18.2%) (< 0.05). But there was no significant difference during the rest. In addition, the risk of diarrhea in rabbits drinking warm water was significantly reduced by 25.6% during 47~94 days (< 0.05), compared with the cold water group. The expressions of thyroid hormone receptorand(THRand) in jejunum were significantly down-regulated on 70 days in rabbits drinking warm water (< 0.05). 3) The contents of immunoglobulin A (IgA) and total protein (TP) in serum increased significantly for the rabbits drinking warm water, with the increase of age, especially on 82 days (< 0.05). Moreover, the abundance of Roseburia increased in the cecum of rabbits on 82 days in the warm water group, relating to nutrient digestion and absorption, indicating 6.9 times higher than that of 58-day old rabbits (< 0.05). Consequently, the constant temperature drinking system in the open sheds in winter can be expected to improve the immunity, intestinal digestion, and absorption capacity, thereby promoting the growth and health of weaned rabbits. The finding can provide theoretical support to improve the survival rate and production efficiency of weaned rabbits in open houses in cold areas.
temperature; animals; open shed; winter; weaned rabbits; thermostatic drinking system; production performance
單春花,付偉,唐于寒,等. 恒溫飲水系統(tǒng)促進開放舍冬季斷奶仔兔生長[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(16):192-198.doi:10.11975/j.issn.1002-6819.2021.16.024 http://www.tcsae.org
Shan Chunhua, Fu Wei, Tang Yuhan, et al. Promoting the growth of weaned rabbits in open shed in winter using thermostatic drinking system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 192-198. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.16.024 http://www.tcsae.org
2021-04-08
2021-07-28
財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-43-D-1);國家轉(zhuǎn)基因重大專項(2009ZX08006-008B)
單春花,博士生,研究方向為畜禽環(huán)境生理。Email:shanchh0208@163.com
吳中紅,教授,研究方向為畜禽環(huán)境工程、環(huán)境生理與動物生殖發(fā)育。Email:wuzhh@cau.edu.cn
10.11975/j.issn.1002-6819.2021.16.024
S829.1
A
1002-6819(2021)-16-0192-07