• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pendant Group Effect of Polymeric Dielectrics on the Performance of Organic Thin Film Transistors①

    2021-11-25 07:27:56HUANGChongYuFENGShiYuHUANGWeiGuo
    結(jié)構(gòu)化學(xué) 2021年11期

    HUANG Chong-Yu FENG Shi-Yu HUANG Wei-Guo②

    a (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    b (University of Chinese Academy of Sciences, Beijing 100049, China)

    c (Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, China)

    ABSTRACT Polymer dielectric is superior to its inorganic counterparts due to not only the low cost and intrinsic flexibility, but also the readily tunable dielectric constant, surface charge trap density, charge ejection and releasing ability and dipole moment, and all these properties play decisive roles in regulating the characteristic and performances of organic thin film transistors (OTFT). However, systematical studies on the relationship between structure and properties of polymeric dielectrics are rare. To this end, a series of polymeric dielectrics with well-defined linkages (ester or amide bonds) and predesigned pendant groups (alkyl- and aromatic-groups) are synthesized in high yields. Detailed studies show that the polyamide dielectrics exhibit higher dielectric constant,surface charge trapping density, and better charge storage capability than corresponding polyester dielectrics.Further, increasing the π electron delocalization of the pendant groups generally benefits the charge storage property and transistor memory behavior. Theoretical calculation reveals that the hydrogen bonding between the linkage groups and the energy alignment between polymeric dielectric and semiconductor are responsible for the observed performance differences of OTFT with different polymeric dielectrics. These results may shine light on the design of polymeric dielectrics for OTFTs with different applications.

    Keywords: polymer dielectric, organic thin film transistor, hydrogen bonding, π-electron delocalization,noncovalent interaction; DOI: 10.14102/j.cnki.0254-5861.2011-3167

    1 INTRODUCTION

    Apart from semiconductors, dielectrics substantially dominate the functioning and performance of OTFTs. e.g.,via affecting the charge carrier mobilities (μ), impacting the threshold voltages (Vth) and subthreshold swings (SS),determining the bias-stress instabilities and modulating the switching rate and hysteresis behaviors of OTFTs[1-6]. To date,numbers of materials have been introduced as dielectrics in OTFTs, such as inorganic oxides, organic molecules and polymers, self-assembled mono-/multilayers (SAMs) and self-assembled nanodielectrics (SANDs)[2,7]. Among them,polymeric dielectrics are particularly interesting owing to: i)their intrinsic flexibility and stretchability are naturally compatible with the organic semiconductors and flexible substrates underneath[2,8]; ii) the low-cost and energy-saving fabrication procedures such as drop-casting, spin-coating and role to role printing. Comparatively, the fabrication of inorganic dielectrics usually involves expensive and energyconsuming e-beam sputtering, atomic layered deposition, and high temperature evaporation[9,10]; iii) the robust tunability of chemical structures by rational molecular design and facile organic synthesis, allowing on-demand functionalization for a variety of purposes, such as biochemical sensing, neuromorphic devices, stretchable and self-healable electronics and biodegradable devices. Moreover, such capability enables the possibility to investigate the comprehensive mechanisms of device physics via subtle structure tailoring[3,11].

    Despite this promise, polymer dielectrics generally complicate their behaviors and performances by their less-ordered structures, broad molecular weight (MW)distributions and glass transition temperatures (Tg), uncertain chain alignments and dipole orientations, varied crystallinity and packing mode, etc[8]. For example, increasing dielectric constant (κ) of polymer leads to higher capacitance (C),though at the price of broadening density of state (DOS) and disordering the dipoles, which eventually impedes the transfer of charge and affects mobilities[1,12,13]. Interestingly,upon increasing κ of polymer dielectrics, polymeric semiconductor exhibits enhanced mobility whereas single-crystalline semiconductor decreases its mobility[14]. The effect of molecular weight to the performance of OTFTs is also under debate. Some studies suggest that varying the molecular weight could cause mobility change up to 2 orders of magnitude, probably attributing to the alternation of polymer chain ends density on the dielectric surface and thus the interfacial energy[15,16]. However, other reports pointed out that molecular weight only leads to subtle changes to the major characteristics of OTFTs[17]. In addition, the surface properties of polymeric dielectric impose further complexity to OTFT performances. e.g., some reports indicated that lowering the surface energy leads to smaller grain size of semiconductor and more interconnections between grains and therefore enhances the charge transfer[18,19]. Conversely,other studies made completely opposite claims[15]. The controversy may be arisen from different semiconductors and fabrication approaches used in the experiments, as well as the complicacy of the interplay among grain size, boundaries and charge mobilities. Up to now, it is still a great challenge to unambiguously clarify the influence of a given variable to the OTFT performances while excluding all other factors. And systematical studies on the relationship between structure and properties of polymeric dielectrics are rare.

    To this end, here we have designed and synthesized a series of well-defined polymeric dielectrics bearing pendant groups with progressively enhancedπelectron delocalization.These pendant groups are linked with polymer backbones via ester or amide bonds. Note that all these polymers gain similar molecular weight and MW distributions, so as to eliminate the effect from chain ends density and heterogeneity on the dielectric surfaces. Detailed studies reveal that the polyamide dielectrics exhibit higher κ and surface charge trapping density, and better charge storage capability than the corresponding polyester dielectrics. Moreover, as theπelectron delocalization increases, the energy barrier between the nearest molecular orbital levels of semiconductor (such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)) and the polymeric dielectric reduces, which facilitates the charge transfer from conductive channel to dielectric layer upon biasing with gate voltages[20]. As a result, the OTFT exhibits more pronounced bias-stress instability and larger hysteresis.Theoretical calculation indicates that the hydrogen bonding between the amide groups and the energy alignment between polymeric dielectrics and semiconductor are responsible for the observed distinctness of OTFTs with different polymeric dielectrics. These results may help to gain a clearer understanding of the relationship between structures and properties of polymeric dielectrics, and shine light on the design of polymeric dielectrics for OTFTs with different applications.

    2 COMPUTATIONAL DETAILS

    Theoretical calculations of one monomer and two repeated units of the polymer were carried out, respectively. Geometry optimizations and frequency analyses were implemented by ORCA 4.2.1 program using dispersion corrected methods B3LYP-D3 (B3LYP with Grimme’s DFT-D3 correction) in conjunction with the def2-TZVP basis set[31].

    3 RESULTS AND DISCUSSION

    3. 1 Synthesis and characterization of polymeric dielectrics

    Acrylate and acrylamide monomers were synthesized by reacting acryl chloride with corresponding alcohols and alkylamines, respectively (Fig. 1a). Subsequent polymerizing the monomers by reversible addition fragmentation chain transfer (RAFT) reaction in 1,4-dioxane gives polymers as white solids in good yields (> 80%), requiring only precipitation and centrifugation for purification. In the following text, poly(octyl acrylate), poly(benzyl acrylate) and poly(naphthalen-1-ylmethyl acrylate) are denoted as A1, A2 and A3, respectively, and poly(N-octyl acryamide), poly(Nbenzyl acrylamide) and poly(N-(naphthalen-1-ylmethyl)-acrylamide) are named as B1, B2 and B3, respectively(Fig. 1b). 1H NMR spectra unambiguously confirm their chemical structures (Fig. S1). Gel permeation chromatogramphy (GPC) characterizations show that all these polymers gain molecular weight ranging from 12,000 to 24,000 with narrow polydispersity index (1.3~1.6, Table S1). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests indicate that the thermal stability and glass transition temperature (Tg) increase with the rigidity of the pendant group (Fig. S2, S3), in good agreement with previous reports[21]. Water contact angle tests (Fig. S4) reveal that the polyamides (B1, B2 and B3) exhibit higher hydrophilicity than the corresponding polyesters (A1, A2 and A3).

    Fig. 1. (a-b) Synthesis route and chemical structures of polymer dielectrics. (c) Device architecture of organic thin film transistor

    3. 2 Device fabrication and characterizations

    Device fabrication and characterizations dielectric capacitance and leakage current density of the polymers are investigated by using devices with MIM configuration(metal-insulator-metal). The thickness of the films is around 1000 nm. As shown in Fig. 2a and Fig. S5, these polymer dielectric films show typical frequency-dependent capacitance spanning from 35 to 111 nF/cm2(κ: 2.1~6.5 @20 Hz).Moreover, the capacitance of polyamide is ~2 times larger than the value of polyester counterparts. Varying the pendant groups gives rise to negligible influence to the capacitance.To explain the higher capacitance of polyamides than polyesters, a hypothesis suggests the amide group serves as a localized molecular dipole pointing from the oxygen to nitrogen atom. In the absence of external electric field, these dipoles are randomly orientated. However, upon applying an external electric field, these dipoles realign themselves and form apparent large dipoles across the film (Fig. 2b). The resulting large dipole moment enables more induced charge carriers and therefore enhances the capacitance. Moreover,the hydrogen bonds between neighboring amide groups further strengthen the alignment and slow down the dipole relaxation, leading to more pronounced hysteresis behavior(vide infra). In contrast, the dipole moment of ester group(2.2~2.6 D) is much smaller than the value of amide group(3.8~4.0 D), resulting in weak interaction between the external electric field and ester groups and reducing the capacitances. Additionally, the absence of hydrogen bonding between ester groups helps to dissociate the alignment rapidly and gives rise to good bias-stress stability (vide infra).

    It’s well-known that noncovalent interaction plays an important role in spatial arrangement of molecules[22,23], so noncovalent interaction (NCl) analysis for these six polymers is conducted based on a model developed by Yang[24-26]. In this model, the quantum-mechanical electron density,ρ, and the reduced density gradient,s(s= 1/(2(3π2)1/3)|?ρ|/ρ4/3),are the two fundamental quantities for describing the deviation from a homogeneous electron distribution. Covalent bonding and noncovalent bonding could be well distinguished from the plot ofsversusρ. In detail, plot pattern of covalent bond shows small electron density and large reduced gradient corresponding to the exponentially decaying tail regions (far from the nuclei) of the electron density, and large electron density and low reduced gradient corresponding to the covalent bond. A saddle point in the electron density(bond critical points,s= 0) is the characteristic of covalent bonds, whereas noncovalent interactions could be identified as spike regions with low electron density and low reduced gradient[24].

    To further discriminate different types of noncovalent interactions (such as hydrogen bonding, van der Waals force,and steric crowding), the sign of the Laplacian of the density,sign(λ2)ρ, is used. A large and negative sign(λ2)ρindicates attractive interactions (e.g.,dipole-dipole and hydrogen bonding), a large and positive sign(λ2)ρsuggests nonbonding interaction (e.g., steric crowding), whereas van der Waals force normally manifests itself as a small negative sign(λ2)ρvalue near zero[24]. Therefore, in polyesters, only weak van der Waals force (green spike with sign(λ2)ρ= –0.008 a.u. in Fig. 2d) and steric crowding (brown spike with sign(λ2)ρ=0.007 a.u. in Fig. 2d) exist between the neighboring repeating units, while in polyamides, besides van der Waals force and steric crowding, hydrogen bonding also appears, as indicated by the blue spike with a large negative sign(λ2)ρof –0.026 a.u. (Fig. 2f).

    The gradient isosurfaces shown in Fig. 2c and 2e, being colored according to the corresponding values of sign(λ2)ρ,provide a direct visualization of noncovalent interactions in A3 and B3 as broad regions of real space, respectively. In Fig.2c, interactions between neighboring ester groups only contain van der Waals force and steric crowding, as indicated by the green and brown isosurfaces pointed out by a black arrow in the enlarged image. In Fig. 2e, not only van der Waals force and steric crowding but also strong hydrogen bonding (light blue isosurface pointed out by a black arrow in the enlarged image) dominate the interactions between amide groups in B3. These observations are well consistent with the results shown in Fig. 2d and 2e. Thesversusρplots of A1,A2, B1 and B2 from NCI analysis are shown in Fig. S6, and the corresponding sign(λ2)ρvalues of different noncovalent interactions of these polymers are detailed in supporting information. The binding energy of hydrogen bonding could be estimated according to an equation developed by Saeedreza Emamian, ?E ≈ – 223.08 ×ρ(rBCP) + 0.7423. After filling theρ(rBCP) of B1, B2 and B3 into the equation, the binding energies of hydrogen bonding of B1, B2 and B3 are calculated to be –4.94, –5.08 and –4.92 kcal/mol,respectively[27].

    Fig. 2. (a) Capacitance versus frequency plots of six polymers. (b) Proposed mechanisms for the higher capacitance of polyamides.(c) NCI analysis of polyesters (A1, A2 and A3) and (d) plot of reduced density gradient (RDG) versus sign(λ2) ρ of A3.(e) NCI analysis of polyamides (B1, B2 and B3) and (d) plot of RDG versus sign(λ2) ρ of B3

    The leakage current density of the polymers is shown in Fig. S7. All these polymers show reasonably low leakage current ranging from 10-10to 10-6A/cm2at thickness of 1000 nm, depending on the voltage applied. Generally, polyesters exhibit better resistance to leakage, while polyamides are more leaky, probably due to the higher hydrophilicity of polyamides. Increasing the rigidity of the pendant group again shows negligible impact to the leakage current density(Fig. S7).

    After characterizing the polymer dielectrics, we next evaluate their performances in OTFTs with a typical bottom-gate top-contact device architecture (Fig. 1c). To maintain the integrity of the polymer dielectric layer,thermally evaporated pentacene is employed as a semiconducting layer, rather than spin-coated polymer semiconductor from solutions (such as P3HT in toluene).Gold is used as source and drain electrode. As would be expected, all these OTFTs give a typicalp-type switching behavior (Fig. 3 and Fig. S8) with their mobilities ranging from 2.2 × 10-2to 6.1 × 10-1cm2V-1s-1, on/off ratio spanning from 102to 105, and Vthacross from –30 to –55 V. All these data are summarized in Table 1. Interestingly, though the capacitance of polyamides is twice the capacitance of polyesters, the saturatedIdat Vg= –75 V is not significantly different when comparing polyamide OTFTs and the corresponding polyester OTFTs, probably due to the higher mobility of polyester OTFTs. It is known that a hydrophobic dielectric surface is good for charge transport due to a lower density of charge trapping sites, and vice versa. The trap density on dielectric surfaces could be calculated by equation:Ntr=CtVth/Q, whereNtris the trap density,Ctis the capacitance of polymer dielectrics andQis the elementary charge[28]. Table 1 shows the calculatedNtrof six polymers are ranging from 9.3 × 1012to 3.1 × 1013cm-2, similar to the previously reported values of polymer dielectrics[28]. In addition, polyamides give higherNtrthan polyesters, well consistent with the fact that more hydrophilic amide groups could serve as charge carrier traps. The higher charge trap density in polyamide could also well-suppress the residual current in the channel, thus leading to lowIoffand higher on/off ratios than polyester OTFTs (Table 1).

    Fig. 3. Transfer curves of OTFTs with (a-c) A1-A3 and (d-f) B1-B3 as dielectric layer

    Table 1. Summarization of Capacitance, Molecular Weight, Mobility, on/off Ratio,Threshold Voltage and Charge Trap Densities of Six Polymer Dielectrics

    Notably, dual sweeping of the OTFT transfer curves (Vd=–75 V,Vgsweeps from 2 V to –75 V then back to 2 V) reveal significant differences in the hysteresis behavior of six polymer dielectrics[29]. As shown in Fig. 4, polyester OTFTs generally show well-overlapped transfer curves at forward and reverse sweeping directions except A3, which gives rise to small but detectable hysteresis behavior. In contrast, all polyamide OTFTs show relatively larger hysteresis loops,indicating poor bias-stress stability[30]. To quantify their hysteresis behaviors, we tentatively define the hysteresis ratio as the ratio of the hysteresis loop area to the total sweeping area (Imax* (Vstop–Vstart)). As shown, OTFT with A1, A2 and A3 dielectric layer gives 9.4‰, 3.8‰ and 2.6% hysteresis ratio, respectively, while that with B1, B2 and B3 dielectric layer shows 6.3%, 6.8% and 8.3% hysteresis ratio,respectively, which are about 3 to 18 times higher than OTFT with corresponding polyester dielectric layer, indicating that the hydrophilic amide could induce large hysteresis probably due to its better charge trapping ability. Further, increasing theπelectron delocalization of the pendant groups generally enhances the hysteresis ratio. Particularly for the naphthalene group, a remarkable increment (1.3 to 6.6 times) of hysteresis ratio is observed.

    Fig. 4. Hysteresis behavior of OTFTs with (a) A1, (b) A2, (c) A3, (d) B1, (e) B2 and (f) B3 as dielectrics. The arrows indicate the loops’ direction. The number in each figure represents the memory ratio of corresponding OTFT

    To provide more insights into the hysteresis behavior of these OTFTs with different polymer dielectrics, we next investigate the charge injection barriers between pentacene and different polymer dielectrics. As known (Fig. 5), one major mechanism of the hysteresis behavior is the trapping of charge carriers in the dielectric layer. In this case, the efficiency or the energy barrier of hole injection from pentacene to polymer dielectric layer plays a decisive role in determining the hysteresis behavior of OTFTs. Therefore, the gap between the LUMO of pentacene and polymer dielectric layer is a criterion to assess the hole injection efficiency.Though the exact HOMO and LUMO levels of the polymers are difficult to measure, the monomer energy level of each corresponding polymer could be used as an indicator to evaluate the energy gap between the LUMO of pentacene and polymer dielectric layer (Table S2)[20]. Here, the HOMO and LUMO energy levels of these monomers are calculated by Density Functional Theory (DFT) and listed in Table 2 as well as in Fig. 5a. As theπelectron delocalization of the pendant groups increases, the bandgap narrows, and the LUMO level increases and approaches to the LUMO of pentacene. As a result, the hole injection barriers reduce,leading to a high hole injection efficiency, and thus more pronounced hysteresis behavior.

    Table 2. Summarization of Hysteresis Ratio, Dipole Moment, Hydrogen Binding Energy,Energy Level and Bond Critical Point of Six Polymer Dielectrics and Corresponding Devices

    Fig. 5. (a) Energy level of six dielectric polymers related to pentacene. (b) Schematic illustration of relative energy barriers of charge transfer from pentacene to six polymer dielectrics in OTFTs

    4 CONCLUSION

    In conclusion, we have synthesized a series of well-defined polyesters and polyamides containing pendant groups with progressively enhancedπelectron delocalization. NCI analysis indicates strong hydrogen bonding exists between neighboring pendant groups in polyamides, but not in polyesters. In addition, amide groups exhibit much larger dipole moment than ester groups. Attributed to the synergistic effect of hydrogen bonding interaction and higher dipole moment, the polyamide dielectrics exhibit higher κ and surface charge trapping density, and better charge storage capability than the corresponding polyester dielectrics. As a result, OTFTs with polyamide dielectric show lower mobilities, higher on/off ratios, more pronounced hysteresis and higher surface charge trapping densities than the corresponding OTFTs with polyester dielectric. Moreover, as theπelectron delocalization increases, the energy barrier between the nearest molecular orbital levels of semiconductor(LUMO) and the polymeric dielectric reduces, which facilitates the hole injection from conductive channel to dielectric layer upon biasing with gate voltages and leads to higher bias-stress instability and larger hysteresis. By combining experimental characterization and theoretical analysis, this work provides a comprehensive study on the distinct properties of different polymer dielectrics, which may help to gain a clearer understanding of the relationship between structures and properties of polymeric dielectrics,and shine light on the design of polymeric dielectrics for OTFTs with different applications.

    中文在线观看免费www的网站| 亚洲av成人av| 亚洲黑人精品在线| 成熟少妇高潮喷水视频| 免费一级毛片在线播放高清视频| 亚洲国产日韩欧美精品在线观看| 成人国产综合亚洲| 不卡视频在线观看欧美| 国产三级中文精品| 久久人人爽人人爽人人片va| 麻豆国产av国片精品| 99久久成人亚洲精品观看| 日韩欧美在线乱码| 国产乱人视频| 九九热线精品视视频播放| 久久九九热精品免费| 国产精品久久久久久久久免| 看片在线看免费视频| 欧美三级亚洲精品| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 日本在线视频免费播放| 又紧又爽又黄一区二区| 一进一出好大好爽视频| a在线观看视频网站| 老司机福利观看| 特级一级黄色大片| 97人妻精品一区二区三区麻豆| 亚洲狠狠婷婷综合久久图片| 国产成人av教育| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 国产精品一及| 春色校园在线视频观看| 国内精品久久久久精免费| 在线a可以看的网站| www日本黄色视频网| 亚洲av一区综合| 亚洲欧美激情综合另类| 麻豆一二三区av精品| av在线蜜桃| 日韩欧美 国产精品| 看免费成人av毛片| 真人一进一出gif抽搐免费| 女人十人毛片免费观看3o分钟| 搡老熟女国产l中国老女人| 99久久成人亚洲精品观看| 久久久精品大字幕| 久久久精品大字幕| 欧美高清成人免费视频www| 中文字幕av在线有码专区| 91狼人影院| 黄色配什么色好看| 欧美日韩综合久久久久久 | 成人国产一区最新在线观看| 国产av在哪里看| 精华霜和精华液先用哪个| 成人毛片a级毛片在线播放| 麻豆国产av国片精品| 精品久久久久久久末码| 成人午夜高清在线视频| 亚洲av第一区精品v没综合| 亚洲午夜理论影院| 亚洲性久久影院| 一个人看的www免费观看视频| 亚洲经典国产精华液单| 网址你懂的国产日韩在线| 亚洲电影在线观看av| 日韩人妻高清精品专区| 少妇人妻一区二区三区视频| eeuss影院久久| 超碰av人人做人人爽久久| 热99re8久久精品国产| 九色国产91popny在线| 欧美最新免费一区二区三区| 国产高清视频在线观看网站| 中文字幕精品亚洲无线码一区| 欧美一级a爱片免费观看看| 成人特级黄色片久久久久久久| 九九久久精品国产亚洲av麻豆| 岛国在线免费视频观看| 免费黄网站久久成人精品| 一个人看视频在线观看www免费| 99国产极品粉嫩在线观看| 91久久精品国产一区二区三区| 男人和女人高潮做爰伦理| 国产大屁股一区二区在线视频| 一个人看的www免费观看视频| 久久精品久久久久久噜噜老黄 | 内射极品少妇av片p| 午夜福利18| 舔av片在线| 日韩 亚洲 欧美在线| 国产精品野战在线观看| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 99热这里只有是精品在线观看| 中文字幕高清在线视频| 一级a爱片免费观看的视频| 校园人妻丝袜中文字幕| 黄色丝袜av网址大全| 日本成人三级电影网站| 深夜精品福利| 久久久久性生活片| 国产黄片美女视频| 欧美精品国产亚洲| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 少妇丰满av| 欧美激情在线99| 日韩欧美在线二视频| 成年版毛片免费区| 久久久久久久久久黄片| 国产精华一区二区三区| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 国国产精品蜜臀av免费| 老司机午夜福利在线观看视频| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 中文字幕久久专区| 亚洲自拍偷在线| 欧美激情在线99| 在线播放国产精品三级| 国产午夜福利久久久久久| 五月玫瑰六月丁香| x7x7x7水蜜桃| 看十八女毛片水多多多| 日本精品一区二区三区蜜桃| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 婷婷精品国产亚洲av在线| 欧美一区二区亚洲| 直男gayav资源| 国产精品亚洲一级av第二区| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 一级黄色大片毛片| 床上黄色一级片| x7x7x7水蜜桃| 天天一区二区日本电影三级| 他把我摸到了高潮在线观看| 久久国内精品自在自线图片| 亚洲国产日韩欧美精品在线观看| 丰满的人妻完整版| 在线免费十八禁| 麻豆一二三区av精品| 精品人妻视频免费看| 国产精品久久久久久av不卡| 中文字幕久久专区| 最好的美女福利视频网| 日韩欧美精品免费久久| 国产激情偷乱视频一区二区| 日韩中字成人| 最后的刺客免费高清国语| 真实男女啪啪啪动态图| 永久网站在线| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 久久久久久九九精品二区国产| 国产精品精品国产色婷婷| 久久久国产成人免费| 亚洲男人的天堂狠狠| 成人美女网站在线观看视频| 国产高清有码在线观看视频| 搡老妇女老女人老熟妇| 中文亚洲av片在线观看爽| 亚洲av二区三区四区| 国产一区二区三区av在线 | 成人三级黄色视频| 国内毛片毛片毛片毛片毛片| 亚洲精品456在线播放app | or卡值多少钱| 露出奶头的视频| 久久久久久久午夜电影| 亚洲中文字幕日韩| 熟女电影av网| 成人三级黄色视频| 床上黄色一级片| 久久国内精品自在自线图片| 国产精品久久电影中文字幕| 久久久久免费精品人妻一区二区| 国产午夜福利久久久久久| 黄片wwwwww| 91久久精品国产一区二区三区| 色吧在线观看| 成人特级av手机在线观看| 99riav亚洲国产免费| 午夜福利成人在线免费观看| 99精品在免费线老司机午夜| 一级黄片播放器| 久久久久久久午夜电影| 两个人视频免费观看高清| 女人十人毛片免费观看3o分钟| 久99久视频精品免费| 欧美国产日韩亚洲一区| 欧美+日韩+精品| 神马国产精品三级电影在线观看| 国产精品久久久久久精品电影| 亚洲无线在线观看| 精品欧美国产一区二区三| 别揉我奶头 嗯啊视频| 伊人久久精品亚洲午夜| 久久久午夜欧美精品| 十八禁网站免费在线| 亚洲五月天丁香| 一级av片app| 国产欧美日韩精品一区二区| 美女免费视频网站| 亚洲va在线va天堂va国产| 国产精品电影一区二区三区| 黄片wwwwww| 毛片女人毛片| 老熟妇乱子伦视频在线观看| 长腿黑丝高跟| 亚洲不卡免费看| 一级黄色大片毛片| 国产精品爽爽va在线观看网站| 老司机福利观看| 精品一区二区三区视频在线观看免费| 成人午夜高清在线视频| 真人做人爱边吃奶动态| 亚洲综合色惰| 啦啦啦啦在线视频资源| 三级国产精品欧美在线观看| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 国产三级在线视频| 99久久精品国产国产毛片| 看黄色毛片网站| 少妇人妻一区二区三区视频| 99精品久久久久人妻精品| 一个人看视频在线观看www免费| 亚洲一级一片aⅴ在线观看| 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 88av欧美| 精品午夜福利视频在线观看一区| 亚洲专区中文字幕在线| 一区二区三区免费毛片| 国产av麻豆久久久久久久| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 久久久久免费精品人妻一区二区| 亚洲精品粉嫩美女一区| 久久久精品大字幕| 亚洲综合色惰| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 国产黄a三级三级三级人| 人妻久久中文字幕网| 22中文网久久字幕| 桃红色精品国产亚洲av| 伦理电影大哥的女人| 舔av片在线| 十八禁国产超污无遮挡网站| 午夜影院日韩av| 在现免费观看毛片| av福利片在线观看| 亚洲欧美日韩卡通动漫| 欧美潮喷喷水| 亚洲av免费在线观看| 欧美成人免费av一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 91av网一区二区| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 国产伦人伦偷精品视频| 大又大粗又爽又黄少妇毛片口| 美女大奶头视频| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 18禁黄网站禁片免费观看直播| 人妻少妇偷人精品九色| 成人特级黄色片久久久久久久| а√天堂www在线а√下载| 国产探花在线观看一区二区| 高清日韩中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 国产av在哪里看| 亚洲欧美日韩高清专用| 国产亚洲精品久久久久久毛片| 国产伦人伦偷精品视频| 久久久久免费精品人妻一区二区| 国产主播在线观看一区二区| 熟妇人妻久久中文字幕3abv| 国产精品一区二区免费欧美| 在线a可以看的网站| 国产精品一及| 美女cb高潮喷水在线观看| 天堂网av新在线| 亚洲电影在线观看av| 国产av不卡久久| 午夜精品久久久久久毛片777| 亚洲欧美日韩高清在线视频| 熟女电影av网| 女生性感内裤真人,穿戴方法视频| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 人人妻人人澡欧美一区二区| 在线观看午夜福利视频| 看片在线看免费视频| 97人妻精品一区二区三区麻豆| 日韩 亚洲 欧美在线| 欧美三级亚洲精品| 桃红色精品国产亚洲av| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 色综合色国产| 日本a在线网址| 在线国产一区二区在线| a级毛片免费高清观看在线播放| 国产综合懂色| 色吧在线观看| 色尼玛亚洲综合影院| 亚洲精品日韩av片在线观看| 欧美丝袜亚洲另类 | av.在线天堂| 久久久久久久精品吃奶| 内射极品少妇av片p| 久久久久久大精品| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件 | 黄色丝袜av网址大全| 黄片wwwwww| 又爽又黄无遮挡网站| 91午夜精品亚洲一区二区三区 | 91久久精品电影网| 真人一进一出gif抽搐免费| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 成人国产综合亚洲| 亚洲黑人精品在线| 亚洲经典国产精华液单| 最近最新免费中文字幕在线| 亚洲av二区三区四区| 亚洲av一区综合| 久久久精品大字幕| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 97碰自拍视频| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 日韩在线高清观看一区二区三区 | 中文在线观看免费www的网站| 一a级毛片在线观看| 99热这里只有是精品在线观看| 日本免费一区二区三区高清不卡| 一本一本综合久久| 日本黄色视频三级网站网址| 亚洲欧美清纯卡通| 国产亚洲精品久久久久久毛片| 69av精品久久久久久| 在线观看舔阴道视频| 成年女人永久免费观看视频| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 国产av一区在线观看免费| 男女下面进入的视频免费午夜| 国产单亲对白刺激| 午夜福利18| 一级黄片播放器| 12—13女人毛片做爰片一| 国产亚洲精品久久久com| 黄色日韩在线| 中国美女看黄片| 免费av不卡在线播放| 丝袜美腿在线中文| 久久久久国产精品人妻aⅴ院| 亚洲av一区综合| 韩国av一区二区三区四区| 成年女人永久免费观看视频| 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 乱码一卡2卡4卡精品| 国产高清激情床上av| 亚洲图色成人| 久久亚洲精品不卡| 亚洲图色成人| 97超视频在线观看视频| 日韩欧美免费精品| 在线国产一区二区在线| 我要搜黄色片| 欧美精品啪啪一区二区三区| 99国产精品一区二区蜜桃av| av福利片在线观看| 精品欧美国产一区二区三| av在线蜜桃| 午夜爱爱视频在线播放| 亚洲精品在线观看二区| 成人二区视频| 久久精品国产自在天天线| 欧美另类亚洲清纯唯美| 一进一出好大好爽视频| 久久久精品大字幕| 久久精品综合一区二区三区| 亚洲午夜理论影院| 亚洲av第一区精品v没综合| 国内精品一区二区在线观看| 最近最新免费中文字幕在线| 欧美三级亚洲精品| 能在线免费观看的黄片| 日韩一本色道免费dvd| 热99re8久久精品国产| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 精品国产三级普通话版| 天堂影院成人在线观看| 长腿黑丝高跟| 日韩在线高清观看一区二区三区 | 免费观看精品视频网站| 亚洲精品国产成人久久av| 成人永久免费在线观看视频| 久久久久久久精品吃奶| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 神马国产精品三级电影在线观看| 欧美中文日本在线观看视频| 欧美bdsm另类| 级片在线观看| 色哟哟·www| 国产在线男女| 国内毛片毛片毛片毛片毛片| 白带黄色成豆腐渣| 国产亚洲av嫩草精品影院| 22中文网久久字幕| 干丝袜人妻中文字幕| 美女免费视频网站| 尤物成人国产欧美一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美一级a爱片免费观看看| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 国产精品自产拍在线观看55亚洲| 久久精品国产亚洲av涩爱 | 99九九线精品视频在线观看视频| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 亚洲成人免费电影在线观看| 成人性生交大片免费视频hd| av福利片在线观看| 俺也久久电影网| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 久久久久久久久久成人| 免费人成视频x8x8入口观看| 国产乱人伦免费视频| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 免费看美女性在线毛片视频| 婷婷精品国产亚洲av| 免费观看的影片在线观看| 我的老师免费观看完整版| x7x7x7水蜜桃| 日韩精品有码人妻一区| 最近最新中文字幕大全电影3| 精品久久久久久久久av| 欧美人与善性xxx| 免费搜索国产男女视频| 国内精品美女久久久久久| x7x7x7水蜜桃| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 男女之事视频高清在线观看| 日本成人三级电影网站| 简卡轻食公司| 美女免费视频网站| 久久国产精品人妻蜜桃| 麻豆国产97在线/欧美| 在线播放无遮挡| 丝袜美腿在线中文| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美白嫩少妇大欣赏| 国产 一区精品| 直男gayav资源| 亚洲自偷自拍三级| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频 | 特级一级黄色大片| 亚洲欧美清纯卡通| 2021天堂中文幕一二区在线观| 欧美国产日韩亚洲一区| 亚洲av日韩精品久久久久久密| 国产精品乱码一区二三区的特点| 久久国内精品自在自线图片| 亚洲自拍偷在线| 国产aⅴ精品一区二区三区波| 国产精品日韩av在线免费观看| 黄色配什么色好看| 午夜精品久久久久久毛片777| 美女免费视频网站| 免费观看精品视频网站| 成人午夜高清在线视频| 国产女主播在线喷水免费视频网站 | 免费观看人在逋| 国产熟女欧美一区二区| 日本黄色片子视频| 日韩欧美三级三区| 特级一级黄色大片| 在现免费观看毛片| 婷婷色综合大香蕉| 国产精品电影一区二区三区| 日韩av在线大香蕉| 日韩一本色道免费dvd| 国产精品久久电影中文字幕| 国国产精品蜜臀av免费| 国产黄片美女视频| 午夜激情福利司机影院| 一进一出好大好爽视频| 亚洲成av人片在线播放无| 亚洲精品影视一区二区三区av| 大型黄色视频在线免费观看| 亚洲精品乱码久久久v下载方式| 国国产精品蜜臀av免费| av福利片在线观看| 国产日本99.免费观看| 久久久久久伊人网av| netflix在线观看网站| 一区二区三区免费毛片| av在线观看视频网站免费| 乱码一卡2卡4卡精品| 美女xxoo啪啪120秒动态图| 一区二区三区激情视频| 成人二区视频| 天堂√8在线中文| 欧美日韩瑟瑟在线播放| 亚洲成人久久爱视频| 婷婷六月久久综合丁香| 国产亚洲精品综合一区在线观看| 日韩高清综合在线| 国产一区二区三区av在线 | 中文字幕免费在线视频6| 午夜a级毛片| 日韩精品中文字幕看吧| 一区二区三区免费毛片| 如何舔出高潮| 色在线成人网| 久久久久久久午夜电影| 精品国内亚洲2022精品成人| 日韩欧美精品v在线| 日本三级黄在线观看| 国产爱豆传媒在线观看| 女的被弄到高潮叫床怎么办 | 欧美xxxx性猛交bbbb| 村上凉子中文字幕在线| 日韩 亚洲 欧美在线| 国内揄拍国产精品人妻在线| 久久久久性生活片| 婷婷精品国产亚洲av在线| 欧美极品一区二区三区四区| 一区福利在线观看| 色综合婷婷激情| 淫秽高清视频在线观看| 国产视频一区二区在线看| 国内毛片毛片毛片毛片毛片| 99视频精品全部免费 在线| 久久精品国产亚洲网站| 日本五十路高清| 国产 一区 欧美 日韩| 国产主播在线观看一区二区| 亚洲人成网站在线播| 婷婷六月久久综合丁香| 黄片wwwwww| 午夜福利视频1000在线观看| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清在线视频| 欧美精品国产亚洲| 人妻制服诱惑在线中文字幕| 精品免费久久久久久久清纯| 亚洲成人久久性| 亚洲男人的天堂狠狠| 免费av毛片视频| 国产午夜精品论理片| 搡老妇女老女人老熟妇| 成年女人看的毛片在线观看| 国产v大片淫在线免费观看| 91av网一区二区| 国产av麻豆久久久久久久| 嫩草影院入口| 亚洲成人免费电影在线观看| 老司机午夜福利在线观看视频| 日本与韩国留学比较| 欧美日韩亚洲国产一区二区在线观看| 哪里可以看免费的av片| 色综合婷婷激情| 久久午夜亚洲精品久久| 久久精品久久久久久噜噜老黄 | 国产一区二区三区视频了| 一本久久中文字幕| 一区二区三区高清视频在线| 亚洲国产精品久久男人天堂| 午夜a级毛片| 国产伦在线观看视频一区| 国产欧美日韩一区二区精品| 久久精品人妻少妇|