• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast Nonlinear Optical Response of Two-dimensional MoS2/Bi2Te3 Heterostructure①

    2021-11-25 07:23:04DONGJunHaoPANJiaYEChenYuWANGRuHUANGYongFengZHENGJingYingZHANHongBingWANGQianTing
    結(jié)構(gòu)化學(xué) 2021年11期

    DONG Jun-Hao PAN Jia YE Chen-Yu WANG Ru HUANG Yong-Feng ZHENG Jing-Ying ZHAN Hong-Bing② WANG Qian-Ting②

    a (School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China)

    b (College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China)

    c (School of Electronic, Electrical Engineering and Physics,Fujian University of Technology, Fuzhou 350118, China)

    d (Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350118, China)

    ABSTRACT Controlled stacking of different two-dimensional (2D) atomic layers hold great promise for significantly optimizing the optical properties of 2D materials and broadening their applications. Here, vertical 2D MoS2/Bi2Te3 heterostructures with high crystallinity and optical quality have been successfully constructed, through drop-casting 2D Bi2Te3 flakes on chemical vapor deposition (CVD)-grown MoS2 flakes. Based on our homebuilt micro Z-scan and pump-probe measurement, we precisely investigated and compared the nonlinear optical (NLO)performance of an individual micro-sized MoS2 flake before and after stacking 2D Bi2Te3 nanoplates. Moreover,layer-dependent ultrafast carrier dynamics of CVD-grown MoS2 flakes were also explored. Owing to the efficient charge transfer from the monolayer (1 L) MoS2 to 2D Bi2Te3, the 1L MoS2/Bi2Te3 heterostructure demonstrated excellent NLO performance with superior nonlinear saturable absorption coefficient and ultrashort carrier lifetime.Our work greatly enriches our understanding of 2D heterostructure and paves the way for designing new type of tunable 2D photonics materials by combining the optical advantages of different 2D materials.

    Keywords: two-dimensional materials, nonlinear optics, ultrafast response;

    1 INTRODUCTION

    The two-dimensional (2D) layered materials have attracted considerable attention due to their diverse and potentially useful electronic and optical properties such as nonlinear optical (NLO) properties[1,2]. Among these emerging materials, 2DMoS2as the representative one owns the layered-dependent electronic structure evolution from an indirect band gap of 1.3 eV for the bulk to a direct gap of 1.9 eV for a monolayer[3,4]. Their atomic thickness together with peculiar electronic structure has endowed them with excellent optical properties such as strong saturable NLO absorption and moderate modulation depth[5-7], which enabled their promising varied applications in optical switches, Q-switching and mode locking pulse lasers and other photonic devices[8-10].In addition, these optical properties of 2DMoS2could be specified by the dynamics of free carriers and bound excitons,providing a novel platform to investigate involved fascinating physical mechanisms[11,12]. Unfortunately, limited NLO response time obtained by the analysis of ultrafast carrier dynamics makes them uncompetitive in the devices based on ultrashort laser pulse generation[13,14]. Unlike typical semiconductor MoS2, Bi2Te3as a topological insulator possesses a narrow bandgap (~0.3 eV) bulk state and the Dirac-like linear dispersion band on the surface states[15]. As a result, they exhibit broadband saturable NLO absorption and ultrafast carrier cooling rate, suitable for building ultrafast optical devices operated at ultrabroad wavelength[10,16,17].Nevertheless, this unique electronic structure also leads to their weak NLO absorption intensity and low modulation depth, hindering the stable mode-locking operation for ultrafast pulse laser[18-20].

    Compared to individual counterparts, vertically stacking different layers with distinct band structures to form layered heterostructures with van der Waals (vdW) interaction offers a promising approach for optimized performance engineering[21,22].Unique electronic properties of each individual layer might not be greatly perturbed by the interlayer weak vdW interaction, and the difference in work functions and the interfacial photophysics processes between different layers may enable the generated vertical heterostructures to exhibit tunable properties and novel physical phenomena. For instance,vertical MoS2/WS2, MoS2/ReS2, and MoS2/graphene heterostructures showed great potentials in future optoelectronic applications owing to the fast charge transfer in their interfaces and diverse excitation and relaxation routes of photoexcited quasiparticles[23-26]. Therefore, inspired by the great availability of heterostructure and the unique performance of MoS2and Bi2Te3, it is exciting to combine Bi2Te3with MoS2and thus construct vertical MoS2/Bi2Te3heterostructures for further investigating their functional properties. Recently, significant photoluminescence quenching with fast charge transfer and ultrafast hot-carrier photovoltaic devices have been demonstrated in MoS2/Bi2Te3heterostructures[27,28]. However, relevant researches on 2DMoS2/Bi2Te3heterostructure and their nonlinear optical properties are quite limited.

    Here, we prepared vertical MoS2/Bi2Te3heterostructures by stacking 2DBi2Te3nanoplates on chemical vapor deposition(CVD)-grown MoS2flakes. The high crystallinity and optical quality of the obtained MoS2/Bi2Te3heterostructures were confirmed by transmission electron microscope (TEM),Raman and ultraviolet-visible (UV-Vis) absorption spectroscopies. Especially, we builtZ-scan measurements with micro optical imaging and accurately determined the much higher nonlinear saturable absorption coefficient of(–1.3×104)~(–2.2×104) cm/GW in MoS2/Bi2Te3heterostructures than those of 2DBi2Te3flakes((–7.0×103)~(–9.0×103) cm/GW). Additionally, ultrafast carrier dynamics following femtosecond laser 400 nm excitation were utilized to unravel more detailed photophysical process accounting for the NLO response in these samples. The CVD-grown monolayer (1L) MoS2flakes demonstrated the fastest carrier lifetime (~620 fs) than 2L, 3L and 4L counterparts, and provided an ideal material for the construction of 1L MoS2/Bi2Te3heterostructure. Expectedly,shorter carrier lifetime of ~440 fs was obtained on 1L MoS2/Bi2Te3heterostructures due to the charge transfer from the 1L MoS2to 2DBi2Te3.

    2 EXPERIMENTAL

    2. 1 Preparation of the MoS2, Bi2Te3 and MoS2/Bi2Te3 heterostructures

    Our 2DMoS2flakes with varied layer numbers were obtained by CVD according to the previously reported method[29]. More specifically, the sulfur powders and electrochemical oxidized Mo foils as precursors were utilized to synthesize MoS2. The electrochemical anodization of Mo foils (Alfa-Aesar, 0.025 mm) was performed at a current of 0.04 A for 10 minutes at room temperature. After that,oxidized Mo foils were arched on double-sided polished Al2O3substrates at the center of the furnace. Sulfur powders(Alfa-Aesar, 99.999%, 1.5 g) were placed in the upstream and heated by heating belt at 190 ℃ when the temperature of the furnace reached 630 ℃. Then, the furnace was heated to 880 ℃ for 10 minutes and naturally cooled. To synthesize Bi2Te3flakes, the solvothermal method was carried out[17,30].0.64 g polyvinylpyrrolidone (Aladdin, AR) was dissolved in 20 mL ethylene glycol to form a clear solution, followed by the addition of 0.221 g BiCl3(Aladdin, 99.99%), 0.21 g Na2TeO3(Aladdin, 99.99%) and 0.56 g NaOH (Aladdin, AR).Next, the resulting precursor suspension was stirred for 1 h and then sealed in the autoclave (50 mL). Afterwards, the autoclave was heated to 180 ℃ for 6 h, followed by cooling to room temperature naturally. The obtained solution was centrifuged at 8500 r/min. Then, the obtained solid product was washed with deionized water and ethylene glycol, and finally dispersed in ethylene glycol. To construct MoS2/Bi2Te3heterostructures, 1 mL Bi2Te3solution was dropped on the substrate with as-grown MoS2flakes. Additionally, the produced MoS2/Bi2Te3heterostructures were annealed at 200 ℃ in pure Ar atmosphere to enhance the coupling between the layers.

    2. 2 Characterizations

    Optical images were captured with Olympus BX 53M microscope. Atomic force microscope (AFM) images were carried out with Bruker Dimension Icon. TEM experiment was performed with the Tecnai Talos F200i. Raman measurements were taken with Horiba-Jobin-Yvon Raman system at 532 nm laser, and the Si peak at 520.7 cm-1was used for calibration in the data analysis.

    The open apertureZ-scan and pump-probe techniques were employed with the homebuilt equipments. A diode-pump Yb medium femtosecond laser system with pulse repetition rate of 100 kHz, a center wavelength at 1030 nm, and a pulse width of ~190 fs was used as the excitation source. And an optical parametric amplifier (OPA) was also equipped to tune the varied wavelengths from 400 to 1500 nm. ForZ-scan measurements, the wavelength of photoexcitation source was fixed on 400 nm. The samples on the double-sided polished Al2O3substrates with ~0.5 mm thickness were mounted on a linear translation stage which could move near the focus to imitate the change of the laser intensity. Especially, the objective lens and camera were introduced in this system to observe and identify the samples as illustrated in Fig. 3a. Then,the spot of laser source was also focused on the targeted samples to realize micro-Z-scan characterization. For pump-probe measurements, the 400 nm laser was used to excite photocarriers in the samples and the OPA was utilized to generate probe beams with the wavelengths from 400 to 800 nm.

    3 RESULTS AND DISCUSSION

    3. 1 Structure characterization and spectroscopic properties of the obtained MoS2/Bi2Te3 heterostructures

    The vertical MoS2/Bi2Te3heterostructure was schematically illustrated in Fig. 1a. The bottom CVD-grown MoS2monolayers exhibited the length in the range of ~30~50μm confirmed by optical and AFM images (Figs. 1b and 1c and Supplementary materials, Fig. S1), which was suitable for surviving reliable micro-optical measurements involving followingZ-scan and ultrafast transient absorption spectroscopy. For upper stacked Bi2Te3flakes, the size and thickness were about 500~600 nm and 15~20 nm, respectively. And these Bi2Te3flakes were dispersedly on 1L MoS2flakes with high coverage to form MoS2/Bi2Te3heterostructures. To further evaluate the crystallinity and structures of the as-prepared samples, we transferred the targeted samples to the holey carbon grids for TEM characterizations[31]. TEM images captured on MoS2/Bi2Te3heterostructures showed triangular MoS2and hexagonal Bi2Te3flakes (Fig. 1d),consistent with the AFM measurements. For the high resolution TEM (HRTEM) images, 2DMoS2and Bi2Te3flakes demonstrated unambiguous lattice stripes with lattice spacing of 0.27 and 0.22 nm, assigned to their (100) and (110)planes, respectively (see the insets of Fig. 1d). All selected-area electron diffraction (SAED) patterns taken at varied regions of the pure MoS2monolayer exhibited only one set of hexagonally arranged diffraction spots, confirming its single crystalline nature over a large area (Fig. 1d and Supplementary materials, Fig. S2a). And the Bi2Te3flake also displayed SAED patterns of only one hexagonally diffraction spot (Fig. 1d and Supplementary materials, Figs. S2b and 2c),indicating its good crystallinity. Combined both of them, the MoS2/Bi2Te3heterostructure shows two sets of clear hexagonal diffraction spots (Fig. 1d), indicating its high quality and undamaged preparation process.

    Fig. 1. (a) Schematic of vertical MoS2/Bi2Te3 heterostructure, (b) Optical images taken from monolayer MoS2 flakes (upper) and their corresponding MoS2/Bi2Te3 heterostructures,(c) Enlarged AFM image of a MoS2/Bi2Te3 heterostructure.Inset: AFM image of the complete triangle MoS2/Bi2Te3 heterostructure, (d) TEM image of a MoS2/Bi2Te3 heterostructure, SAED patterns of the MoS2, Bi2Te3 and MoS2/Bi2Te3 heterostructure from left to right, respectively. Insets: the corresponding HRTEM images of MoS2 and Bi2Te3

    Next, the spectroscopic properties of MoS2/Bi2Te3heterostructures were investigated. We first conducted Raman spectra on these flakes and found five observable peaks as shown in Fig. 2a. The prominent diffraction peaks at ~60,~101 and ~134 cm-1were indexed to the out-of-planeA1g1, the in-planeEg2and the out-of-planeA1g2vibration modes of 2DBi2Te3, respectively[32,33]. Two characteristic peaks at ~382 and ~403 cm-1were associated with the in-planeE2g1and outof-planeA1gvibration modes of 1L MoS2, respectively[34,35].The co-existence of the feature peaks of these two flakes further confirmed the successful preparation of high-quality MoS2/Bi2Te3heterostructures. Then, UV-vis absorbance spectra were utilized to study the linear optical response of MoS2, Bi2Te3and MoS2/Bi2Te3heterostructures (Fig. 2b). The 2DBi2Te3flakes showed broad optical absorbance at 400~800 nm. Two characteristic peaks of ~623 and ~671 nm anticipated for 1L MoS2flakes were observed, assigned to its B(~2.0 eV) and A (~1.9 eV) excitonic transition[5,36]. The absorbance of MoS2/Bi2Te3heterostructure was higher than that of MoS2and Bi2Te3only, suggesting their enhancement of the linear absorption.

    3. 2 Nonlinear optical properties of the obtained MoS2/Bi2Te3 heterostructures

    To more precisely investigate the nonlinear absorption properties of as-prepared 2DMoS2, Bi2Te3and MoS2/Bi2Te3heterostructures, we designed a homemade micro-Z-scan technique equipped with a microscopic imaging system as shown in Fig. 3a. In this system, optical microscope and camera were introduced to observe and locate the samples,which greatly facilitated the focus and irradiation of following photoexcitation on the targeted samples to realize micro-Z-scan characterization (Fig. 3b). Therefore, we could accurately compare the NLO properties of the same MoS2flake before and after constructing with 2DBi2Te3. Figs. 3c and 3e showed the typicalZ-scan curves of as-made 1L MoS2,2DBi2Te3and MoS2/Bi2Te3heterostructures under the excited laser pulse of 400 nm (3.1 eV) with ~190 fs pulse width,respectively. We found that these MoS2, Bi2Te3and MoS2/Bi2Te3heterostructures all exhibited obvious saturation absorption and the transmittance intensity gradually increased with the increase of incident excitation energy. In addition,compared with pure 2DMoS2and Bi2Te3, the MoS2/Bi2Te3heterostructures demonstrated larger transmittance and thus saturable intensity under the same input intensity toward the focus (Fig. 3f), indicating their enhanced light-matter interaction[37]. This enhancement probably originated from the electron transfer from 1L MoS2to 2DBi2Te3flakes after photoexcitation due to the higher Fermi energy of MoS2than Bi2Te3[38,39].

    Furthermore, the nonlinear absorption coefficient (β) was adopted to quantitatively describe the NLO properties of these materials. TheZ-scan results can be fitted by equation (1)according to a nonlinear absorption model[38,40]:Fig. 3. (a) Schematic diagram ofZ-scan system with optical imaging identification, (b) Optical image of a MoS2/Bi2Te3heterostructure with the laser spot irradiating, (c)~(e)Typical open apertureZ-scan curves of the monolayer MoS2, Bi2Te3and MoS2/Bi2Te3heterostructures at 400 nm photoexcitation with different input powers, (f) Open apertureZ-scan curves of Bi2Te3, MoS2and MoS2/Bi2Te3heterostructures at the same input power of 5 μW and 400 nm photoexcitation, (g) The input power dependent nonlinear absorption coefficient (β) for the Bi2Te3flakes and MoS2/Bi2Te3heterostructures

    3. 3 Transient optical response of the obtained MoS2/Bi2Te3 heterostructures

    To further explore the NLO behavior and unravel the transient optical response of the as-prepared 1L MoS2flakes and their MoS2/Bi2Te3heterostructures, we performed femtosecond pump-probe spectroscopic technique to investigate the ultrafast carrier dynamics under pulse irradiation at 400 nm. Similar to micro-Z-scan measurement,the optical microscope system was also used for facilitating the change characterizations of the carrier dynamic for the same samples in pump-probe measurement (Figs. 4a and 4b).All the measurements in MoS2monolayers and their MoS2/Bi2Te3heterostructures displayed two distinct photobleaching features (negative absorption bands) derived from Pauli blocking, also indicative of their saturable absorption over the entire spectral range from 550 to 800 nm(Figs. 4c and 4d). The negative absorption appearing at ~620(~2.0 eV) and ~680 nm (~1.8 eV) corresponded to the B- and A-exciton, respectively, in agreement with the previous observations[5,36]. And transient dynamics of photoexcited MoS2monolayers were mainly monitored at both A- and B-excitonic bleach positions, as shown in Fig. 4e. This bleach kinetics can be fitted on the basis of the three-exponential equation (2)[38,41]:whereτ1,τ2andτ3represent the carrier lifetime of the different response processes. The fast recovery timeτ1could be mainly attributed to the exciton formation process for MoS2monolayers in picoseconds or subpicoseconds reported previously[35]. The secondτ2generally corresponded to the Auger recombination or exciton-exciton annihilation in the systems[42].τ3represented the typical inter-band relaxation time causing the slow-state relaxation in several hundred picoseconds[43]. We primarily compared the recovery time within the shorter time scale (τ1) for 1L MoS2in the absence and presence of 2DBi2Te3flakes. In the absence of Bi2Te3,the ~620 and ~680 nm bleaches in pure 1L MoS2recovered within ~860 and ~620 fs, respectively. For annealed MoS2/Bi2Te3heterostructure with strong coupling between the layers, the ~620 and ~680 nm bleaches exhibited faster recovery time of ~620 and ~440 fs (Fig. 4f), respectively,which made it more feasible for varied applications such as ultrafast pulse laser generation with narrow pulse width. By contrary, the MoS2/Bi2Te3heterostructure without annealing showed slower recovery time of ~1000 and ~950 fs in the~620 and ~680 nm bleaches, respectively (Supplementary materials, Fig. S3). Combining these results and previous work[25,28], we proposed that the reduced carrier lifetime could also be ascribed to the electron transfer from the 1L MoS2to 2DBi2Te3besides forming excitons, consistent with the results of micro-Z-scan.

    Fig. 4. (a, b) Optical images of a MoS2 monolayer and the constructed MoS2/Bi2Te3 heterostructure with the laser spot, (c, d) Representative transient absorption spectra of monolayer MoS2 and the MoS2/Bi2Te3 heterostructure at 400 nm photoexcitation, (e) Transient absorption kinetics of the MoS2/Bi2Te3 heterostructure, (f) Comparison of transient absorption kinetics for the MoS2 monolayer and its built MoS2/Bi2Te3 heterostructure at ~620 nm. Inset: the enlarged decay curve recorded up to 5 ps. Solid lines in (e and f) represented the exponential fitting

    Based on the unique micro-imaging pump-probe technique and successful synthesis of single crystal CVD-grown MoS2flakes with varied layers, we further investigated the layer-dependent ultrafast carrier dynamics of 1L, 2L, 3L and 4L MoS2flakes and their MoS2/Bi2Te3heterostructures in details (Fig. 5a). As shown in Fig. 5b, both the A- and B-exciton bleaching peaks redshifted with the increase of layer numbers for pure MoS2flakes due to the gradually decreased bandgap evolution[44]. The similar phenomena occurred in MoS2/Bi2Te3heterostructures (Fig. 5c and Supplementary materials, Figs. S4 and S5). Moreover, since the defect-assisted recombination at the surface became significant as the thickness was decreased, we observed that defect states-more 1L MoS2flakes demonstrated dramatically reduced carrier lifetimes than the defect states-less few-layer ones (Fig. 5d and Supplementary materials and Fig. S6),showing exactly the same trend as in the mechanically exfoliated MoS2flakes[45,46]. In addition, similar to 1L MoS2/Bi2Te3, the heterostructures based on few-layer MoS2and 2DBi2Te3also possessed shorter carrier recovery time(Fig. 5d).

    Fig. 5. (a) Schematic diagram and optical images of 1L~4L MoS2 flakes, (b) Time-resolved transient absorption spectra probed at 1ps for 1L~4L MoS2 flakes of (a), (c) Heterostructures based on another 1L~4L MoS2 flakes of Fig S5, (d) Statistics of the fast recovery time constant τ1 for 1L~4L MoS2 (purple) and 1L~4L MoS2/Bi2Te3 heterostructures (orange), the yellow-colored left region and green-colored right region corresponded to the τ1 values extracted from B- and A-exciton bleaching peaks

    4 CONCLUSION

    In summary, we have successfully constructed high-performance MoS2/Bi2Te3heterostructures by drop-casting Bi2Te3flakes on CVD-grown MoS2flakes. The obtained heterostructures maintained good crystallinity. Owing to our homemade open apertureZ-scan measurements with optical imaging, the 1L MoS2/Bi2Te3heterostructures were precisely determined to possess the enhanced saturable absorption and nonlinear absorption coefficient than 2DBi2Te3. Furthermore,layer-dependent femtosecond transient absorption spectroscopy in CVD-grown MoS2unveiled the shortest carrier lifetime in 1L MoS2than 2L, 3L and 4L MoS2. Based on these 1L MoS2flakes, 1L MoS2/Bi2Te3heterostructures exhibited faster carrier lifetime of ~440 fs due to the charge transfer from the 1L MoS2to 2DBi2Te3. Our work provides a novel nonlinear material with superior saturable absorption properties and provides novel insight for the design of high-performance nonlinear materials by effectively combining the optical advantages of different 2Dmaterials.

    亚洲熟女毛片儿| 亚洲国产中文字幕在线视频| 性高湖久久久久久久久免费观看| 欧美精品高潮呻吟av久久| 一区二区三区激情视频| 少妇 在线观看| 大片免费播放器 马上看| 久久99热这里只频精品6学生| 搡老乐熟女国产| 多毛熟女@视频| 日韩制服骚丝袜av| 波多野结衣一区麻豆| 香蕉国产在线看| 久久久久国内视频| 国产精品久久久久久人妻精品电影 | 最新的欧美精品一区二区| 欧美激情高清一区二区三区| 五月开心婷婷网| 亚洲久久久国产精品| 91麻豆精品激情在线观看国产 | 国产国语露脸激情在线看| 男人操女人黄网站| 久久性视频一级片| 成人黄色视频免费在线看| 国产精品成人在线| 欧美日韩成人在线一区二区| 久久久水蜜桃国产精品网| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩精品亚洲av| 女性生殖器流出的白浆| 国产精品.久久久| 一区二区三区精品91| 国产亚洲午夜精品一区二区久久| 男人爽女人下面视频在线观看| 午夜免费成人在线视频| 少妇裸体淫交视频免费看高清 | 天堂俺去俺来也www色官网| 久久久精品免费免费高清| 69av精品久久久久久 | 老司机影院成人| 精品亚洲成a人片在线观看| 一个人免费在线观看的高清视频 | 天堂俺去俺来也www色官网| 亚洲视频免费观看视频| 大香蕉久久成人网| 亚洲国产精品一区三区| 啦啦啦啦在线视频资源| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 国产三级黄色录像| e午夜精品久久久久久久| 亚洲av成人一区二区三| 亚洲国产毛片av蜜桃av| 免费观看av网站的网址| 99热网站在线观看| 国产成+人综合+亚洲专区| 91成人精品电影| 国产成人精品在线电影| 女警被强在线播放| 午夜福利视频精品| 无遮挡黄片免费观看| 亚洲九九香蕉| 国产男女内射视频| 亚洲成人免费电影在线观看| 久久久久精品人妻al黑| 亚洲色图 男人天堂 中文字幕| 黄色怎么调成土黄色| 亚洲精品在线美女| 久久久国产精品麻豆| 国产极品粉嫩免费观看在线| 淫妇啪啪啪对白视频 | cao死你这个sao货| 制服人妻中文乱码| 欧美 日韩 精品 国产| 大香蕉久久网| 欧美黄色淫秽网站| av免费在线观看网站| 久久久精品免费免费高清| 1024视频免费在线观看| 国产1区2区3区精品| 纯流量卡能插随身wifi吗| 亚洲精品粉嫩美女一区| 日本vs欧美在线观看视频| 欧美日韩国产mv在线观看视频| av线在线观看网站| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 久久av网站| 亚洲美女黄色视频免费看| 免费在线观看日本一区| 丁香六月天网| 亚洲激情五月婷婷啪啪| av在线播放精品| 欧美日韩亚洲高清精品| 亚洲人成77777在线视频| 亚洲免费av在线视频| 亚洲精品国产av成人精品| 亚洲国产毛片av蜜桃av| 免费高清在线观看视频在线观看| 久久久久久久久免费视频了| 韩国精品一区二区三区| 国产福利在线免费观看视频| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 国产成人精品久久二区二区91| 国产成人啪精品午夜网站| 国产亚洲av高清不卡| 久久亚洲国产成人精品v| 国产色视频综合| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 韩国高清视频一区二区三区| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 欧美性长视频在线观看| 国产精品二区激情视频| 女人精品久久久久毛片| 免费在线观看视频国产中文字幕亚洲 | 99国产精品一区二区蜜桃av | 操美女的视频在线观看| 国产精品一区二区精品视频观看| 黄片小视频在线播放| 亚洲精华国产精华精| 国产成人av教育| 午夜福利视频精品| 欧美日韩中文字幕国产精品一区二区三区 | 不卡一级毛片| 精品福利观看| 狠狠精品人妻久久久久久综合| 亚洲,欧美精品.| 精品人妻一区二区三区麻豆| 午夜福利在线免费观看网站| 欧美xxⅹ黑人| 后天国语完整版免费观看| 黄片播放在线免费| 国产精品一区二区精品视频观看| 丁香六月天网| 91成年电影在线观看| 午夜福利在线观看吧| 久9热在线精品视频| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜添小说| 久久久久久久国产电影| 啦啦啦 在线观看视频| 99香蕉大伊视频| 少妇人妻久久综合中文| 人妻人人澡人人爽人人| 欧美av亚洲av综合av国产av| 90打野战视频偷拍视频| 国产精品一区二区在线观看99| 99香蕉大伊视频| 久9热在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 性色av一级| 国产主播在线观看一区二区| 欧美日本中文国产一区发布| 女警被强在线播放| 我要看黄色一级片免费的| 国产精品熟女久久久久浪| 999精品在线视频| 涩涩av久久男人的天堂| 日韩视频一区二区在线观看| 一本色道久久久久久精品综合| 美国免费a级毛片| 国产av国产精品国产| 日韩免费高清中文字幕av| 99国产精品99久久久久| 美女国产高潮福利片在线看| 精品亚洲成a人片在线观看| 动漫黄色视频在线观看| 中文字幕高清在线视频| 亚洲精品av麻豆狂野| 久久久久久免费高清国产稀缺| 午夜福利一区二区在线看| 亚洲第一青青草原| 成在线人永久免费视频| 满18在线观看网站| 亚洲精品自拍成人| cao死你这个sao货| 亚洲精品国产精品久久久不卡| 国产伦理片在线播放av一区| 久久精品人人爽人人爽视色| 国产成人精品无人区| 亚洲一区二区三区欧美精品| 丝袜人妻中文字幕| 一区二区三区精品91| 亚洲伊人久久精品综合| 亚洲av电影在线观看一区二区三区| 制服人妻中文乱码| 50天的宝宝边吃奶边哭怎么回事| 看免费av毛片| 亚洲熟女毛片儿| 中文字幕制服av| 久久亚洲精品不卡| 成人亚洲精品一区在线观看| 日韩视频一区二区在线观看| 免费看十八禁软件| 国产成人av教育| 久久久国产一区二区| 国产高清国产精品国产三级| 中文字幕精品免费在线观看视频| 老司机靠b影院| 美女午夜性视频免费| 亚洲视频免费观看视频| 国产一区二区三区在线臀色熟女 | 成人免费观看视频高清| 国产精品 国内视频| 久9热在线精品视频| 国产区一区二久久| 午夜成年电影在线免费观看| 国产av国产精品国产| 一二三四在线观看免费中文在| av天堂在线播放| 一本一本久久a久久精品综合妖精| 久久久国产欧美日韩av| 久久久欧美国产精品| 国产在线免费精品| 国产精品 国内视频| 高清av免费在线| 亚洲国产欧美网| 久久久久久久大尺度免费视频| 久久久国产欧美日韩av| 亚洲精品国产精品久久久不卡| 精品免费久久久久久久清纯 | 高清在线国产一区| 午夜福利影视在线免费观看| 黄色视频在线播放观看不卡| 不卡一级毛片| videos熟女内射| 精品少妇黑人巨大在线播放| 性色av乱码一区二区三区2| 国产精品久久久久久人妻精品电影 | 高清欧美精品videossex| 久久人人97超碰香蕉20202| 亚洲男人天堂网一区| 90打野战视频偷拍视频| 国产成人欧美| 亚洲专区字幕在线| 又紧又爽又黄一区二区| 啦啦啦免费观看视频1| 欧美变态另类bdsm刘玥| 国产亚洲欧美在线一区二区| 久久久久久久久久久久大奶| 国产男人的电影天堂91| 一区二区三区四区激情视频| 人妻人人澡人人爽人人| 亚洲 国产 在线| 久久久欧美国产精品| 免费高清在线观看日韩| 国产黄色免费在线视频| 亚洲av男天堂| 91精品伊人久久大香线蕉| 999久久久精品免费观看国产| 另类亚洲欧美激情| 俄罗斯特黄特色一大片| 99久久国产精品久久久| 亚洲精品国产一区二区精华液| xxxhd国产人妻xxx| 曰老女人黄片| 韩国精品一区二区三区| 精品久久久久久久毛片微露脸 | 一级毛片电影观看| netflix在线观看网站| 久热爱精品视频在线9| 97在线人人人人妻| 久久中文看片网| 美女大奶头黄色视频| 成年女人毛片免费观看观看9 | 婷婷成人精品国产| 国产精品久久久av美女十八| 国产真人三级小视频在线观看| 国产有黄有色有爽视频| 欧美xxⅹ黑人| 免费不卡黄色视频| 精品一区二区三区av网在线观看 | 国产欧美日韩一区二区精品| 大片电影免费在线观看免费| 咕卡用的链子| 美女视频免费永久观看网站| 国产精品香港三级国产av潘金莲| 岛国毛片在线播放| 成人手机av| 最新在线观看一区二区三区| 国产成人免费无遮挡视频| www.自偷自拍.com| 国产精品国产av在线观看| 大型av网站在线播放| 国产极品粉嫩免费观看在线| 国产亚洲精品一区二区www | 久久久久国内视频| 91麻豆av在线| 丰满少妇做爰视频| 天天躁狠狠躁夜夜躁狠狠躁| 少妇裸体淫交视频免费看高清 | 亚洲欧洲日产国产| 高清在线国产一区| 一级a爱视频在线免费观看| 国产精品二区激情视频| 美女大奶头黄色视频| 亚洲欧洲精品一区二区精品久久久| 夜夜骑夜夜射夜夜干| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | 日本五十路高清| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三| 亚洲伊人久久精品综合| 九色亚洲精品在线播放| 亚洲,欧美精品.| 久久九九热精品免费| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 亚洲成人免费电影在线观看| 捣出白浆h1v1| 久久久久国内视频| 亚洲国产中文字幕在线视频| 欧美人与性动交α欧美软件| 国产深夜福利视频在线观看| 午夜福利免费观看在线| tocl精华| 两个人看的免费小视频| 日韩 亚洲 欧美在线| 美女午夜性视频免费| 一区二区三区精品91| 欧美国产精品一级二级三级| 色老头精品视频在线观看| 美女午夜性视频免费| 亚洲欧美精品自产自拍| 成人国产av品久久久| a在线观看视频网站| 法律面前人人平等表现在哪些方面 | 丁香六月欧美| 久久久久久人人人人人| 久久国产精品人妻蜜桃| 丁香六月欧美| 女人被躁到高潮嗷嗷叫费观| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 99久久综合免费| www.自偷自拍.com| 深夜精品福利| 如日韩欧美国产精品一区二区三区| 久久久久视频综合| 我要看黄色一级片免费的| 日韩电影二区| 久久精品国产亚洲av高清一级| 色婷婷av一区二区三区视频| 欧美国产精品va在线观看不卡| 免费黄频网站在线观看国产| 欧美在线一区亚洲| 精品欧美一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av日韩在线播放| 成年女人毛片免费观看观看9 | 亚洲av电影在线观看一区二区三区| 黑人操中国人逼视频| videos熟女内射| 亚洲人成77777在线视频| 国产麻豆69| 啦啦啦中文免费视频观看日本| 黑人巨大精品欧美一区二区蜜桃| 五月开心婷婷网| 亚洲天堂av无毛| 一区二区三区四区激情视频| 亚洲少妇的诱惑av| 最近中文字幕2019免费版| 18禁裸乳无遮挡动漫免费视频| 高清欧美精品videossex| 亚洲第一av免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久精品精品| 女人高潮潮喷娇喘18禁视频| 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲九九香蕉| 亚洲国产欧美在线一区| 一边摸一边抽搐一进一出视频| 久久精品熟女亚洲av麻豆精品| 亚洲美女黄色视频免费看| 久久国产亚洲av麻豆专区| 久久精品国产a三级三级三级| 亚洲国产精品一区二区三区在线| 法律面前人人平等表现在哪些方面 | 日韩 亚洲 欧美在线| 国产精品国产av在线观看| 欧美成狂野欧美在线观看| 免费在线观看日本一区| 欧美97在线视频| 中国美女看黄片| 大片免费播放器 马上看| tube8黄色片| 亚洲黑人精品在线| 啦啦啦中文免费视频观看日本| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 午夜老司机福利片| 男人爽女人下面视频在线观看| 少妇被粗大的猛进出69影院| 91国产中文字幕| 久久青草综合色| 国产精品影院久久| 国产伦人伦偷精品视频| 国产男人的电影天堂91| 在线观看www视频免费| 亚洲中文av在线| 亚洲免费av在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 99精国产麻豆久久婷婷| 午夜成年电影在线免费观看| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 亚洲av电影在线观看一区二区三区| 纯流量卡能插随身wifi吗| 欧美在线一区亚洲| 久久午夜综合久久蜜桃| www.自偷自拍.com| 国产成人精品无人区| 成人18禁高潮啪啪吃奶动态图| 91字幕亚洲| 国产福利在线免费观看视频| av天堂久久9| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 日日摸夜夜添夜夜添小说| 日韩精品免费视频一区二区三区| 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 国产又色又爽无遮挡免| 日韩中文字幕视频在线看片| 日韩制服丝袜自拍偷拍| 天堂中文最新版在线下载| 欧美精品av麻豆av| 国产深夜福利视频在线观看| 日本a在线网址| 中国国产av一级| 亚洲全国av大片| 国产成人精品无人区| 多毛熟女@视频| 成人国产一区最新在线观看| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 美女大奶头黄色视频| 黄色a级毛片大全视频| 精品人妻1区二区| 亚洲精品日韩在线中文字幕| 国产1区2区3区精品| av欧美777| 色婷婷av一区二区三区视频| 亚洲专区国产一区二区| 久久久国产精品麻豆| 夫妻午夜视频| 12—13女人毛片做爰片一| 日韩欧美免费精品| 久久青草综合色| 亚洲国产毛片av蜜桃av| 大香蕉久久成人网| a 毛片基地| 五月开心婷婷网| 亚洲av电影在线进入| 一本色道久久久久久精品综合| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| av天堂在线播放| 午夜精品久久久久久毛片777| 国产精品一区二区精品视频观看| 亚洲av日韩精品久久久久久密| 欧美国产精品一级二级三级| 伊人久久大香线蕉亚洲五| 69av精品久久久久久 | 国产1区2区3区精品| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 久久人人爽人人片av| 香蕉丝袜av| 黄色怎么调成土黄色| 考比视频在线观看| 首页视频小说图片口味搜索| 久久久久久免费高清国产稀缺| av网站免费在线观看视频| 男男h啪啪无遮挡| 久久久欧美国产精品| 操美女的视频在线观看| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 人人妻人人澡人人看| 精品少妇一区二区三区视频日本电影| 热99久久久久精品小说推荐| 日韩大码丰满熟妇| 91九色精品人成在线观看| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美清纯卡通| 国产一卡二卡三卡精品| av又黄又爽大尺度在线免费看| 国产一级毛片在线| 啪啪无遮挡十八禁网站| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 黑人欧美特级aaaaaa片| 国产在线观看jvid| 两人在一起打扑克的视频| 欧美日韩黄片免| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 深夜精品福利| 午夜成年电影在线免费观看| 日韩视频在线欧美| 十分钟在线观看高清视频www| 激情视频va一区二区三区| 亚洲一码二码三码区别大吗| 丰满少妇做爰视频| 捣出白浆h1v1| 搡老乐熟女国产| 美女中出高潮动态图| 亚洲成国产人片在线观看| 老熟妇仑乱视频hdxx| 超色免费av| 日韩 亚洲 欧美在线| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 一级毛片电影观看| 巨乳人妻的诱惑在线观看| 国产男人的电影天堂91| 飞空精品影院首页| 免费观看a级毛片全部| 亚洲欧美激情在线| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 免费观看av网站的网址| 91精品伊人久久大香线蕉| 午夜福利,免费看| 两个人看的免费小视频| 十八禁网站免费在线| 久久影院123| 国产一卡二卡三卡精品| 亚洲国产中文字幕在线视频| 91成人精品电影| 午夜老司机福利片| 亚洲精品国产av蜜桃| 欧美精品一区二区免费开放| 久久人人爽人人片av| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 午夜福利免费观看在线| 午夜福利视频精品| 在线天堂中文资源库| 久久ye,这里只有精品| 久久天堂一区二区三区四区| 人妻久久中文字幕网| 午夜福利视频在线观看免费| 精品久久久久久电影网| av天堂在线播放| 国产成人一区二区三区免费视频网站| 久久久久久久大尺度免费视频| 欧美精品一区二区免费开放| 老汉色∧v一级毛片| 亚洲美女黄色视频免费看| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 九色亚洲精品在线播放| a级毛片在线看网站| 97人妻天天添夜夜摸| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 一本综合久久免费| 俄罗斯特黄特色一大片| 我要看黄色一级片免费的| 亚洲九九香蕉| 老司机亚洲免费影院| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 一个人免费在线观看的高清视频 | 妹子高潮喷水视频| tocl精华| 老司机靠b影院| 精品熟女少妇八av免费久了| 纯流量卡能插随身wifi吗| 中文字幕人妻熟女乱码| 亚洲精品国产av蜜桃| 午夜老司机福利片| 极品少妇高潮喷水抽搐| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 大片电影免费在线观看免费| 午夜福利乱码中文字幕| 国产成人啪精品午夜网站| 少妇被粗大的猛进出69影院| 久久ye,这里只有精品| 99精品欧美一区二区三区四区| 脱女人内裤的视频| 成年人免费黄色播放视频| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 久久国产精品影院| 精品熟女少妇八av免费久了|