• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Water-stable Tetranuclear Cd(II) Bicyclic Complex Used for the Picric Acid Detection①

    2021-11-25 07:23:28WANGMingWANGXiaoMeiCHENMingYuLIUChengDINGGeZHOUXinHui
    結構化學 2021年11期

    WANG Ming WANG Xiao-Mei CHEN Ming-Yu LIU Cheng DING Ge ZHOU Xin-Hui

    (Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China)

    ABSTRACT By solvothermal reaction of Cd(II) with organic ligand N,N?-bis(3,5-dicarboxylphenyl)-thiophene-2,5-dicarboxamide (H4L), a water-stable complex [Cd4(H2L)4(H2O)10]·2CH3OH·8H2O·4DMF (1, C102H120Cd4N12O64S4)has been successfully synthetized (DMF = N,N-dimethylformamide). 1 crystallizes in the triclinic space group of P1 with a = 11.815(7), b = 16.209(9), c = 16.742(9) ?, α = 82.224(13)o, β = 76.741(13)o, γ = 70.313(12)o, V =2932(3) ?3, Mr = 3115.93, Z = 1, F(000) = 1584, Dc = 1.765 Mg/cm3, μ = 0.901 mm?1, GOOF = 1.101, the final R= 0.0391 and wR = 0.1297 for 9007 observed reflections (I > 2σ(I)). 1 is a tetranuclear Cd(II) bicyclic complex with strong ligand-based blue emission and can stably exist in aqueous solutions over the pH range of 2~11. 1 exhibits high sensitivity, selectivity and anti-interference capability for picric acid (PA) detection in aqueous solution by luminescent quenching. The value of quenching constant (Ksv) is 3.2 × 104 M-1 within the PA concentration range of 0~40 μM and the detection limit is 6.89 × 10-7 M. Lastly, we went into depth on possible mechanism of the luminescent quenching.

    Keywords: sensors, complex, picric acid, fluorescence; DOI: 10.14102/j.cnki.0254-5861.2011-3182

    1 INTRODUCTION

    As people pay more and more attention to health and safety issues, there is a growing demand for effective detection of nitroaromatic compounds. Among them, picric acid, a toxic pollutant and highly explosive molecule, is particularly noteworthy. It is widely used in the production of fireworks, dyes, pesticides and landmines[1,2]. Therefore, it is necessary to develop a convenient and effective method to detect PA in aqueous solution.

    As a new type of organic-inorganic hybrid materials,coordination complexes have broad prospects for development[3,4]. It shows unique characteristics, including large specific surface area, well-defined structure, etc[5,6].Therefore, complexes can be extensively used in numerous fields, containing catalysis[7], gas separation[8], sensing[9,10]and other functional materials[11]. Currently, luminescent complexes have been greatly researched as sensors to detect metal ions[12,13], anions[14,15], small molecules[16,17], pH[18],and so on. As a connecting component, organic ligand plays a vital role in the performance of complex materials. In the past few decades, most studies have been focused on specific ligands, especially the carboxylate, pyrene and pyridine ligands[19-23]. While, the ligands containing thiophere ring have received little attention, which can exhibit excellent electron-transfer capabilities[2]. In addition, aromatic carboxylate ligands withπ-conjugated system have strong coordination effects and can greatly affect luminescent properties[24,25]. Importantly,π-electron-rich complexes could be excellent sensors to detectπ-electron-deficient nitroaromatic compounds due to the photo induced electron-transfer mechanism[26-28]. At present, there are still challenges in designing and synthesizing coordination complexes with excellent stability[29]. Therefore, we tried to use the strategy of carboxylate ligands with sulfur rings to construct stable coordination complex materials.

    In this work, we report a new coordination complex[Cd4(H2L)4(H2O)10]·2CH3OH·8H2O·4DMF (1, C102H120-Cd4N12O64S4), based on a carboxylate ligand N,N?-bis(3,5-dicarboxylphenyl)-thiophene-2,5-dicarboxamide (H4L). 1 exhibits good chemical stability, which can keep structural integrity not only in water and air for at least three months but also in the aqueous solutions over the pH range of 2~11.It is particularly worth mentioning that 1 is an excellent luminescence probe for detecting PA with high sensitively and selectively. In addition, the possible luminescent quenching mechanisms towards PA have also been discussed in detail.

    2 EXPERIMENTAL

    2. 1 General

    The ligand was synthesized according to the literature[30].All other reagents were purchased commercially and used without any purification.

    Elemental analyses (C, H, N) were carried out on a Perkin-Elmer 240C analyzer. FT-IR spectra were measured in the range of 400~4000 cm-1with a PerkinElmer-Spectrum on KBr pellets. The thermogravimetric analyses (TGA) were preformed from room temperature to 800 °C under a nitrogen atmosphere on a NETZSCH STA2500 simultaneous DTA-TG apparatus instrument. Powder X-ray diffraction patterns(PXRD) data of all samples were collected in the 5~50° range of 2θwith a scan step width of 0.02° on a Bruker D8 Advance A25 diffractometer (CuKα,λ= 1.5418 ?). The UV-Vis absorption spectra were recorded on a LAMBDA 35 spectrophotometer. Photoluminescence spectra were carried out using a RF-5301PC spectrofluorophotometer at room temperature.

    2. 2 Synthesis

    A mixture of CdCl2·2.5H2O (138.4 mg, 0.6 mmol), N,N?-bis(3,5-dicarboxylphenyl)-thiophene-2,5-dicarboxamide(50 mg, 0.01 mmol), DMF (3 mL), H2O (3 mL), CH3OH (1 mL)and 4 drops of an aqueous HCl solution (0.2 M) was sealed into a 25 mL Teflon-lined stainless-steel container. The container was heated at 70 °C for 3 days. After the autoclave was cooled to room temperature, colorless needle crystals were obtained, washed with deionized water, and then dried in a vacuum oven. Elemental analysis calcd. for C102H120Cd4N12O64S4(%): C, 39.32; N, 5.39; H, 3.88. Found:C, 39.35; N, 5.46; H, 3.80. IR (KBr pellet, cm-): 3480 (b),1656 (s), 1553 (vs), 1413 (m), 1330 (s), 1281 (m), 1247 (m),907(vs), 768 (w), 699 (w), 594 (w), 435(w).

    2. 3 Stability investigation

    Aqueous solutions with different pH values, ranging from 2 to 12, were prepared. Then, samples were soaked in pH solution for 24 h, respectively. After centrifugation and drying, all the samples were performed PXRD measurement.

    2. 4 Luminescence sensing

    Unless otherwise specified, all luminescence measurements were executed in aqueous solution. A suspension of sample was prepared by adding 3 mg powder to 3 mL ultrapure water or ethanol under ultrasonic agitation for 30 minutes.

    2. 5 X-ray crystallography

    Single-crystal X-ray diffraction data were collected on a Bruker Smart Apex CCD diffractometer with graphite-monochromated Mo-Kαradiation (λ= 0.71073 ?) at 100(2) K using anω-θscan mode in the range of 1.87≤θ≤25.00°.Raw frame data were integrated with the SAINT program.The structure was solved by direct methods using SHELXS-2014[31]and refined by full-matrix least-squares onF2using SHELXL-2014[32]. An empirical absorption correction was applied with the program SADABS[33]. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined as riding atoms. The selected bond lengths and bond angles are showed in Table S1.

    3 RESULTS AND DISCUSSION

    3. 1 Structure of 1

    X-ray single crystal diffraction analysis reveals that 1 crystallizes in triclinic space groupP1. The asymmetric unit of 1 includes two crystallographically unique Cd(II) ions, two partly deprotonated H2L2-ligands, five coordinated H2O molecules, four uncoordinated H2O molecules, one uncoordinated CH3OH molecule and two uncoordinated DMF molecules (Fig. 1a). Each Cd(II) ion is coordinated by seven oxygen atoms, four of which are from two H2L2-ligands, and three from three H2O molecules, forming the pentagonal bipyramidal coordination geometry. The four carboxyl groups of the two L4-ligands chelate with two Cd(II) ions to form a Cd2L2ring, and such two Cd2L2rings are further connected by two water molecules double-bridging two Cd(II) ions to form a tetranuclear Cd(II) bicyclic complex, which are stacked into a 3D supramolecular structure (Fig. 1b). The porosity of 1 is 25.2%.

    Fig. 1. (a) Two connected asymmetric units of 1 with thermal ellipsoids drawn at the 50% probability level;(b) 3D packing diagram of 1. All hydrogen atoms, H2O, CH3OH and DMF molecules are omitted for clarity

    3. 2 TGA and PXRD of 1

    Thermo-gravimetric analysis (TGA) of 1 was performed under a nitrogen atmosphere (Fig. S1). The first weight loss of 12.66% occurs from room temperature to 102 °C,corresponding to the removal of two uncoordinated CH3OH molecules, eight uncoordinated H2O molecules and ten coordinated H2O molecules (calcd. 12.46%). Then, the second weight loss of 9.40% in the temperature range of 102~330 °C is consistent with the departure of four uncoordinated DMF molecules (calcd. 9.38%). Further heating results in the decomposition of the organic ligands.

    Powder X-ray diffraction of 1 was carried out in order to verity the phase purity and chemical stability. As shown in Fig. S2, the PXRD pattern of as-synthesized 1 keeps in good agreement with the simulated one, demonstrating high phase purity of the as-synthesized sample. Additionally, the PXRD patterns of the sample in different solvents, acidic and basic aqueous solutions (pH range of 2~12) for 24 h were obtained(Fig. S2 and S3), indicating that 1 possessed excellent chemical stability.

    The IR spectra of free ligand and 1 are tested, and the results are presented in Fig. S4. Distinctly, an absorption band centered at 1705 cm-1is observed in ligand, which is ascribed to the stretching vibration of C=O bond of the carboxyl groups. But it is absent in 1, indicating the ligand was coordinated with Cd(II). Moreover, the broad peak at 3750~2500 cm-1further confirmed the presence of H2O molecules in 1. The strong absorption at 1553 cm-1is attributed to the C=N stretching vibration.

    3. 3 Luminescence properties

    The luminescence properties of H4L and 1 are investigated in the solid state at room temperature. As shown in Fig. 2, the H4L exhibits a luminescent emission peak at 450 nm upon excitation at 363 nm. 1 displays an emission peak at 463 nm when excited at 375 nm. By comparing the fluorescence spectra of 1 and H4L, we can see that they keep a high degree of similarity, so the fluorescence emission of 1 mainly comes from the inherent properties of the ligand itself. In addition, a 13 nm red shift of 1 compared to the H4L is observed, which may be attributed to the enhancement of ligand rigidity after coordination[6].

    Fig. 2. Fluorescence spectra of 1 in solid state at room temperature

    3. 4 Sensing of nitroaromatic compounds

    The luminescence properties of 1 in different solvents are further measured. It is worth pointing out that the intensity of 1 in water is the strongest (Fig. S5). Additionally, 1 is stable after immersion in water for 3 months, as confirmed by the PXRD patterns (Fig. 3). So, unless otherwise specified, all luminescence measurements were executed in aqueous solution.

    Fig. 3. X-ray powder diffraction patterns of sample 1 in water/air for 3 months

    In order to explore the luminescence response of 1 towards various nitro explosive, 3.0 mg sample of 1 was ground and dispersed in 3.0 mL water or ethanol, then we kept them in ultrasonic treatment for 30 minutes. Considering the solubility, for the detections of 2,4-dinitrotoluene (2,4-DNT),3,4-dinitrotoluene (3,4-DNT), 4-nitrotoluene (4-NT),2-nitrotoluene (2-NT), 1,3-dinitrobenzene (1,3-DNB), 1,2-dinitrobenzene (1,2-DNB) and 2,3-dimethyl-2,3-dinitrobutane (DMNB), ethanol was used as the dispersion medium and solvent. While the detections for picric acid (PA),p-nitrophenol (4-NP),m-nitrophenol (3-NP) ando-nitrophenol (2-NP) were tested in both water and ethanol.The luminescence intensity at 463 nm of 1 after adding various nitroaromatic compounds (100 μM) in water or ethanol were displayed in Fig. 4. Obviously, the order of quenching percentage in aqueous solution is PA > 2-NP >4-NP > 3-NP. When ethanol is used as the dispersion medium,PA still possesses the most remarkable quenching capacity towards 1. Specifically, PA shows 87.8% quenching effect in water and 77% in ethanol. Additionally, competitive experiment was carried out by adding equal amount of other nitroaromatic compounds to 1-ethanol suspension containing PA, respectively. It could be clearly observed that other nitroaromatic compounds did not interfere with the sensing ability of 1 for PA (Fig. S6). These results indicate that 1 possesses a good selective luminescence response towards PA.

    Fig. 4. Quenching efficiency of emission intensity of 1 with different nitro compounds in water/ethanol (50 μmol/L)

    To further evaluate the sensitivity of 1 for sensing PA, the quantitative titration experiments were conducted. Besides,luminescence quenching titrations of 2-NP, 3-NP and 4-NP were also performed to compare with PA (Fig. S7). As shown in Fig. 5a, with increasing the PA concentration (0~250 μM),the luminescent intensity at 463 nm of 1 suspension decreased gradually. The emission of 1 was quenched completely when the concentration of PA was 150 μM. It is worth pointing out that the maximum emission at 463 nm shifts gradually to 483 nm upon the addition of PA. It can be seen that theI0/Iand the concentration of PA keep a good linear relationship (R2= 0.991) during the concentration range from 0 to 40 μM (Fig. 5b). According to the Stern-Volmer (SV) equation, theKsvvalue is calculated to be 3.2 × 104M-1. The limit of detection was up to 6.89 × 10-7M.In addition, theKsvvalues are 3.82 × 103M-1for 2-NP, 8.11 ×102M-1for 3-NP and 2.85 × 103M-1for 4-NP, respectively.

    Fig. 5. (a) Emission spectra of 1 after adding different concentrations of PA;(b) Stern-Volmer curve for PA in the concentration range of 0~40 μmol/L

    The regeneration of a sensor is also a vital factor toward its practical applications. The recycling experiment was carried out. After each round of testing, we collected 1 by centrifugation and washed it with water. As shown in Fig. 6,the luminescence intensity of 1 can almost be regained after washing. These results strongly advocate that 1 has good recyclability, which means it can be a promising sensor for the practical use.

    Fig. 6. Three cycles test of 1 suspension for detecting PA (30 μM)

    3. 5 Sensing mechanism

    We investigated the luminescence quenching mechanisms in order to better understand the reason behind quenching of 1 towards PA. We first attempted to verify whether the framework structure collapsed. As shown in Fig. 3, the PXRD pattern of sample after detection is consistent with the as-synthesized one. Therefore, 1 still keeps structural integrity during the sensing progress. There is no obvious change in IR spectra of 1 before and after the PA detecting test (Fig. S2), which can prove the above view from the other side. Secondly, the absorption spectra of nitroaromatic compounds were recorded in ethanol. We could know that the higher the spectral overlap between the absorbance spectrum of nitroaromatic compounds and excitation spectrum of 1, the greater the probability of competitive absorption, so higher luminescence quenching percentage occurred. As shown in Fig. 7, the absorption band of PA from 300 to 450 nm shows the highest overlap with the excitation spectrum of 1,indicating the reason of higher quenching percentage of PA.In addition, there also exists overlap between the emission spectrum of 1 and absorption spectrum of PA in ethanol. Thus,the resonance energy transfer (RET) is another possible reason for luminescence quenching. Moreover, a red shift in the maximum emission of 1 suspension after adding PA could be observed, indicating electrostatic interactions between PA and electron-rich 1. Finally, according to previous literature,-OH group on PA and Lewis basic -N sites on 1 can form strong intermolecular interactions[34]. In a word, competitive absorption, RET and electrostatic interactions are mainly responsible for the luminescent quenching.

    Fig. 7. UV-Vis adsorption spectra of various nitro compounds

    4 CONCLUSION

    In summary, a water-stable coordination complex 1 was successfully synthesized based on the solvothermal reaction of Cd(II) and organic ligand N,N?-bis(3,5-dicarboxylphenyl)-thiophene-2,5-dicarboxamide. 1 possesses excellent chemical stability in a wide pH range (2~11) and strong blue luminescence emission in water media. 1 could be employed as a luminescence probe to detect the PA multiple times with high sensitivity, selectivity and anti-interference. The possible quenching mechanisms could be attributed to the competitive absorption, RET and electrostatic interactions.

    REFERENCE

    (1) Xu, T.Y.; Li, J. M.; Han, Y. H.; Wang, A. R.; He, K. H.; Shi, Z. F. A new 3D four-fold interpenetrated dia-like luminescent Zn(II)-based metal-organic framework: the sensitive detection of Fe3+, Cr2O72?, and CrO42?in water, and nitrobenzene in ethanol. New J. Chem.2020, 44,4011–4022.

    (2) Zhuang, X. R.; Zhang, X.; Zhang, N. X.; Wang, Y.; Zhao, L. Y.; Yang, Q. F. Novel multifunctional Zn metal-organic framework fluorescent probe demonstrating unique sensitivity and selectivity for detection of PA and Fe3+ions in water solution. Cryst. Growth Des.2019, 19, 5729–5736.

    (3) Jiang, W.; Yang, J. Q.; Yan, G. S.; Zhou, S.; Liu, B.; Qiao, Y.; Zhou, T. Y.; Wang, J. J.; Che, G. B. A novel 3-fold interpenetrateddiametal-organic framework as a heterogeneous catalyst for CO2cycloaddition.Inorg. Chem. Commun.2020, 3, 113, 10770.

    (4) Ren, S. S.; Jiang, W.; Wang, Q, W.; Li, Z. M.; Qiao, Y.; Che, G. B. Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand.RSC Adv.2019, 9, 3102–3112.

    (5) Zhu, J. Y.; Xia, T. F.; Cui, Y. J.; Yang, Y.; Qian, G. D. A turn-on MOF-based luminescent sensor for highly selective detection of glutathione.J.Solid State Chem.2019, 270, 317–323.

    (6) Fan, K.; Bao, S. S.; Nie, W. X.; Liao, C. H.; Zheng, L. M. Iridium(III)-based metal-organic frameworks as multiresponsive luminescent sensors for Fe3+, Cr2O72–, and ATP2–in aqueous media.Inorg. Chem.2018, 57, 1079–1089.

    (7) Luz, I.; Parvathikar, S.; Carpenter, M.; Bellamy, T.; Amato, K. MOF-derived nanostructured catalysts for low-temperature ammonia synthesis.J.Carpenter, M. Lail, Catal. Sci. Technol.2020, 10, 105–112.

    (8) Li, Y. Z.; Wang, G. D.; Yang, H. Y.; Hou, L.; Wang, Y. Y.; Zhu, Z. H. Novel cage-like MOF for gas separation, CO2conversion and selective adsorption of an organic dye.Inorg. Chem. Front. 2020, 7, 746–755.

    (9) Guo, H.; Wu, N.; Xue, R.; Liu, H.; Li, L.; Wang, M. Y.; Yao, W. Q.; Li, Q.; Yang, W. Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe3+and Al3+ions and nitrotoluene. Colloid Surface A2020, 585, 124094.

    (10) Moradi, E.; Rahimi, R.; Farahani, Y. D.; Safarifard, V. Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as a luminescent sensor for highly selective sensing of Cd2+and Br?ions and THF small molecule.J. Solid State Chem.2020, 282, 121103.

    (11) Igoa, F.; Peinado, G.; Suescun, L.; Kremer, C.; Torres, J. Design of a white-light emitting material based on a mixed-lanthanide metal organic framework.J. Solid State Chem.2019, 279, 120925.

    (12) Zhan, Z. Y.; Liang, X. Y.; Zhang, X. L.; Jia, Y. J.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe3+, Cr3+, Al3+), PO43?ions, and nitroaromatic explosives.Dalton Trans.2019, 48, 1786–1794.

    (13) Xiao, J. N.; Liu, J. J.; Gao, X. C.; Ji, G. F.; Wang, D. B.; Liu, Z. L. A multi-chemosensor based on Zn-MOF: ratio-dependent color transition detection of Hg(II) and highly sensitive sensor of Cr (VI).Sensor Actuat. B-Chem.2018, 269, 164–172.

    (14) Xu, H.; Xiao, Y. Q.; Rao, X. T.; Dou, Z. S.; Li, W. F.; Cui, Y. J.; Wang, Z. Y.; Qian, G. D. A metal-organic framework for selectively sensing of PO43?anion in aqueous solution.J Alloys Compd.2011, 509, 2552–2554.

    (15) Qin, Y. R.; Ge, Y.; Zhang, S. S.; Sun, H.; Jing, Y.; Li, Y. H.; Liu, W. A series of Ln4IIIclusters: Dy4single molecule magnet and Tb4multi-responsive luminescent sensor for Fe3+, CrO42?/Cr2O72?and 4-nitroaniline.RSC Adv.2018, 8, 12641–12652.

    (16) Yang, Y.; Chen, L.; Jiang, F. L; Wu, M. Y.; Pang, J. D.; Wan, X. Y.; Hong, M. C. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules.CrystEngComm.2019, 21, 321–328.

    (17) Cui, Y.; Chen, F.; Yin, X. B. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2and glucose.Biosens Bioelection2019, 135, 208–215.

    (18) Yu, L.; Zheng, Q. T.; Wu, D.; Xiao, Y. X. Bimetal-organic framework nanocomposite based point-of-care visual ratiometric fluorescence pH microsensor for strong acidity.Sensor Actuat. B-Chem.2019, 294, 199–205.

    (19) Liu, W.; Wang, Y. L.; Song, L. P.; Silver, M. A.; Xie, J.; Zhang, L. M.; Chen, L. H.; Diwu, J.; Chai, Z. F.; Wang, S. Efficient and selective sensing of Cu2+and UO22+by a europium metal-organic framework.Talanta2019, 196, 515–522.

    (20) Zhou, X. H.; Chen, Q. Q.; Liu, B. L.; Li, L.; Yang, T.; Huang, W. Syntheses, structures and magnetic properties of nine coordination polymers based on terphenyl-tetracarboxylic acid ligands.Dalton Trans.2017, 46, 430–444.

    (21) Fu, H. R.; Wu, X. X.; Ma, L. F.; Wang, F.; Zhang, J. Dual-emission SG7@MOF sensor via SC–SC transformation: enhancing the formation of excimer emission and the range and sensitivity of detection.ACS Appl. Mater. Interfaces2018, 10, 18012–18020.

    (22) Luo, J.; Liu, B. S.; Zhang, X. R.; Liu, R. T. A Eu3+post-functionalized metal-organic framework as fluorescent probe for highly selective sensing of Cu2+in aqueous media.J. Mol. Struct.2019, 1177, 444–448.

    (23) Wu, K. Y.; Qin, L.; Fan, C.; Cai, S. L.; Zhang, T. T.; Chen, W. H.; Tang, X. Y.; Chen, J. X. Sequential and recyclable sensing of Fe3+and ascorbic acid in water with a terbium(III)-based metal-organic framework.Dalton Trans.2019, 48, 8911–8919.

    (24) Feng, X.; Guo, N.; Li, R. F.; Chen, H. P.; Ma, L. F.; Li, Z. J.; Wang, L. Y. A facile route for tuning emission and magnetic properties by controlling lanthanide ions in coordination polymers incorporating mixed aromatic carboxylate ligands.J. Solid State Chem.2018, 268, 22–29.

    (25) Li, R.; Qu, X. L.; Zhang, Y. H.; Han, H. L.; Li, X. Lanthanide-organic frameworks constructed from naphthalenedisulfonates: structure,luminescence and luminescence sensing properties.CrystEngComm.2016, 18, 5890–5900.

    (26) Cao, A. P.; Zhu, W.; Shang, J.; Klootwijk, J. H.; Sudh?lter, E. J. R.; Huskens, J.; de Smet, L. C. P. M. Metal-organic polyhedra-coated Si nanowires for the sensitive detection of trace explosives.Nano Lett.2017, 17, 1–7.

    (27) Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72–and nitroaromatic explosives.Cryst.Growth Des.2017, 17, 6041–6084.

    (28) Hu, Y. L.; Ding, M. L.; Liu, X. Q.; Sun, L. B.; Jiang, H. L. Rational synthesis of an exceptionally stable Zn(II) metal-organic framework for the highly selective and sensitive detection of picric acid.Chem. Commun.2016, 52, 5734–5737.

    (29) Liang, Y. T.; Yang, G. P.; Liu, B.; Yan, Y. T.; Xia, Z. P.; Wang, Y. Y. Four super water-stable lanthanide-organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+.Dalton Trans.2015,44, 13325–13330.

    (30) Wang, G. Y.; Song, C.; Kong, D. M.; Ruan, W. J.; Chang, Z.; Li, Y. Two luminescent metal-organic frameworks for the sensing of nitroaromatic explosives and DNA strands.J. Mater. Chem. A2014, 2, 2213–2220.

    (31) Sheldrick, G. M.SHELXS-2014,Program for Crystal Structure Solution. University of Gottingen, Germany 2014.

    (32) Sheldrick, G. M.SHELXL-2014,Program for the Refinement of Crystal Structure. University of Gottingen, Germany 2014.

    (33) Sheldrick, G. M.SADABS,Program for Empirical Absorption Correction of Area Detector Data. University of Gottingen, Gottingen Germany 1997.

    (34) Chen, D. M.; Zhang, N. N.; Liu, C. S.; Du, M. Dual-emitting dye@MOF composite as a self-calibrating sensor for 2,4,6-trinitrophenol.ACS Appl.Mater. Interfaces2017,9, 24671–24677.

    亚洲精品乱码久久久v下载方式 | 久久性视频一级片| 免费看日本二区| 高潮久久久久久久久久久不卡| 国产精品1区2区在线观看.| 久久久久亚洲av毛片大全| 丰满人妻一区二区三区视频av | 成人精品一区二区免费| 悠悠久久av| 91麻豆精品激情在线观看国产| 制服丝袜大香蕉在线| 无人区码免费观看不卡| 丁香六月欧美| 亚洲 国产 在线| 日本精品一区二区三区蜜桃| 校园春色视频在线观看| 脱女人内裤的视频| 国产免费一级a男人的天堂| 一区福利在线观看| 丰满的人妻完整版| av天堂中文字幕网| 啪啪无遮挡十八禁网站| 亚洲熟妇中文字幕五十中出| 露出奶头的视频| 久久精品91无色码中文字幕| 国产成人av教育| 狂野欧美激情性xxxx| 精品久久久久久久久久免费视频| 国产激情偷乱视频一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产91精品成人一区二区三区| 欧美午夜高清在线| 亚洲18禁久久av| 最近视频中文字幕2019在线8| 免费观看人在逋| 亚洲精品美女久久久久99蜜臀| 听说在线观看完整版免费高清| 啪啪无遮挡十八禁网站| 操出白浆在线播放| 亚洲精品456在线播放app | 午夜a级毛片| 搡老岳熟女国产| 一进一出抽搐gif免费好疼| 国产精品综合久久久久久久免费| 日韩欧美国产一区二区入口| 五月伊人婷婷丁香| www.色视频.com| 床上黄色一级片| 欧美日韩乱码在线| 国产成人影院久久av| 欧美日韩一级在线毛片| 又爽又黄无遮挡网站| 国产综合懂色| 在线国产一区二区在线| 午夜两性在线视频| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 亚洲av成人av| 国产视频内射| 国产伦在线观看视频一区| 亚洲精品一区av在线观看| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线 | 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区三| 精品免费久久久久久久清纯| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 天堂动漫精品| 亚洲欧美日韩高清专用| 色综合婷婷激情| 国产精品久久久久久亚洲av鲁大| 99国产精品一区二区蜜桃av| 内地一区二区视频在线| 精品国产亚洲在线| 变态另类丝袜制服| e午夜精品久久久久久久| 中文资源天堂在线| 搡女人真爽免费视频火全软件 | 特级一级黄色大片| 国产主播在线观看一区二区| 好男人在线观看高清免费视频| 日本一本二区三区精品| 色老头精品视频在线观看| 免费看十八禁软件| 男女视频在线观看网站免费| 久久久久久久精品吃奶| 男人和女人高潮做爰伦理| 99热这里只有精品一区| 最新美女视频免费是黄的| 亚洲一区二区三区不卡视频| 岛国在线观看网站| 国语自产精品视频在线第100页| 老熟妇乱子伦视频在线观看| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 免费av毛片视频| 舔av片在线| 欧美zozozo另类| 国产麻豆成人av免费视频| 国产久久久一区二区三区| 小蜜桃在线观看免费完整版高清| 变态另类成人亚洲欧美熟女| 每晚都被弄得嗷嗷叫到高潮| 美女大奶头视频| 亚洲国产欧美人成| 中文字幕精品亚洲无线码一区| 色综合婷婷激情| 欧美av亚洲av综合av国产av| 嫁个100分男人电影在线观看| 精品一区二区三区av网在线观看| 久久精品人妻少妇| 国产精品自产拍在线观看55亚洲| 国产成人啪精品午夜网站| 国产亚洲精品久久久久久毛片| 亚洲18禁久久av| 国产麻豆成人av免费视频| 国产亚洲精品一区二区www| 亚洲精品成人久久久久久| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 最新中文字幕久久久久| 国产精品久久视频播放| 国产精品久久久久久久久免 | 精品一区二区三区人妻视频| 国产精品99久久99久久久不卡| 国产午夜福利久久久久久| 男女午夜视频在线观看| 男女做爰动态图高潮gif福利片| 国产精品免费一区二区三区在线| 俄罗斯特黄特色一大片| 中国美女看黄片| 很黄的视频免费| 最新美女视频免费是黄的| 成人高潮视频无遮挡免费网站| 日韩欧美国产一区二区入口| 99热只有精品国产| 两个人视频免费观看高清| av女优亚洲男人天堂| 国产精品 欧美亚洲| 国产伦一二天堂av在线观看| 亚洲美女视频黄频| 午夜激情福利司机影院| 国产视频一区二区在线看| www.999成人在线观看| 老司机午夜十八禁免费视频| 日本成人三级电影网站| 欧美一区二区亚洲| 精品一区二区三区av网在线观看| 精华霜和精华液先用哪个| 欧美成人a在线观看| 国产在线精品亚洲第一网站| 国产真实伦视频高清在线观看 | 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 两个人的视频大全免费| 国产精品久久久久久人妻精品电影| 中文字幕人妻熟人妻熟丝袜美 | 亚洲av不卡在线观看| 全区人妻精品视频| 在线观看美女被高潮喷水网站 | 丁香六月欧美| 国产高清激情床上av| 国产精华一区二区三区| 内射极品少妇av片p| 99久久精品热视频| 一级黄片播放器| 亚洲va日本ⅴa欧美va伊人久久| 九九久久精品国产亚洲av麻豆| 欧美成狂野欧美在线观看| 色综合婷婷激情| 午夜a级毛片| 精品欧美国产一区二区三| 91九色精品人成在线观看| 搡女人真爽免费视频火全软件 | 亚洲成人免费电影在线观看| 69人妻影院| 国产在视频线在精品| 久久久久久九九精品二区国产| 叶爱在线成人免费视频播放| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 9191精品国产免费久久| 岛国视频午夜一区免费看| 一级黄片播放器| 婷婷精品国产亚洲av| 国产欧美日韩精品亚洲av| 欧美色欧美亚洲另类二区| 在线观看66精品国产| 国产三级黄色录像| 国内久久婷婷六月综合欲色啪| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| 日本三级黄在线观看| 一区二区三区高清视频在线| 岛国在线免费视频观看| 18+在线观看网站| 男女下面进入的视频免费午夜| 午夜免费激情av| 中文资源天堂在线| 亚洲熟妇熟女久久| 日本在线视频免费播放| 在线视频色国产色| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 国产一区二区在线av高清观看| 蜜桃亚洲精品一区二区三区| 久久精品人妻少妇| 亚洲av免费高清在线观看| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看| 日本黄色片子视频| 欧美一区二区精品小视频在线| 精品免费久久久久久久清纯| 午夜免费男女啪啪视频观看 | 天堂av国产一区二区熟女人妻| 亚洲成人中文字幕在线播放| 非洲黑人性xxxx精品又粗又长| 黄色日韩在线| 一个人免费在线观看电影| 久久久精品大字幕| 国产免费av片在线观看野外av| 女警被强在线播放| 中文亚洲av片在线观看爽| 18禁在线播放成人免费| 窝窝影院91人妻| 久久这里只有精品中国| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区成人 | 97超视频在线观看视频| 日韩欧美在线二视频| 大型黄色视频在线免费观看| 久久性视频一级片| 岛国在线观看网站| 香蕉丝袜av| 日韩大尺度精品在线看网址| 男人舔女人下体高潮全视频| 少妇的丰满在线观看| 精品一区二区三区人妻视频| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 哪里可以看免费的av片| 中文在线观看免费www的网站| 欧美日本亚洲视频在线播放| 三级毛片av免费| 在线天堂最新版资源| 亚洲狠狠婷婷综合久久图片| 国产伦精品一区二区三区四那| www.色视频.com| 亚洲一区高清亚洲精品| 午夜福利在线在线| 久久久国产成人免费| 亚洲av二区三区四区| 淫秽高清视频在线观看| 怎么达到女性高潮| 高清日韩中文字幕在线| 亚洲av电影不卡..在线观看| 欧美日本亚洲视频在线播放| 一级黄片播放器| 亚洲 欧美 日韩 在线 免费| 最后的刺客免费高清国语| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 欧美色视频一区免费| 色尼玛亚洲综合影院| 老司机深夜福利视频在线观看| 99久久无色码亚洲精品果冻| 午夜激情欧美在线| 91九色精品人成在线观看| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 夜夜躁狠狠躁天天躁| 在线观看av片永久免费下载| 嫩草影院精品99| www国产在线视频色| 又紧又爽又黄一区二区| 亚洲18禁久久av| 在线免费观看不下载黄p国产 | 在线观看免费午夜福利视频| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 日韩高清综合在线| 久久精品国产亚洲av涩爱 | 午夜激情欧美在线| 国内少妇人妻偷人精品xxx网站| 18禁裸乳无遮挡免费网站照片| 特级一级黄色大片| 在线观看美女被高潮喷水网站 | 成人国产综合亚洲| 一个人免费在线观看电影| 精品久久久久久久人妻蜜臀av| 99热只有精品国产| 国产 一区 欧美 日韩| 一区福利在线观看| 狂野欧美激情性xxxx| 91字幕亚洲| 性色avwww在线观看| 日本熟妇午夜| 在线观看美女被高潮喷水网站 | 国产精品1区2区在线观看.| 日韩欧美免费精品| 欧美+日韩+精品| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 男女下面进入的视频免费午夜| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 国产日本99.免费观看| 日本免费一区二区三区高清不卡| 久9热在线精品视频| 99视频精品全部免费 在线| 啪啪无遮挡十八禁网站| www日本在线高清视频| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 精华霜和精华液先用哪个| 国产亚洲欧美98| 欧美+亚洲+日韩+国产| 欧美色视频一区免费| 日本黄色视频三级网站网址| 男插女下体视频免费在线播放| 亚洲精品一卡2卡三卡4卡5卡| 69人妻影院| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| 欧美+日韩+精品| 亚洲性夜色夜夜综合| 午夜视频国产福利| 国产一区二区三区在线臀色熟女| 色综合婷婷激情| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 国产av一区在线观看免费| 悠悠久久av| 久久性视频一级片| 1000部很黄的大片| 在线观看日韩欧美| 91字幕亚洲| 国产成人aa在线观看| 国产高清视频在线播放一区| 久久久国产成人免费| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 网址你懂的国产日韩在线| 欧美成人性av电影在线观看| 少妇高潮的动态图| 一区二区三区免费毛片| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 成人国产综合亚洲| 91久久精品国产一区二区成人 | 99国产综合亚洲精品| 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 91在线观看av| 香蕉丝袜av| 欧美+日韩+精品| 在线观看美女被高潮喷水网站 | 亚洲人成网站在线播放欧美日韩| 一边摸一边抽搐一进一小说| 国产精品久久久久久久电影 | 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 波多野结衣高清无吗| 很黄的视频免费| 99国产极品粉嫩在线观看| 无人区码免费观看不卡| 国产男靠女视频免费网站| 久久久久性生活片| 久久人人精品亚洲av| 99久久精品国产亚洲精品| 大型黄色视频在线免费观看| 午夜激情欧美在线| 日韩成人在线观看一区二区三区| 中出人妻视频一区二区| 久久这里只有精品中国| 久久国产精品人妻蜜桃| 十八禁网站免费在线| 可以在线观看毛片的网站| 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 国产精品自产拍在线观看55亚洲| 国产探花极品一区二区| 丝袜美腿在线中文| 中文亚洲av片在线观看爽| 亚洲成av人片免费观看| 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 午夜免费成人在线视频| 久久久国产成人精品二区| 无遮挡黄片免费观看| 国产成人欧美在线观看| 国产精品香港三级国产av潘金莲| 亚洲国产精品久久男人天堂| 18禁国产床啪视频网站| 日韩大尺度精品在线看网址| 国产一区二区三区在线臀色熟女| 在线十欧美十亚洲十日本专区| 岛国在线免费视频观看| 九九在线视频观看精品| 成人性生交大片免费视频hd| 国产av在哪里看| 国产69精品久久久久777片| 午夜影院日韩av| 久久草成人影院| 国产精品香港三级国产av潘金莲| 91九色精品人成在线观看| 成人特级av手机在线观看| 美女被艹到高潮喷水动态| 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 老鸭窝网址在线观看| 午夜两性在线视频| 操出白浆在线播放| 日韩欧美 国产精品| 国产成人影院久久av| 又黄又爽又免费观看的视频| 国产欧美日韩精品亚洲av| 成人18禁在线播放| 五月伊人婷婷丁香| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 我要搜黄色片| av福利片在线观看| 国产精品嫩草影院av在线观看 | 丁香六月欧美| 日本免费a在线| 国产黄片美女视频| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 久久精品国产亚洲av香蕉五月| xxx96com| 久久精品综合一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 免费看十八禁软件| 午夜福利高清视频| 亚洲第一欧美日韩一区二区三区| 高清日韩中文字幕在线| 精品久久久久久久人妻蜜臀av| 免费观看人在逋| 国产精品99久久99久久久不卡| 国产亚洲精品久久久com| 大型黄色视频在线免费观看| 特大巨黑吊av在线直播| 国产私拍福利视频在线观看| 久久久久久久亚洲中文字幕 | 中文字幕精品亚洲无线码一区| 丁香欧美五月| 日韩欧美国产在线观看| 国产精品日韩av在线免费观看| 国产精品99久久久久久久久| 日韩高清综合在线| 亚洲精品亚洲一区二区| 校园春色视频在线观看| 波多野结衣高清作品| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看| 免费av不卡在线播放| 真人一进一出gif抽搐免费| 日本黄大片高清| 午夜激情欧美在线| 日韩成人在线观看一区二区三区| 国产高清videossex| 久久香蕉国产精品| 国内精品一区二区在线观看| 毛片女人毛片| 亚洲美女黄片视频| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 国内精品一区二区在线观看| 真人一进一出gif抽搐免费| 2021天堂中文幕一二区在线观| 久久伊人香网站| 少妇的逼好多水| 久久精品亚洲精品国产色婷小说| 中国美女看黄片| 精品人妻偷拍中文字幕| 99久国产av精品| 久久久久久久久久黄片| 国产熟女xx| 天天躁日日操中文字幕| 日本免费一区二区三区高清不卡| 午夜福利成人在线免费观看| 亚洲精品色激情综合| 国产熟女xx| 成人无遮挡网站| 国产精品综合久久久久久久免费| 精品日产1卡2卡| 在线免费观看的www视频| 中文字幕高清在线视频| 久久亚洲真实| 国产乱人视频| 法律面前人人平等表现在哪些方面| АⅤ资源中文在线天堂| 少妇熟女aⅴ在线视频| 亚洲成av人片免费观看| 欧美av亚洲av综合av国产av| 精品久久久久久久久久免费视频| 我要搜黄色片| 亚洲精品在线美女| 欧美3d第一页| 欧美黄色片欧美黄色片| 国产精品99久久久久久久久| 亚洲成av人片免费观看| 欧美av亚洲av综合av国产av| 天堂网av新在线| 免费观看人在逋| 欧美三级亚洲精品| 欧美中文日本在线观看视频| 国产高清视频在线观看网站| 天天一区二区日本电影三级| 久9热在线精品视频| 亚洲精品成人久久久久久| 亚洲在线观看片| 国产黄色小视频在线观看| 精品一区二区三区视频在线观看免费| 美女高潮的动态| 亚洲激情在线av| 18+在线观看网站| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产一区二区入口| 尤物成人国产欧美一区二区三区| 亚洲无线在线观看| h日本视频在线播放| 亚洲人与动物交配视频| 国产免费av片在线观看野外av| 午夜日韩欧美国产| 99riav亚洲国产免费| 日韩欧美国产一区二区入口| 天堂影院成人在线观看| 偷拍熟女少妇极品色| 国产亚洲精品久久久久久毛片| 国产亚洲欧美98| 美女高潮喷水抽搐中文字幕| 国产精品亚洲美女久久久| 亚洲最大成人手机在线| 啦啦啦免费观看视频1| 亚洲人成网站高清观看| 欧美成人性av电影在线观看| 老熟妇仑乱视频hdxx| 亚洲国产精品久久男人天堂| 舔av片在线| 一区二区三区激情视频| 欧美3d第一页| 亚洲熟妇中文字幕五十中出| 少妇高潮的动态图| 在线免费观看不下载黄p国产 | 啦啦啦免费观看视频1| 成人一区二区视频在线观看| 欧美黑人巨大hd| 99国产极品粉嫩在线观看| 久久人妻av系列| 免费大片18禁| 两个人的视频大全免费| 国产成人啪精品午夜网站| 露出奶头的视频| 夜夜看夜夜爽夜夜摸| 中出人妻视频一区二区| 国产一区二区激情短视频| av天堂中文字幕网| 国产69精品久久久久777片| 波多野结衣高清作品| 少妇高潮的动态图| 一级黄片播放器| 亚洲av美国av| 伊人久久精品亚洲午夜| 国产淫片久久久久久久久 | 国产一区二区亚洲精品在线观看| 在线观看66精品国产| 欧美丝袜亚洲另类 | 村上凉子中文字幕在线| 啦啦啦观看免费观看视频高清| 69av精品久久久久久| 波多野结衣高清无吗| 日本一本二区三区精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品亚洲一区二区| xxx96com| 欧美在线一区亚洲| 午夜免费成人在线视频| 亚洲欧美日韩高清在线视频| 欧美激情在线99| 亚洲av成人不卡在线观看播放网| 九色国产91popny在线| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 级片在线观看| 91在线精品国自产拍蜜月 | 午夜福利成人在线免费观看| 亚洲av电影在线进入| 亚洲精品在线美女| 内地一区二区视频在线| 18禁在线播放成人免费| 老熟妇仑乱视频hdxx| 最新美女视频免费是黄的| 欧美zozozo另类| 国产男靠女视频免费网站| 看免费av毛片|