• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual-wavelength narrow-bandwidth dielectric metamaterial absorber

    2021-11-25 07:47:46FANGXiaominJIANGXiaoweiWUHua
    中國光學(xué) 2021年6期
    關(guān)鍵詞:襯底非對稱折射率

    FANG Xiao-min,JIANG Xiao-wei,WU Hua

    (1.Faculty of Information Engineering, Quzhou College of Technology, Quzhou 324100, China;2.College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China)

    Abstract: In order to reduce the manufacturing cost of the narrow-bandwidth Metamaterial Absorber (MA)and broaden its application field, a dual-wavelength dielectric narrow-bandwidth MA, composed of Au substrate, SiO2 dielectric layer and Si dielectric asymmetric grating, is designed based on the finite-difference time-domain method using dielectric materials.It is found by simulation that the proposed narrow-bandwidth MA has ultra-high absorption efficiency at λ1 = 1.20852 μm and λ2 = 1.23821 μm, and the FWHM is only 0.735 nm and 0.077 nm, respectively.The main principle that MA achieves the narrow-bandwidth absorption at λ1 is mainly due to the formation of Fabry-Pérot (FP) cavity resonance in the SiO2 layer, while the narrow-bandwidth absorption of MA at λ2 is mainly due to the guided mode resonance effect of the incident light in the asymmetric grating.The theoretical calculations show that the absorption characteristics can be affected more significantly by changing the structural parameters of the MA.

    Key words: metamaterial absorber; dual-wavelength; narrow-bandwidth; Fabry-Pérot cavity resonance;guided mode resonance

    1 Introduction

    Perfect absorption of electromagnetic waves is required in many applications, such as solar cells,thermal emitters, radiation cooling, communication[1-4].However, the absorbers made of natural materials can lead to impedance mismatch due to the lack of magnetic response, and therefore they cannot completely suppress light reflection, thus reducing the light absorption capacity of the absorber[5].Therefore, metamaterial-based absorbers have been proposed, and because the Metamaterial Absorber (MA) has high absorption efficiency for electromagnetic wave, and has the advantages of compact size and settable operating wavelength, it is gradually gaining attention and becoming one of the research hotspots[6].

    With further in-depth research, different types of MA have been gradually designed and fabricated,such as wide-bandwidth MA, narrow-bandwidth MA, terahertz MA, and tunable MA[7-9].The reason why narrow-bandwidth MAs have received attention is that narrow-bandwidth MAs are more efficient in detection and thermal emitters compared to wide-bandwidth MAs[10-11], and only narrow-bandwidth in optical modulation, optical detection, and tailoring of thermal radiation MA can meet the requirements[12-13].Different structures of narrowbandwidth MA have been proposed, such as narrowbandwidth MA based on Split Ring Resonator(SRR) arrays, metal/dielectric periodic gratings, and metal/dielectric slits (narrow slits).In 2014, Min Qiu et al.(KTH Royal Institute of Technology) proposed etching metal grating on a silver (Ag) metal substrate, and based on the surface plasmon excitonic resonance formed by Ag grating and air medium they successfully enabled MA with narrow-bandwidth absorption at wavelength 1400 nm, and its linewidth (Full Width Half Maximum, FWHM) can reach 0.4 nm[14]; in 2018, FENG A et al.(the Chinese University of Hong Kong) proposed a narrow-bandwidth MA consisting of asymmetric metal grating and metal substrate, and a SiO2transition layer was added between the grating and the substrate, and the narrow-bandwidth MA was found to achieve ultranarrow absorption in the optical communication band with a FWHM of 0.28 nm[15]; In 2019, KANG S et al.(Southeast University) proposed to etch a cross-shaped nanoarray composed of gold (Au) on a silicon dioxide substrate, while growing a thin layer of Au on the other side of the silicon dioxide to suppress transmission, and the MA was tested and found to achieve narrow-bandwidth absorption in the terahertz band[16].

    From the above, it can be found that the materials used in the micro-nano structures in these narrow-bandwidth MAs are metallic materials, but metallic materials have ohmic losses and there are processing problems for fine metallic materials at high frequencies, both of which will affect the application promotion of MAs in the future to some extent.For this reason, some research groups have proposed to design and fabricate narrow-bandwidth MAs using dielectric materials.In 2019, Zhibin Ren et al.(Harbin Institute of Technology) designed and prepared MAs with narrow-bandwidth absorption in the infrared band using silicon nitride and indium tin oxide materials, which were tested to have a FWHM of up to 2.6 nm[17]; in 2020, Yan Zhao et al.(Anhui University) proposed a dielectric grating composed of silicon material etched directly on a metal substrate, and the FWHM of this narrow-bandwidth MA was calculated by simulation up to 0.38 nm[18].

    Although the design and preparation of narrowbandwidth MAs using dielectric materials can reduce fabrication costs and improve absorption efficiency, and the absorption bandwidth can be maintained at the sub-nanometer level, it can be seen that few MAs that achieve multi-wavelength narrowbandwidth (sub-nanometer level) absorption are currently available.This can limit the application of narrow-bandwidth MAs in some applications, such as in spectral detection and gas detection, where multi-wavelength narrow-bandwidth MAs are more efficient in improving their efficiency[19-20].To this end, a dual-wavelength narrow-bandwidth dielectric MA consisting of an asymmetric dielectric grating, a dielectric transition layer, and a metal substrate is proposed in this paper, and the MA is designed and analyzed using the Finite Difference Time Domain (FDTD) method.The differential form of Maxwell's equations can be numerically solved in the time domain through FDTD, in which the differential quotient can be substituted for the differential in the equation.In the solution, the electric and magnetic fields are alternately distributed,and the electric and magnetic fields in the simulation region are solved over time.Through simulation calculations, it is found that the FWHM of the dual-wavelength narrow-bandwidth MA is as low as 0.077 nm and the quality factor (figure of merit,FOM) is up to 1524/RIU, and it can also be found that the narrowest absorption bandwidth of the narrow-bandwidth MA designed in this paper decreased by an order of magnitude compared to the reference [14-18].This study can provide high-quality dual-wavelength narrow-bandwidth dielectric MAs for biosensors, thermal emitters, light modulators, etc.

    2 Device structure

    A dual-wavelength narrow-bandwidth dielectric MA, as shown in Figure 1, consists of an Au substrate, a silicon dioxide (SiO2) dielectric layer,and an asymmetric grating formed by silicon (Si)material from the bottom up.The main function of the Au substrate is to suppress light transmission, so its thickness must be greater than the skinning depth of the incident electromagnetic wave, and the thickness of Au is set to 0.2 μm in this paper.It can be seen from Figure 1 that there are two gratings with the same heighthbut different widths,W1andW2,in a period, and the distance between the gratings in the same period isg, and the thickness of SiO2ist.In the future practical device preparation, the preparation process of the dual-wavelength narrowbandwidth dielectric MA in this paper is compatible with the current micro-nano processing process.First, SiO2and Si thin layers are grown successively on the Au substrate by magnetron sputtering,followed by spin-coating electron beam resist on the Si thin layer, forming asymmetric grating patterns on the resist after electron beam exposure and development, and then debonding and transferring the patterns to the Si thin layer using inductively coupled plasma etching to finally prepare the dualwavelength narrow-bandwidth dielectric MA[21].

    Fig.1 Dual-wavelength narrow-bandwidth dielectric MA structure diagram圖1 雙波長窄帶寬介質(zhì)MA結(jié)構(gòu)圖

    The dielectric constant of Au is represented by the Drude model as shown in Equation (1), whereωp,γandωare the plasma frequency, damping coefficient and incident light angle frequency, respectively.To ensure the correctness of the simulation calculation results,ωpandγare obtained from the experimental data, and according to the reference [22],ωp=1.32×1016rad/s,γ=1.2×1014rad/s.The refractive indices of SiO2and Si arenSiO2=1.45 andnSi=3.45, respectively.

    3 Results and discussion

    3.1 Realization of dual-wavelength narrowbandwidth and high absorption

    Firstly, a two-dimensional physical model of a single period of the dual-wavelength narrow-bandwidth dielectric MA is established using FDTD, and then periodic boundary conditions are added in thex-direction, perfect matching layer boundary conditions are added in thez-direction, and they-direction is set to grating infinite length by default.Finally, a light source is added directly above the dual-wavelength narrow-bandwidth dielectric MA,the light source polarization is set to TE polarization, the incident angle is set to 0°, and the MA is surrounded by air with refractive indexn=1.

    Figure 2 shows the absorption spectrum of the dual-wavelength narrow-bandwidth dielectric MA,whereP=1.05 μm,t=1.2 μm,h=0.78 μm,W1=0.2 μm,W2=0.3 μm andg=0.2 μm.The above grating parameters were obtained based on FDTD optimization.It can be seen from the figure that the MA has ultrahigh absorption efficiency at wavelengthsλ1=1.2085 μm andλ2=1.2382 μm, respectively, and the absorption linewidths FWHM are 0.735 nm and 0.077 nm, respectively.By comparing with references [14-15, 17], the linewidth of the dualwavelength narrow-bandwidth dielectric MA at wavelengthλ2is significantly decreased and narrowbandwidth absorption is achieved.All parameters mentioned above were kept constant for subsequent calculations if not otherwise stated.

    Fig.2 Absorption spectroscopy of dual-wavelength narrow-bandwidth dielectric MA圖2 雙波長窄帶寬介質(zhì)MA吸收光譜

    MA can achieve ultra-narrow bandwidth high absorption at wavelengthsλ1=1.2085 μm andλ2=1.2382 μm because the effective impedance of MA at these two wavelengths just matches the free-space impedance and thus the reflection of MA at wavelengthsλ1andλ2can be effectively suppressed[23].Because the absorption efficiencyAof MA can be expressed asA=1-T-R, because the thickness of Au substrate is greater than the skinning depth of light, soT=0, and when the reflection of MA at wavelengthsλ1andλ2is suppressed, the absorption efficiency of MA at these two wavelengths can be close to 1.The effective impedanceZof MA can be expressed by Equation (2), whereS11andS21are the scattering matrix coefficients of reflection and transmission under vertical irradiation of TE polarized light, respectively, andR=(S11)2,T=(S21)2, and sinceT=0,S21=0.Figure 3 shows the effective impedance of MA calculated by Equation (2).

    From Figure 3(a), it can be seen that the real part of impedanceZrealis close to 1 at wavelengthsλ1andλ2, while from Figure 3(b) it can be found that the imaginary part of impedanceZimagis close to 0 at wavelengthsλ1andλ2.

    Fig.3 Effective impedance of dielectric MA.(a) Real part of impedance; (b) imaginary part of impedance圖3 介質(zhì)MA的有效阻抗。(a)阻抗實(shí)部;(b)阻抗虛部

    In order to explore the intrinsic physical mechanisms of MA achieving dual-wavelength narrowbandwidth absorption, the electric field distribution of MA at wavelengthsλ1andλ2respectively, is calculated in this paper, as shown in Figure 4 (Color online).From Figure 4(a), it can be seen that the narrow-bandwidth dielectric MA has high narrowbandwidth absorption at wavelengthλ1because most of the light is confined in the SiO2dielectric layer, and a small portion of the light is confined in the asymmetric grating.It can be seen that the incident light forms a Fabry-Pérot (FP) cavity resonance in the SiO2dielectric layer.Figure 4(b) shows the electric field distribution of the narrow bandwidth dielectric MA at wavelengthλ2.Unlike the electric field distribution at wavelengthλ1, the light is no longer confined in the SiO2dielectric layer, but in the grating.Based on the electric field distribution,it can be judged that this is due to the formation of a guided mode resonance in the grating by the incident light[24], which also leads to a narrower bandwidth of the MA at wavelengthλ2.

    Fig.4 Electric field distribution of dual-wavelength narrow-bandwidth dielectric MA at different wavelengths.(a) λ1; (b) λ2圖4 雙波長窄帶寬介質(zhì)MA在不同波長處的電場分布。(a)λ1;(b)λ2

    3.2 Effect of structural parameters on absorption characteristics of MA

    In order to investigate the effect of MA structure parameters on the absorption characteristics of dual-wavelength narrow-bandwidth dielectric, the effect of MA structure parameters on its absorption characteristics is simulated and calculated in this paper.Figure 5 (Color online) shows the effect of different SiO2dielectric layer thicknesston MA absorption characteristics.From Figure 5(a), it can be seen that the absorption wavelengthλ1of MA is redshifted astincreases, however, the change inthas a very weak effect on the absorption wavelengthλ2.From Figure 5(b), it can be seen whentincreases from 1.2 μm to 1.215 μm, the absorption wavelengthλ1is red-shifted from 1.2085 μm to 1.2115 μm, an increase of 3 nm.The change inthas a significant effect on the MA absorption wavelengthλ1, which is due to the FP cavity resonance formed by the light in the SiO2dielectric layer as seen in Figure 4(a).The relationship between FP cavity resonance wavelength and SiO2layer thicknesstis shown in Equation (3)[25],

    whereneqis the equivalent refractive index of FP cavity,Φis the sum of the phases of the upper and lower interfaces of the FP cavity, andNis an integer,λFPis the resonant wavelength of the FP cavity.According to Equation (3), it is known that an increase intincreases the FP cavity resonance wavelengthλFPwhich leads to a red shift in the absorption wavelengthλ1of MA.

    Fig.5 Effect of t on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA.(a) Absorption spectra; (b) absorption wavelength圖5 t對雙波長窄帶寬介質(zhì)MA吸收特性的影響。(a)吸收光譜;(b)吸收波長

    However, the reason why the increase inthas a weaker effect on the absorption wavelengthλ2of MA is that the narrow-bandwidth and high-absorption of MA at wavelengthλ2are caused by guided mode resonance, which can be seen from Figure 4(b).According to Ref.[26], the guided mode resonance wavelength is mainly related to the grating parameters and the incident angle.However, the absorption efficiency of MA at the absorption wavelengthλ2will gradually decrease astincreases,which can be explained by Figure 6 (Color online).Figure 6 is the electric field distribution of MA at wavelengthλ2whent=1.205 μm.Comparing Figure 6 with Figure 4(b), it can be found that the electric field focused in the grating in Figure 6 is significantly lower than Figure 4(b).Therefore, the absorption rate of MA will decrease aftertbecomes larger.

    Fig.6 Electric field distribution of MA at wavelength λ2 when t = 1.205 μm圖6 t=1.205 μm時MA在波長λ2處的電場分布

    Figure 7 (Color online) shows the effect of grating widthW1on the absorption characteristics of dual-wavelength narrow-bandwidth dielectric MA.It can be seen from Figure 7(a) that the absorption wavelengthsλ1andλ2of MA both have red shifted asW1becomes larger, respectively.It can be seen from Figure 7(b) that whenW1increases from 0.2 μm to 0.202 μm, the absorption wavelengthλ2of MA is red-shifted by nearly 7 nm, while the absorption wavelengthλ1of MA is red-shifted by 1.46 nm.

    Fig.7 Effect of W1 on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA.(a) Absorption spectra; (b) absorption wavelength圖7 W1對雙波長窄帶寬介質(zhì)MA吸收特性的影響。(a)吸收光譜;(b)吸收波長

    The change ofW1can have an impact on the absorption wavelengthλ1because it can be known that the change of the grating width will lead to a change in the equivalent refractive index of the asymmetric grating, and the equivalent refractive index of the FP cavityneqis effectd by the equivalent refractive index of the asymmetric gratingnw.Moreover, it has been shown in Ref.[27] that the increase of the grating width will lead to the increase of the equivalent refractive index of the FP cavityneq.From Equation (3), it is known that an increase inneqwill increase the FP cavity resonance wavelengthλFP.And the increase ofλFPwill lead to the red-shift of the absorption wavelengthλ1of MA.Figure 8 showsneqvarying withW1and it is calculated by FDTD.From Figure 8, it can be found that whenW1increases from 0.2 μm to 0.202 μm,neqincreases from 1.510 to 1.512.

    Fig.8 Effect of W1 on neq圖8 W1對neq的影響

    The grating, SiO2layer, and air form an optical waveguide, and according to the grating guidedmode resonance theory, it is known that the grating equivalent refractive index change will affect the guided-mode resonance wavelength[26], as shown in Equation (4).

    whereλgis the guided-mode resonance wavelength andmis the diffraction order of the grating.According to the equivalent medium theory, an increase inW1will increase the grating equivalent refractive indexnw, and from Eq.(4), an increase innwwill redshift the guided-mode resonance wavelengthλgand thus the MA absorption wavelengthλ2will red-shift.The effect ofW2on MA absorption characteristics is not shown in this paper, because the effect of the change inW2on MA absorption characteristics is similar to that ofW1on MA, and the intrinsic physical mechanism of the effect is essentially the same.

    The electric field distribution in Figure 4(b)shows that a part of the electric field is distributed among the slits of the dielectric grating, so it can be seen that the change of the surrounding gas will have an effect on the absorption wavelengthλ2of MA.Therefore, the narrow bandwidth dielectric MA proposed in this paper can be applied in the fields of gas or biological detection.In order to evaluate the performance of the narrow-bandwidth dielectric MA in gas detection, two parameters,sensitivity and quality factor, are defined, and the specific expressions are shown in equations (5) and(6).WhereSis the sensitivity of narrow-bandwidth MA,△nand△λare the amount of change in refractive index and the amount of change in absorption wavelength of the surrounding gas, respectively[18].

    From Figure 9 (a) (Color online), it can be seen that the absorption wavelengthsλ1andλ2of MA are redshifted asnincreases.This is because a largernleads to a larger refractive indexnlof the grating's low refractive index material, which in turn leads to a larger equivalent refractive index of the grating for different wavelengths.And from the previous description, the grating refractive index will lead to a larger equivalent refractive indexneqof FP cavity,so according to Equation (3), the increase ofnwill lead to a red shift of MA absorption wavelengthλ1.Unlike the mechanism that causes the red shift of MA absorption wavelengthλ1,λ2is red-shifted asnbecomes larger, because the grating equivalent refractive indexnwincreases, which means that it increases the refractive index of the central layer of the optical waveguide, and this must lead to the red shift of the grating guided mode resonance wavelength according to the guided mode resonance theory and Equation (4)[27].

    Fig.9 Effect of n on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA.(a) Absorption spectra; (b) absorption wavelength圖9 n對雙波長窄帶寬介質(zhì)MA吸收特性的影響。(a)吸收光譜;(b)吸收波長

    From Figure 9(b), whennincreases from 1 to 1.03, the absorption wavelengthλ2increases from 1.2382 μm to 1.2417 μm, which is red-shifted by 3.5 nm, and according to Eqs.(5) and (6),S=117.3 nm/RIU and FOM = 1524/RIU.It can be found that the FOM in this paper is significantly improved compared to the references [14-15, 18].

    Finally, the effect of the asymmetric grating periodPon the absorption characteristics of the dielectric MA was analyzed, and the specific results are shown in Figure 10 (Color online).From Figure 10, it can be found that the absorption wavelengthsλ1andλ2of MA are red-shifted with the increase ofP.WhenPincreases from 1.05 μm to 1.1 μm, the wavelengthλ1increases from 1.2085 μm to 1.2249 μm, while the wavelengthλ2increases from 1.2382 μm to 1.2525 μm.From Equation (4) we can know the reason why the wavelengthλ2increases with the increase ofP[24].When the period increases, if the guided mode resonance is to be maintained, the resonance wavelength must be shifted to the long wavelength direction.

    AsPincreases, the phaseΦof the FP cavity decreases significantly because the effect of the change ofPonneqis not as significant as the phaseΦ.Therefore, according to Equation (3), it is known that the FP cavity resonance wavelengthλFPincreases with the increase ofP, which leads to the red-shift of the absorption wavelengthλ1of MA.The trend of the effect ofPon the phaseΦis calculated by FDTD and is shown in Figure 11, from which it can be seen thatΦdecreases from 4.64 rad to 0.22 rad whenPincreases from 1.05 μm to 1.1 μm.

    Fig.10 Effect of P on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA圖10 P對雙波長窄帶寬介質(zhì)MA吸收特性的影響

    Fig.11 Effect of P on Φ圖11 P對Φ的影響

    4 Conclusion

    In order to broaden the application field of narrow-bandwidth MA, a medium MA is designed in this paper that can achieve dual-wavelength narrowbandwidth absorption in the infrared band based on the finite-difference time-domain method.Through simulation analysis, the narrow bandwidth dielectric MA in this paper has ultra-high absorption efficiency at wavelengthλ1= 1.2085 μm andλ2= 1.238 2 μm, and the FWHM is only 0.735 nm and 0.077 nm, respectively.Because of the different mechanisms of MA forming narrow-bandwidth and high absorption onλ1andλ2, the study found thatλ1is very sensitive to the change of the thicknesstof the SiO2transition layer, whileλ2is very sensitive to the change of the dielectric grating widthW1.With the increase oftandW1, the absorption wavelengthsλ1andλ2of MA will red-shift respectively.When the grating periodPincreases, the absorption wavelengthsλ1andλ2of MA will shift to the long wavelength direction at the same time.From the electric field distribution of MA atλ2, a large part of its electric field is distributed in the gap between the gratings, so the change of air refractive index has a significant effect onλ2.This allows it to be used in the field of detection.It is calculated that the FOM of the narrow-bandwidth dielectric MA in this paper can reach 1524/RIU.

    ——中文對照版——

    1 引言

    在許多應(yīng)用中都有需要對電磁波實(shí)現(xiàn)完美吸收,如太陽能電池、熱發(fā)射器、輻射冷卻、通信等[1-4]。但是由自然界存在的材料構(gòu)成的吸收器因缺乏磁響應(yīng)導(dǎo)致阻抗失配,因此它們不能完全抑制光反射,從而降低了吸收器光吸收能力[5]。因此,人們提出了基于超材料的吸收器,由于超材料吸收器(Metamaterial Absorber,MA)對電磁波具有高吸收效率,且具有體積小、可設(shè)定工作波長等優(yōu)點(diǎn),逐漸被人們所關(guān)注并成為研究熱點(diǎn)之一[6]。

    經(jīng)深入研究,人們設(shè)計(jì)并制備出了不同類型的MA,如寬帶寬MA、窄帶寬MA、太赫茲MA、可調(diào)諧MA等[7-9]。窄帶寬MA被人們所關(guān)注是因?yàn)檎瓗扢A用在探測和熱發(fā)射器上時相比于寬帶寬MA效率更高[10-11],而且在光調(diào)制、光探測和熱輻射剪裁中只有窄帶寬MA才能滿足要求[12-13]。目前已經(jīng)有不同結(jié)構(gòu)的窄帶寬MA被提出,如基于裂環(huán)諧振器陣列(Split Ring Resonator,SRR)、金屬/介質(zhì)周期光柵、金屬/介質(zhì)狹縫(narrow slits)等。2014年瑞典皇家理工學(xué)院的Min-Qiu等人提出在銀(Ag)金屬襯底上刻蝕金屬光柵,基于Ag光柵與空氣介質(zhì)形成的表面等離子激元共振成功使MA在波長1400 nm處實(shí)現(xiàn)了窄帶寬吸收,其線寬(Full Width Half Maximum,F(xiàn)WHM)可以達(dá)到0.4 nm[14];2018年香港中文大學(xué)的FENG A等人提出一種由非對稱金屬光柵和金屬襯底構(gòu)成的窄帶寬MA,而且在光柵和襯底之間添加了一層二氧化硅過渡層,經(jīng)模擬計(jì)算發(fā)現(xiàn)該窄帶寬MA在光通信波段實(shí)現(xiàn)了超窄吸收,F(xiàn)WHM僅 有0.28 nm[15];2019年,東 南 大學(xué)KANG S等人提出在二氧化硅襯底上刻蝕出由金(Au)材料構(gòu)成的十字型納米陣列,與此同時在二氧化硅另一面生長一層Au薄層抑制透射,經(jīng)測試發(fā)現(xiàn)該MA可在太赫茲波段實(shí)現(xiàn)窄帶寬吸收[16]。

    從以上研究可以發(fā)現(xiàn),這些窄帶寬MA中的微納結(jié)構(gòu)所使用的材料都是金屬材料,但是金屬材料存在歐姆損耗,而且在高頻處精細(xì)金屬材料存在加工問題,這會在一定程度上影響MA在將來的應(yīng)用推廣。因此,一些課題組提出利用介質(zhì)材料設(shè)計(jì)、制造窄帶寬MA。2019年哈爾濱工業(yè)大學(xué)的Zhibin Ren等人利用氮化硅、氧化銦錫材料設(shè)計(jì)并制備出在紅外波段具有窄帶寬吸收的MA,經(jīng)測試可得該窄帶寬MA的FWHM可達(dá)2.6 nm[17];2020年,安徽大學(xué)的Yan Zhao等人提出在金屬襯底上直接刻蝕出由硅材料構(gòu)成的介質(zhì)光柵,經(jīng)模擬計(jì)算可知該窄帶寬MA的FWHM可達(dá)0.38 nm[18]。

    雖然利用介質(zhì)材料設(shè)計(jì)制備窄帶寬MA可以降低制造成本,提高吸收效率,而且吸收帶寬可保持在亞納米級別,但目前鮮有實(shí)現(xiàn)多波長窄帶寬亞納米級別吸收的MA,這會限制窄帶寬MA在一些場合的應(yīng)用,如在光譜探測、氣體探測中,多波長窄帶寬MA更能提高它們的工作效率[19-20]。針對上述需求,本文提出由非對稱介質(zhì)光柵、介質(zhì)過渡層、金屬襯底構(gòu)成的雙波長窄帶寬介質(zhì)MA,并利用時域有限差分法(Finite Difference Time Domain, FDTD)對該MA進(jìn)行設(shè)計(jì)和分析。FDTD在時域中對麥克斯韋方程組的微分形式進(jìn)行數(shù)值求解,以差商代替方程中的微分。在求解時電場與磁場交替分布,隨著時間的推移求解出仿真區(qū)域的電場和磁場。經(jīng)模擬計(jì)算發(fā)現(xiàn)雙波長窄帶寬MA的FWHM最低可達(dá)0.077 nm,品質(zhì)因素(Figure Of Merit,F(xiàn)OM)可達(dá)1524/RIU,而且經(jīng)對比可以發(fā)現(xiàn)本文設(shè)計(jì)的窄帶寬MA最窄的吸收帶寬相比文獻(xiàn)[14-18]都下降了一個數(shù)量級。本文研究可為生物傳感器、熱發(fā)射器、光調(diào)制器等提供高質(zhì)量的雙波長窄帶寬介質(zhì)MA。

    2 器件結(jié)構(gòu)

    圖1是雙波長窄帶寬介質(zhì)MA結(jié)構(gòu)圖,它自下而上由Au襯底、二氧化硅(SiO2)介質(zhì)層、硅(Si)材料形成的非對稱光柵組成。Au襯底的主要作用是抑制光的透射,因此它的厚度必須大于入射電磁波的趨膚深度,本實(shí)驗(yàn)中Au的厚度設(shè)為0.2 μm。從圖1中可以看到,一個周期內(nèi)具有兩個同高度(h)、不同寬度的光柵,它們的寬度分別是W1和W2,同周期內(nèi)光柵之間的間距為g,另外SiO2的厚度為t。在將來實(shí)際器件制備中,本文的雙波長窄帶寬介質(zhì)MA的制備工藝與現(xiàn)今的微納加工工藝兼容,通過磁控濺射在Au襯底上先后生長SiO2和Si薄層,緊接著在Si薄層上旋涂電子束抗蝕膠,經(jīng)電子束曝光和顯影后在抗蝕膠上形成非對稱光柵圖形,去膠并利用感應(yīng)耦合等離子體刻蝕技術(shù),將圖形轉(zhuǎn)移到Si薄層上,最終制備出雙波長窄帶寬介質(zhì)MA[21]。

    Au的介質(zhì)常數(shù)由Drude模型表示,即

    式中ωp、γ和ω分別是等離子體頻率、阻尼系數(shù)和入射光角頻率。為了保證模擬計(jì)算結(jié)果正確,ωp和γ均是從實(shí)驗(yàn)數(shù)據(jù)中獲得,根據(jù)文獻(xiàn)[22]可知,ωp=1.32×1016rad/s,γ=1.2×1014rad/s。SiO2和Si的折射率分別為nSiO2=1.45和nSi=3.45。

    3 結(jié)果與討論

    3.1 雙波長窄帶寬高吸收的實(shí)現(xiàn)

    首先利用FDTD軟件建立雙波長窄帶寬介質(zhì)MA單個周期的二維物理模型,然后在x方向添加周期性邊界條件,在z方向添加完美匹配層邊界條件,y方向默認(rèn)為光柵無限長。最后在雙波長窄帶寬介質(zhì)MA正上方添加光源,光源偏振設(shè)為TE偏振,入射角設(shè)為0°,并且MA周圍為空氣,折射率n=1。

    圖2所示的是雙波長窄帶寬介質(zhì)MA的吸收光譜,此時P=1.05 μm、t=1.2 μm、h=0.78 μm、W1=0.2 μm、W2=0.3 μm、g=0.2 μm,上述光柵參數(shù)是基于FDTD優(yōu)化后獲得的。從圖2中可以看到MA分別在波長λ1=1.2085 μm和λ2=1.2382 μm處具有超高吸收效率,吸收線寬FWHM分別為0.735 nm和0.077 nm。相比于文獻(xiàn)[14-15, 17]結(jié)果,雙波長窄帶寬介質(zhì)MA在波長λ2處的線寬明顯下降,實(shí)現(xiàn)了窄帶寬吸收。若無特殊說明,上述所有參數(shù)保持不變。

    MA能在波長λ1=1.2085 μm和λ2=1.2382 μm實(shí)現(xiàn)超窄帶寬高吸收,是因?yàn)镸A在這兩個波長處的有效阻抗剛好與自由空間阻抗相匹配,這可有效地抑制MA對波長λ1和λ2的反射[23]。因?yàn)镸A的吸收效率A可表示為A=1-T-R,由于Au襯底的厚度大于光的趨膚深度,所以T=0,而當(dāng)MA在波長λ1和λ2的反射得到抑制后,MA對這兩個波長的吸收效率就接近1。MA的有效阻抗Z可由式(2)表示:

    式中S11和S21分別是TE偏振光垂直照射下反射和透射的散射矩陣系數(shù),其中R=(S11)2,T=(S21)2,由于T=0,所以S21=0。圖3是由式(2)計(jì)算得到的MA的有效阻抗,從圖3(a)中可知阻抗的實(shí)部Zreal在波長λ1和λ2處接近為1,而從圖3(b)中可以發(fā)現(xiàn)阻抗的虛部Zimag在波長λ1和λ2接近為0。

    為了探索MA實(shí)現(xiàn)雙波長窄帶寬吸收的內(nèi)在物理機(jī)制,本文計(jì)算了MA分別在波長λ1和λ2處的電場分布,具體如圖4(彩圖見期刊電子版)所示。從圖4(a)中可知,窄帶寬介質(zhì)MA之所以在波長λ1出現(xiàn)窄帶寬高吸收是因?yàn)榇蟛糠止獗幌拗圃赟iO2介質(zhì)層當(dāng)中,少部分光限制在非對稱光柵當(dāng)中。由此可知,入射光在SiO2介質(zhì)層當(dāng)中形成了法布里-珀羅(Fabry-Pérot, FP)腔共振。圖4(b)所示的是窄帶寬介質(zhì)MA在波長λ2的電場分布,與在波長λ1的電場分布不同,此時光不再被限制在SiO2介質(zhì)層當(dāng)中,反而是被限制在光柵當(dāng)中,依據(jù)電場分布可以判斷這是由于入射光在光柵中形成了導(dǎo)模共振[24],也因?yàn)閷?dǎo)模共振導(dǎo)致MA在波長λ2處的帶寬更窄。

    3.2 結(jié)構(gòu)參數(shù)對MA吸收特性的影響

    為了探究雙波長窄帶寬介質(zhì)MA結(jié)構(gòu)參數(shù)對其吸收特性的影響規(guī)律,本文模擬計(jì)算了MA結(jié)構(gòu)參數(shù)對其吸收特性的影響。圖5(彩圖見期刊電子版)是不同SiO2介質(zhì)層厚度t對MA吸收特性的影響。從圖5(a)中可知,隨著t的增加,MA的吸收波長λ1會出現(xiàn)紅移現(xiàn)象,但是t的變化對吸收波長λ2的影響非常微弱。由圖5(b)可得,當(dāng)t從1.2 μm增加到1.215 μm,吸收波長λ1從1.2085 μm紅移到1.2115 μm,增加了3 nm。t的變化能夠?qū)A吸收波長λ1有顯著影響,是因?yàn)橛蓤D4(a)可知光在SiO2介質(zhì)層中形成了FP腔共振。FP腔共振波長與SiO2層厚度t的關(guān)系為[25]:

    式中,neq是FP腔的等效折射率,Φ是FP腔上下界面相位之和,N是整數(shù),λFP是FP腔共振波長。根據(jù)式(3)可知t增大會導(dǎo)致FP腔共振波長λFP增大,從而導(dǎo)致MA的吸收波長λ1出現(xiàn)紅移現(xiàn)象。

    由圖4(b)可知,MA在波長λ2處實(shí)現(xiàn)窄帶寬高吸收是因?yàn)閷?dǎo)模共振效應(yīng),而根據(jù)文獻(xiàn)[26]可知,導(dǎo)模共振波長主要與光柵參數(shù)、入射角等有關(guān)。但是可以發(fā)現(xiàn)隨著t的增大,MA在吸收波長λ2的吸收效率會逐漸下降,這可由圖6(彩圖見期刊電子版)解釋。圖6是t=1.205 μm時MA在波長λ2處電場分布,將圖6與圖4(b)相比,可以發(fā)現(xiàn)在圖6中聚集在光柵中的電場明顯低于圖4(b),故此導(dǎo)致MA在t變大后的吸收率會下降。

    圖7(彩圖見期刊電子版)所示的是光柵寬度W1對雙波長窄帶寬介質(zhì)MA吸收特性的影響。由圖7(a)可知,隨著W1的變寬,MA的吸收波長λ1和λ2都分別出現(xiàn)了紅移現(xiàn)象。從圖7(b)可知,當(dāng)W1從0.2 μm增加到0.202 μm,MA的吸收波長λ2紅移了將近7 nm,而MA的吸收波長λ1紅移了1.46 nm。

    W1的變化能夠?qū)ξ詹ㄩLλ1產(chǎn)生影響是因?yàn)楦鶕?jù)等效介質(zhì)原理可知光柵寬度的變化會導(dǎo)致非對稱光柵的等效折射率發(fā)生變化,而FP腔的等效折射率neq又受非對稱光柵等效折射率nw的影響。而且文獻(xiàn)[27]也已經(jīng)證明,光柵寬度增加會導(dǎo)致FP腔等效折射率neq增大,由式(3)可知,neq增大,F(xiàn)P腔共振波長λFP也將會增大。λFP增大就會導(dǎo)致MA的吸收波長λ1紅移。圖8是當(dāng)W1取不同值時neq的變化情況,它是由FDTD計(jì)算獲得。從圖8中可以發(fā)現(xiàn),當(dāng)W1從0.2 μm增加到0.202 μm,neq則從1.510增加到1.512.

    光柵、SiO2層、空氣形成了光波導(dǎo),根據(jù)光柵導(dǎo)模共振理論可知,光柵等效折射率的改變將會影響導(dǎo)模共振波長[26],即

    式中λg是導(dǎo)模共振波長,m為光柵的衍射階數(shù)。由等效介質(zhì)理論可知,W1增大將會使光柵等效折射率nw增大,而根據(jù)式(4)可知,nw增大則使導(dǎo)模共振波長λg紅移,從而使MA吸收波長λ2紅移。在本文中之所以沒有展示W(wǎng)2對MA吸收特性的影響,是因?yàn)閃2的變化對MA吸收特性的影響與W1對MA的影響相似,而且內(nèi)在物理機(jī)理也基本相同。

    通過圖4(b)的電場分布可知,有一部分電場分布在介質(zhì)光柵縫隙中,由此可知,周圍氣體的變化將會對MA的吸收波長λ2產(chǎn)生影響,因此本文提出的窄帶寬介質(zhì)MA可應(yīng)用在氣體或生物探測等領(lǐng)域當(dāng)中。為了評估窄帶寬介質(zhì)MA在氣體探測中的工作性能,定義了靈敏度和品質(zhì)因素兩個參數(shù),即

    式中S是窄帶寬MA的靈敏度,△n和△λ分別是周圍氣體折射率的變化量和吸收波長的變化量[18]。

    從圖9(a)(彩圖見期刊電子版)可知,隨著n的增加,MA的吸收波長λ1和λ2都出現(xiàn)了紅移的現(xiàn)象。因?yàn)閚變大會導(dǎo)致光柵低折射率材料折射率nl變大,而nl變大又會導(dǎo)致光柵對不同波長的等效折射率變大。而由前面所述可知,光柵折射率變大會導(dǎo)致FP腔等效折射率neq變大,所以根據(jù)式(3)可知,n的增加會導(dǎo)致MA吸收波長λ1紅移。與導(dǎo)致MA吸收波長λ1紅移的機(jī)理不同,MA吸收波長λ2之所以會隨著n變大而紅移,是因?yàn)槠湓龃罅斯鈻诺刃д凵渎蕁w,這意味著增大了光波導(dǎo)中心層的折射率,而根據(jù)導(dǎo)模共振理論和式(4)可知[27],這必定會導(dǎo)致光柵導(dǎo)模共振波長的紅移。

    從圖9(b)可知,當(dāng)n從1增加到1.03,吸收波長λ2會從1.2382 μm增加到1.2417 μm,紅移了3.5 nm,根據(jù)式(5)和式(6)可得,S=117.3 nm/RIU,F(xiàn)OM=1524/RIU。本文的FOM相比文獻(xiàn)[14-15, 18]有了明顯提高。

    最后分析了非對稱光柵周期P對介質(zhì)MA吸收特性的影響,具體結(jié)果如圖10(彩圖見期刊電子版)所示。從圖10中可以發(fā)現(xiàn),隨著P的增加,MA的吸收波長λ1和λ2都產(chǎn)生了紅移現(xiàn)象。當(dāng)P從1.05 μm增加到1.1 μm后,波長λ1則從1.2085 μm增加到了1.2249 μm,而波長λ2則從1.2382 μm增加到了1.2525 μm。由式(4)可知,波長λ2之所以會隨著P的增大而增大[24],是因?yàn)橹芷谠龃髸r若要維持導(dǎo)模共振,則必須使得共振波長向長波長方向移動。

    隨著P的增加FP腔的相位Φ會顯著下降,因?yàn)镻的變化對neq的影響并無相位Φ的顯著,所以根據(jù)式(3)可知,隨著P的增加FP腔共振波長λFP會增大,從而導(dǎo)致MA的吸收波長λ1出現(xiàn)紅移現(xiàn)象。P對相位Φ的影響趨勢如圖11所示,該結(jié)果由FDTD計(jì)算得到,從圖11中可知當(dāng)P從1.05 μm增大到1.1 μm,Φ會從4.64 rad下降到0.22 rad。

    4 結(jié)論

    為了拓寬窄帶寬MA的應(yīng)用領(lǐng)域,本文基于時域有限差分法設(shè)計(jì)了在紅外波段上可實(shí)現(xiàn)雙波長窄帶寬吸收的介質(zhì)MA,經(jīng)模擬分析發(fā)現(xiàn),本文的窄帶寬介質(zhì)MA在波長λ1=1.2085 μm和λ2=1.2382 μm具有超高吸收效率,而且FWHM也分別只有0.735 nm和0.077 nm。由于MA在λ1和λ2上形成窄帶寬高吸收的機(jī)理不同,所以經(jīng)本文研究發(fā)現(xiàn),λ1對SiO2過渡層的厚度t變化非常敏感,但是λ2卻對介質(zhì)光柵寬度W1的變化非常敏感,隨著t和W1的增加,MA的吸收波長λ1和λ2都會分別出現(xiàn)紅移現(xiàn)象。而當(dāng)光柵周期P增加時,MA的吸收波長λ1和λ2會同時向長波長方向偏移。從MA在λ2處的電場分布可知,其電場有一大部分是分布在光柵之間的空隙當(dāng)中,因此空氣折射率的變化對λ2有顯著影響,這可使其應(yīng)用在探測領(lǐng)域當(dāng)中,經(jīng)計(jì)算可得本文的窄帶寬介質(zhì)MA的FOM可達(dá)1524/RIU。

    猜你喜歡
    襯底非對稱折射率
    硅襯底LED隧道燈具技術(shù)在昌銅高速隧道中的應(yīng)用
    非對稱Orlicz差體
    大尺寸低阻ZnO單晶襯底
    點(diǎn)數(shù)不超過20的旗傳遞非對稱2-設(shè)計(jì)
    單軸晶體雙折射率的測定
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    非對稱負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    電測與儀表(2015年4期)2015-04-12 00:43:04
    用Z-掃描技術(shù)研究量子點(diǎn)的非線性折射率
    如何選擇鏡片折射率
    亚洲成av片中文字幕在线观看| 777米奇影视久久| 一级,二级,三级黄色视频| 国产一卡二卡三卡精品| 日韩制服丝袜自拍偷拍| 国产在视频线精品| 国产成人啪精品午夜网站| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂中文最新版在线下载| 国产精品久久久av美女十八| 欧美激情久久久久久爽电影 | 一级毛片精品| 亚洲aⅴ乱码一区二区在线播放 | 人人妻人人澡人人看| 国产一区二区三区在线臀色熟女 | 女人高潮潮喷娇喘18禁视频| 免费日韩欧美在线观看| 亚洲avbb在线观看| 91国产中文字幕| 俄罗斯特黄特色一大片| 精品亚洲成国产av| 老司机深夜福利视频在线观看| 正在播放国产对白刺激| 精品一区二区三区四区五区乱码| 久久久久久久久久久久大奶| 国产欧美亚洲国产| 午夜福利欧美成人| 丰满饥渴人妻一区二区三| 王馨瑶露胸无遮挡在线观看| av天堂久久9| 日日爽夜夜爽网站| 欧美最黄视频在线播放免费 | 亚洲五月色婷婷综合| 黄色丝袜av网址大全| 在线看a的网站| 国产成人系列免费观看| 久久精品国产综合久久久| 麻豆国产av国片精品| 久久久国产精品麻豆| 村上凉子中文字幕在线| 丰满饥渴人妻一区二区三| 夜夜躁狠狠躁天天躁| 国产精品秋霞免费鲁丝片| 极品教师在线免费播放| 国产xxxxx性猛交| 午夜激情av网站| 黑人猛操日本美女一级片| 国产精品成人在线| 国产av精品麻豆| av欧美777| 在线观看www视频免费| 国产精品电影一区二区三区 | av免费在线观看网站| 伦理电影免费视频| 超色免费av| 久久香蕉国产精品| 丁香欧美五月| 女同久久另类99精品国产91| 久久久久久久国产电影| 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 欧美日本中文国产一区发布| 精品久久久久久久毛片微露脸| 18在线观看网站| 99香蕉大伊视频| 校园春色视频在线观看| 啦啦啦视频在线资源免费观看| 欧美激情久久久久久爽电影 | 欧美日韩视频精品一区| av一本久久久久| 黑人猛操日本美女一级片| 亚洲精品av麻豆狂野| 99国产精品一区二区三区| 一区二区三区激情视频| 丝袜在线中文字幕| 黄网站色视频无遮挡免费观看| 黄色 视频免费看| 国产亚洲av高清不卡| 国产精品久久久久久精品古装| 久久婷婷成人综合色麻豆| 宅男免费午夜| 国产精品免费一区二区三区在线 | 亚洲五月婷婷丁香| 在线观看免费日韩欧美大片| 欧美成狂野欧美在线观看| 中国美女看黄片| 欧美亚洲 丝袜 人妻 在线| av超薄肉色丝袜交足视频| 久久久久久久精品吃奶| 成在线人永久免费视频| 成在线人永久免费视频| 精品国产一区二区三区久久久樱花| 女性生殖器流出的白浆| 亚洲精品国产精品久久久不卡| 国产精品自产拍在线观看55亚洲 | 国产精品秋霞免费鲁丝片| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看日韩欧美| 18禁黄网站禁片午夜丰满| 热99re8久久精品国产| 很黄的视频免费| 久久久国产成人精品二区 | 男人操女人黄网站| 又大又爽又粗| 大型av网站在线播放| 亚洲av欧美aⅴ国产| 交换朋友夫妻互换小说| 久久亚洲真实| 欧美日韩成人在线一区二区| 欧美成狂野欧美在线观看| 日韩有码中文字幕| 无人区码免费观看不卡| 亚洲欧美激情综合另类| 久久精品国产99精品国产亚洲性色 | 午夜福利欧美成人| 亚洲视频免费观看视频| 99国产精品免费福利视频| 老汉色av国产亚洲站长工具| 色94色欧美一区二区| 极品教师在线免费播放| 久久人妻福利社区极品人妻图片| 老鸭窝网址在线观看| 午夜福利在线观看吧| 欧美成狂野欧美在线观看| 日韩有码中文字幕| 日本撒尿小便嘘嘘汇集6| 精品久久蜜臀av无| av一本久久久久| 啦啦啦在线免费观看视频4| 一级毛片高清免费大全| 天天躁日日躁夜夜躁夜夜| a级毛片黄视频| 手机成人av网站| 日韩中文字幕欧美一区二区| 热re99久久精品国产66热6| www.自偷自拍.com| 国产又爽黄色视频| 久久精品aⅴ一区二区三区四区| 亚洲熟妇中文字幕五十中出 | 宅男免费午夜| 五月开心婷婷网| 国产精品一区二区在线观看99| 亚洲精品中文字幕一二三四区| 午夜福利在线观看吧| 男人的好看免费观看在线视频 | 老熟妇仑乱视频hdxx| 亚洲国产毛片av蜜桃av| 国产一区有黄有色的免费视频| 国产高清激情床上av| 亚洲精品美女久久av网站| 91成年电影在线观看| 啪啪无遮挡十八禁网站| 超色免费av| 精品国产一区二区久久| 中出人妻视频一区二区| 伦理电影免费视频| 一级毛片高清免费大全| 亚洲一区中文字幕在线| 999久久久精品免费观看国产| 新久久久久国产一级毛片| 精品国产一区二区三区四区第35| 国产不卡av网站在线观看| 欧美日本中文国产一区发布| 国产精品自产拍在线观看55亚洲 | 亚洲成人手机| 99国产精品一区二区三区| 天堂俺去俺来也www色官网| 亚洲精品在线观看二区| 国产主播在线观看一区二区| 在线天堂中文资源库| 午夜亚洲福利在线播放| 视频在线观看一区二区三区| 无人区码免费观看不卡| 国产在视频线精品| 咕卡用的链子| 亚洲欧美日韩另类电影网站| 欧美日韩黄片免| 成年动漫av网址| 亚洲久久久国产精品| 午夜福利在线免费观看网站| 国产精品久久视频播放| 人人妻人人澡人人看| 美女扒开内裤让男人捅视频| 久久青草综合色| 又黄又爽又免费观看的视频| 侵犯人妻中文字幕一二三四区| 欧美+亚洲+日韩+国产| 一区二区日韩欧美中文字幕| 美女高潮到喷水免费观看| 人成视频在线观看免费观看| 麻豆国产av国片精品| 校园春色视频在线观看| 亚洲色图综合在线观看| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 日韩 欧美 亚洲 中文字幕| 日本精品一区二区三区蜜桃| 叶爱在线成人免费视频播放| 成人手机av| 欧美黄色淫秽网站| 亚洲欧洲精品一区二区精品久久久| 看片在线看免费视频| 亚洲午夜精品一区,二区,三区| 午夜视频精品福利| 亚洲国产看品久久| 亚洲精品粉嫩美女一区| 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器 | 亚洲成人免费av在线播放| 日韩欧美三级三区| 久久人妻福利社区极品人妻图片| 欧美成狂野欧美在线观看| 最新在线观看一区二区三区| 欧美大码av| 亚洲自偷自拍图片 自拍| 亚洲欧美激情在线| 精品久久久久久,| 99精品欧美一区二区三区四区| 男女之事视频高清在线观看| 成年人黄色毛片网站| 一级片'在线观看视频| 男男h啪啪无遮挡| 亚洲色图av天堂| 国产在线一区二区三区精| 他把我摸到了高潮在线观看| 黄色视频,在线免费观看| a在线观看视频网站| 精品久久蜜臀av无| 亚洲欧美日韩高清在线视频| 亚洲一区中文字幕在线| www.自偷自拍.com| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 在线观看日韩欧美| 在线播放国产精品三级| 亚洲欧美一区二区三区久久| 建设人人有责人人尽责人人享有的| 欧美精品高潮呻吟av久久| 亚洲精品粉嫩美女一区| 高清毛片免费观看视频网站 | 亚洲久久久国产精品| а√天堂www在线а√下载 | 亚洲中文字幕日韩| 欧美av亚洲av综合av国产av| 欧美精品高潮呻吟av久久| 日本黄色日本黄色录像| a级毛片在线看网站| 亚洲欧美激情综合另类| 国产精品一区二区免费欧美| 曰老女人黄片| 午夜影院日韩av| 捣出白浆h1v1| 午夜亚洲福利在线播放| 欧美日韩一级在线毛片| 美女扒开内裤让男人捅视频| 王馨瑶露胸无遮挡在线观看| 欧美日韩黄片免| 婷婷精品国产亚洲av在线 | bbb黄色大片| 日韩欧美在线二视频 | 国产免费av片在线观看野外av| 一二三四社区在线视频社区8| 久久久久久久午夜电影 | www.熟女人妻精品国产| 亚洲欧美精品综合一区二区三区| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 很黄的视频免费| 亚洲欧美日韩高清在线视频| 国产99久久九九免费精品| 久久精品国产a三级三级三级| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| 中文亚洲av片在线观看爽 | 在线播放国产精品三级| 一区二区三区激情视频| 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 美国免费a级毛片| 免费黄频网站在线观看国产| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 激情视频va一区二区三区| 高潮久久久久久久久久久不卡| 亚洲欧美激情在线| 国产精品香港三级国产av潘金莲| 久久久国产精品麻豆| 99久久国产精品久久久| 久久 成人 亚洲| 18禁观看日本| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频| 日日爽夜夜爽网站| 亚洲伊人色综图| 亚洲精品中文字幕一二三四区| 法律面前人人平等表现在哪些方面| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 国产欧美日韩综合在线一区二区| 真人做人爱边吃奶动态| 午夜视频精品福利| 精品国产一区二区三区久久久樱花| 久久久久国产一级毛片高清牌| 久久久久国产精品人妻aⅴ院 | 亚洲人成伊人成综合网2020| 欧美性长视频在线观看| 中文字幕人妻丝袜一区二区| 国产麻豆69| 王馨瑶露胸无遮挡在线观看| 亚洲伊人色综图| 免费观看人在逋| 亚洲avbb在线观看| 建设人人有责人人尽责人人享有的| 亚洲熟妇熟女久久| 国产国语露脸激情在线看| 国产片内射在线| 精品国产超薄肉色丝袜足j| 黄色视频不卡| 国产亚洲欧美98| 欧美不卡视频在线免费观看 | 91九色精品人成在线观看| 纯流量卡能插随身wifi吗| 女性生殖器流出的白浆| 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 五月开心婷婷网| 国产成人欧美在线观看 | 天天添夜夜摸| 婷婷丁香在线五月| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 亚洲熟女精品中文字幕| 亚洲中文日韩欧美视频| 午夜影院日韩av| 电影成人av| 黄色a级毛片大全视频| ponron亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 如日韩欧美国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 亚洲性夜色夜夜综合| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看66精品国产| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| tocl精华| 黄色毛片三级朝国网站| 波多野结衣av一区二区av| 高清黄色对白视频在线免费看| 黄片播放在线免费| 男女午夜视频在线观看| 国产成人精品无人区| 久久久久久久久免费视频了| 久久久久久久国产电影| 亚洲aⅴ乱码一区二区在线播放 | 久久精品国产亚洲av高清一级| 国产高清videossex| 女同久久另类99精品国产91| 久久香蕉国产精品| 首页视频小说图片口味搜索| 欧美日韩精品网址| 日韩欧美三级三区| e午夜精品久久久久久久| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看| 少妇的丰满在线观看| 麻豆成人av在线观看| 成年人免费黄色播放视频| 成熟少妇高潮喷水视频| 91字幕亚洲| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久久久人妻精品电影| 两个人看的免费小视频| www.自偷自拍.com| cao死你这个sao货| 亚洲在线自拍视频| av线在线观看网站| 交换朋友夫妻互换小说| 欧美最黄视频在线播放免费 | 国产精品乱码一区二三区的特点 | 亚洲国产欧美网| 欧美黑人精品巨大| 中文欧美无线码| 91精品国产国语对白视频| 午夜福利欧美成人| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 在线免费观看的www视频| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| 中文字幕色久视频| 免费在线观看影片大全网站| 高清黄色对白视频在线免费看| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 成人手机av| 岛国在线观看网站| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 日韩免费av在线播放| 久久亚洲真实| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| 精品无人区乱码1区二区| 一级a爱视频在线免费观看| 成年人免费黄色播放视频| 久久久国产一区二区| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 亚洲专区中文字幕在线| 色精品久久人妻99蜜桃| 搡老熟女国产l中国老女人| 亚洲,欧美精品.| 少妇的丰满在线观看| 亚洲精品国产区一区二| 51午夜福利影视在线观看| 欧美最黄视频在线播放免费 | 又黄又爽又免费观看的视频| 国产一区二区激情短视频| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 日韩欧美三级三区| 婷婷丁香在线五月| 国产欧美日韩一区二区三区在线| 久久精品91无色码中文字幕| 搡老熟女国产l中国老女人| 亚洲成人国产一区在线观看| 国产高清激情床上av| 午夜老司机福利片| 国产亚洲av高清不卡| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 1024香蕉在线观看| 亚洲成国产人片在线观看| 国产成人欧美| 日韩大码丰满熟妇| 色老头精品视频在线观看| 成人亚洲精品一区在线观看| 多毛熟女@视频| 国产精品久久久av美女十八| 欧美色视频一区免费| 欧美国产精品va在线观看不卡| 国产欧美日韩精品亚洲av| 午夜成年电影在线免费观看| 国产男靠女视频免费网站| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 精品少妇久久久久久888优播| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| 精品国产亚洲在线| 欧美在线一区亚洲| 91精品国产国语对白视频| 黄片小视频在线播放| 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 午夜精品久久久久久毛片777| 亚洲欧美日韩另类电影网站| 欧美日韩乱码在线| 亚洲成人手机| 久久久久精品人妻al黑| 在线播放国产精品三级| tube8黄色片| 人人妻人人澡人人看| 成人特级黄色片久久久久久久| 99国产精品一区二区蜜桃av | 99精品欧美一区二区三区四区| 亚洲精品国产一区二区精华液| av中文乱码字幕在线| 波多野结衣一区麻豆| 亚洲中文字幕日韩| 久久亚洲真实| 国产免费男女视频| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 久久中文看片网| 免费av中文字幕在线| 欧美在线黄色| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 午夜两性在线视频| 久久久久久久精品吃奶| 精品久久久精品久久久| 成年人免费黄色播放视频| 国产在线精品亚洲第一网站| 一区福利在线观看| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 大香蕉久久成人网| 水蜜桃什么品种好| 免费人成视频x8x8入口观看| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 欧美午夜高清在线| 可以免费在线观看a视频的电影网站| 久久人人97超碰香蕉20202| 欧美乱妇无乱码| 日本黄色视频三级网站网址 | 曰老女人黄片| 精品免费久久久久久久清纯 | 色94色欧美一区二区| 国精品久久久久久国模美| 高清视频免费观看一区二区| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 久久久久国产一级毛片高清牌| 99久久人妻综合| 一进一出抽搐动态| 亚洲熟女毛片儿| 超色免费av| 成年人午夜在线观看视频| 国产成人精品无人区| 又黄又爽又免费观看的视频| 国产伦人伦偷精品视频| 欧美乱色亚洲激情| av有码第一页| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 50天的宝宝边吃奶边哭怎么回事| 丁香欧美五月| 女人精品久久久久毛片| av中文乱码字幕在线| 极品人妻少妇av视频| 99久久人妻综合| 无人区码免费观看不卡| 午夜精品国产一区二区电影| 欧美日韩成人在线一区二区| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一小说 | 国产亚洲精品久久久久5区| 天天躁日日躁夜夜躁夜夜| 亚洲第一av免费看| 成熟少妇高潮喷水视频| 国产又爽黄色视频| 成人国语在线视频| 国产精品久久久av美女十八| 成年女人毛片免费观看观看9 | 日韩欧美免费精品| 免费在线观看视频国产中文字幕亚洲| а√天堂www在线а√下载 | 18禁美女被吸乳视频| 欧美精品啪啪一区二区三区| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看 | 日本撒尿小便嘘嘘汇集6| av天堂在线播放| 首页视频小说图片口味搜索| 999久久久精品免费观看国产| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 国产色视频综合| 免费在线观看影片大全网站| av福利片在线| 国产精品影院久久| 大码成人一级视频| 在线永久观看黄色视频| 人人澡人人妻人| 国产午夜精品久久久久久| 亚洲av成人一区二区三| 精品国产一区二区三区久久久樱花| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 下体分泌物呈黄色| 国产精品 国内视频| 欧美成人午夜精品| 国产精华一区二区三区| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 老汉色∧v一级毛片| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 少妇的丰满在线观看| 久久精品熟女亚洲av麻豆精品| 午夜久久久在线观看| 久久天堂一区二区三区四区| 久久ye,这里只有精品| 人妻一区二区av| 亚洲中文日韩欧美视频| 久久中文字幕一级| 国产精品久久久久成人av| 大型av网站在线播放| 少妇 在线观看| 桃红色精品国产亚洲av| 欧美 日韩 精品 国产| 精品一区二区三区四区五区乱码| 精品亚洲成国产av| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 国产精品欧美亚洲77777| 男女床上黄色一级片免费看| 亚洲成人手机| 黄频高清免费视频| 国产精品99久久99久久久不卡| 久久精品91无色码中文字幕| 热re99久久精品国产66热6| 日韩有码中文字幕| 免费看a级黄色片| 成年女人毛片免费观看观看9 | 亚洲一码二码三码区别大吗| 午夜激情av网站| 青草久久国产| 伊人久久大香线蕉亚洲五| 亚洲免费av在线视频| 精品一区二区三卡| 91大片在线观看| 大香蕉久久网|