吳啟俠,譚京紅,朱建強,王 威,韓 蕊,鄒 娟
花后漬水對不同耐漬型冬小麥籽粒灌漿特性的影響
吳啟俠1,2,譚京紅1,2,朱建強1,2,王 威1,2,韓 蕊1,2,鄒 娟3※
(1. 濕地生態(tài)與農業(yè)利用教育部工程研究中心,荊州 434025;2. 長江大學農學院,荊州 434025;3. 湖北省農業(yè)科學院糧食作物研究所,武漢 430064)
江漢平原冬小麥中后期常遭受澇漬災害,為明確花后漬水對冬小麥籽粒灌漿進程的影響,以鄭麥9023(耐漬型)和揚麥20(敏感型)2個小麥品種為研究對象,利用灌排可控的測坑模擬冬小麥花后不同天數(5、9、13和17 d)的漬水脅迫,應用Richards模型對冬小麥籽粒灌漿進程進行了模擬,在此基礎上分析各籽粒灌漿參數與漬水天數的關系。結果表明:花后漬水5、9、13和17 d,鄭麥9023(耐漬型)分別減產10.84%、19.51%、25.93%和36.52%,揚麥20(敏感型)分別減產14.25%、25.84%、37.26%和47.84%。導致冬小麥減產的主要原因是千粒質量降低,花后漬水天數每增加1 d,冬小麥鄭麥9023和揚麥20千粒質量分別降低0.961和0.996 g。Richards方程能極顯著模擬花后漬水冬小麥籽粒灌漿過程,擬合方程決定系數均在0.99以上。對耐漬型冬小麥,花后漬水主要顯著縮短活躍灌漿期,且主要是顯著縮短籽粒灌漿快增期和緩增期的持續(xù)天數;對敏感型冬小麥,花后漬水主要顯著降低籽粒灌漿三階段的灌漿速率?;ê鬂n水增加1 d,鄭麥9023籽粒活躍灌漿期縮短0.827 d,籽粒灌漿快增期、緩增期灌漿持續(xù)天數分別縮短0.492、0.963 d,揚麥20單粒最大灌漿速率降低0.046 mg/d、單粒平均灌漿速率降低0.032 mg/d,籽粒灌漿漸增期、快增期和緩增期單粒灌漿速率分別降低0.011、0.040和0.010 mg/d。研究可揭示花后漬水致使冬小麥減產的影響過程,為冬小麥澇漬災害防控提供理論支撐。
灌溉;產量;漬水脅迫;Richards模型;灌漿特征參數;冬小麥
在中國,小麥是三大糧食作物之一,2019年種植面積占全國糧食作物播種面積的20.4%[1],在確保糧食安全上具有重要地位。長江中下游地區(qū)是中國冬小麥主產區(qū)之一,該區(qū)域冬小麥播種面積占全國小麥播種面積的20%左右[2]。該區(qū)域為季風氣候,春季降雨量較多,且多集中于冬小麥生長中后期[3],加上多數實行水稻-冬小麥輪作種植方式[4],地勢相對較低,土壤質地黏重,透水性差,導致長江中下游地區(qū)冬小麥中后期常遭受澇漬災害威脅[5-6]。開花前后是冬小麥對漬水最敏感的時期[7-8],花后漬害使小麥地上部功能葉早衰,葉綠素合成受阻,光合作用受抑制,影響植株干物質的積累與轉運,最終導致減產超過20%[9-10]。
單粒質量是小麥產量的重要構成因素[11],受作物品種[12]、降水[13]、土壤水分[14]等諸多因素影響。運用三次多項式方程、Logistic方程和Richards方程模擬作物灌漿過程,得出影響單粒質量變化的主要因素,是研究單粒質量變化的重要手段之一。Tian等[15]運用Logistic方程擬合了受漬春玉米灌漿過程;楊麗麗等[16]應用Richards方程對干旱脅迫后復水小麥強勢粒、弱勢粒的籽粒灌漿過程進行了擬合;徐云姬等[17]運用Richards方程對干濕交替灌溉水稻籽粒灌漿對籽粒灌漿過程進行了擬合。諸多學者圍繞構建模型模擬水分變化影響作物籽粒灌漿過程進行了大量研究,但關于花后漬水條件下冬小麥籽粒灌漿過程的擬合分析研究報道甚少?;ê鬂n水造成長江中下游地區(qū)冬小麥產量下降的主要原因是單粒質量減小[7],而單粒質量很大程度上取決于籽粒灌漿速率和持續(xù)時間[18],即具體灌漿過程。Richards生長模型可塑性強,擬合精度高,且能更好地反映品種的灌漿特性,并能夠對灌漿期進行準確劃分[19-20]。
為此,本研究利用灌排可控的測坑模擬不同耐漬型冬小麥花后漬水,運用Richards模型擬合冬小麥籽粒灌漿進程并分析產量構成要素,量化分析花后漬水對不同耐漬型冬小麥灌漿特性的差異化影響,揭示花后漬水致使冬小麥減產的影響過程,以期為冬小麥花后漬害精準調控提供理論支撐。
試驗區(qū)為地處江漢平原腹地的長江大學試驗基地(30°21′N,112°09′E),該基地屬東部季風農業(yè)氣候大區(qū)、北亞熱帶農業(yè)氣候帶、長江中下游農業(yè)氣候區(qū),試驗期間氣象要素如圖1所示。試驗在基地面積為4 m2(2 m×2 m)、深1 m的測坑中進行。測坑表面中部布設直徑25 cm、長1.0 m的灌水管,灌水管連接灌水系統,灌水管均勻打孔,灌水時水以噴的形式灌到測坑中。測坑底部布設直徑25 cm、長1.0 m的排水管,水管均勻打孔,排水管外有完善的反濾層,水管聯通到測坑外后連接4個水閥,分別可排100、80、50和30 cm深地下水。測坑土層厚度為100 cm,土壤為中壤,取自旱地,按等土壤密度分層回填,0~30 cm耕層土壤pH值為7.6,土壤堿解氮含量為89.4 mg/kg,土壤速效磷含量為28.7 mg/kg,土壤速效鉀含量為118.7 mg/kg。
選擇在江漢平原廣泛栽培的2個小麥品種鄭麥9023(耐漬型)和揚麥20(敏感型)作為供試材料[21]。播種前撒施養(yǎng)分含量N∶P2O5∶K2O為18∶8∶15的復合肥750 kg/hm2,施肥后混勻20 cm表層土壤,返青期撒施尿素125 kg/hm2。2017年11月6日播種,播種量為135 kg/hm2,采用條播方式,行距為25 cm,每測坑9行。
設5、9、13和17 d共4個花后漬水處理。2018年4月10日開始漬水,漬水處理為田間低洼處有明水,且土壤含水率保持在田間持水率的90%以上,達到設定漬澇時間后3 d將地下水位降到70 cm以下。以測坑內土壤水分保持在田間持水率的70%~80%(即大田正常水分管理要求的土壤水分含量)為對照(CK)。非漬澇時期將80 cm處水閥打開,遇降水時地下水從該水閥排出,維持非漬澇時期測坑地下水埋深為80 cm,與大田地下水埋深基本一致,其余管理同大田管理一致。各漬澇處理和對照均重復6次(3個測坑用于取樣,3個測坑用于考種),采用隨機區(qū)組試驗設計。
于冬小麥盛花期,每個取樣測坑挑選開花日期相同、單穗大小基本一致的200單穗掛牌標記,標記時避開邊行或有病蟲害的單穗?;ê? d開始取樣,以后每5 d取樣1次,直至收獲,每次每測坑取標記單穗10個,手工剝取籽粒,先統計籽粒粒數,再將籽粒置于烘箱中105 ℃殺青30 min,80 ℃烘干至恒質量,稱量并折算千粒質量。
冬小麥成熟后,剔除受邊際效應影響的植株,每測坑隨機取生長基本一致的植株20株,按常規(guī)方法考察穗粒數、千粒質量、有效穗數。每測坑單獨收獲,曬干除雜后稱取質量,作為每測坑的冬小麥籽粒實際產量。
參照朱慶森等[22]方法用Richards方程對冬小麥籽粒灌漿進程進行擬合。Richards方程為
式中為開花后天數,d;為對應的籽粒千粒質量,g;為最終籽粒質量,g;為初級參數;為生長速率參數;為形狀參數,反映灌漿庫容限制情況,若0<<1,說明灌漿受庫容限制較大,即灌漿物質來源相對充分;若>1,說明灌漿受庫容限制較小,即灌漿物質來源相對匱乏[19]。當=1時為Logistic方程。
對Richards方程一階求導,得籽粒灌漿速率方程。通過籽粒灌漿速率方程計算出以下籽粒灌漿特征參數:活躍灌漿期天數(從達到的5%到95%的灌漿天數[16],,d)、籽粒最大灌漿速率出現時間(max,d)、單粒最大灌漿速率(max,mg/d)和單粒平均灌漿速率(ave,mg/d),其計算公式分別為
籽粒灌漿速率方程具有2個拐點,求其對的二階導數,并令其為0,可得2個拐點在坐標上的值1(達到質量5%時的灌漿時間)和2(達到質量95%時的灌漿時間),其計算公式參照孟兆江等[23]方法。令達到質量99%時的灌漿時間為3,依據Richards方程可得3。根據孟兆江等[23]的研究,確定灌漿時間小于1的階段為籽粒灌漿漸增期,其持續(xù)天數為1(d);1~2階段為籽粒灌漿快增期,其持續(xù)天數為2(d);2~3階段為籽粒灌漿緩增期,其持續(xù)天數3(d);各階段的單粒平均灌漿速率分別為1、2、3(mg/d)。
計算冬小麥減產率,公式如下:
減產率=(對照產量-處理產量)/對照產量×100% (6)
使用Microsoft Excel 2016進行數據整理、作圖,使用DPS 18.10軟件進行方差分析、回歸分析和Richards方程擬合,多重比較分析采用最小顯著差數法(Least Significant Difference,LSD)。
花后漬水對冬小麥產量及產量構成因素的影響如表 1?;ê鬂n水使冬小麥極顯著減產(<0.01),花后漬水5、9、13和17 d,冬小麥鄭麥9023(耐漬型)分別減產10.84%、19.51%、25.93%和36.52%,冬小麥揚麥20(敏感型)分別減產14.25%、25.84%、37.26%和47.84%。冬小麥籽粒減產率與花后漬水天數關系如圖2a,減產率與花后漬水天數呈極顯著一元一次方程關系(<0.01),花后漬水天數每增加1 d,冬小麥鄭麥9023(耐漬型)和揚麥20(敏感型)減產率分別增加2.10%和2.69%,說明花后漬水對敏感型冬小麥影響更大。就產量構成要素而言,花后漬水對冬小麥單株有效穗數和每穗粒數無顯著性影響(表1),而漬水5 d兩品種冬小麥千粒質量均顯著降低(<0.05),表明花后漬水導致冬小麥減產的主要原因是千粒質量降低。冬小麥籽粒千粒質量與花后漬水天數關系如圖2b,冬小麥千粒質量與花后漬水天數呈極顯著線性負相關(<0.01),花后漬水天數每增加1 d,冬小麥鄭麥9023(耐漬型)和揚麥20(敏感型)千粒質量分別降低0.961和0.996 g。
表1 花后漬水對冬小麥產量及其構成要素的影響
注:同列數值后不同字母表示同一品種不同處理間在<0.05水平上差異顯著;*:<0.05;**:<0.01;ns:不顯著,下同。V:品種;W:花后漬水天數。
Note: Different letters following the values within the same columns indicate significant differences among the different treatments for a variety at<0.05 level; *:<0.05; **:<0.01; ns: not significant, the same as below. V: variety; W: waterlogging days after anthesis.
利用Richards模型對冬小麥籽粒灌漿進程進行擬合,擬合方程參數及決定系數(2)如表2所示。由表2可知,各擬合方程的2均大于0.99,達到極顯著水平(<0.01),表明用Richards方程模擬花后漬水冬小麥籽粒灌漿過程是合適的。最終籽粒質量(,g)隨花后漬水天數的增加呈顯著下降趨勢(<0.05),與實測千粒質量的變化趨勢一致,且與實測千粒質量的差值在0.14~2.80 g之間,表明用Richards模型擬合花后漬水冬小麥籽粒千粒質量動態(tài)過程是可行的。花后漬水處理>1(鄭麥9023漬水5 d處理除外),說明花后漬水冬小麥千粒質量增長速率受庫容限制較小,即灌漿物質來源相對匱乏,且漬水天數越長,灌漿物質來源越匱乏。
根據表2中Richards模型計算的冬小麥灌漿特征參數,結果如表3所示。對于鄭麥9023(耐漬型),當花后漬水達到9 d時活躍灌漿期(,d)顯著縮短(<0.05),最大灌漿速率出現時間(max,d)顯著前移,其縮短了5.008 d,max提前了0.771 d;花后漬水5 d后單粒最大灌漿速率(max,mg/d)顯著降低,但隨著漬水天數延長,max無顯著降低趨勢,花后漬水13 d時單粒平均灌漿速率(ave,mg/d)才顯著降低。因此,花后漬水導致耐漬型冬小麥降低的主要原因是活躍灌漿期縮短,最大灌漿速率出現時間前移。對于揚麥20(敏感型),花后漬水5 d其ave就顯著下降(<0.05),到花后漬水9 d時其max亦顯著下降,而花后漬水、max無規(guī)律性變化,表明花后漬水主要導致敏感型冬小麥灌漿速率降低,最終導致降低。
表2 花后漬水處理下冬小麥籽粒灌漿進程的Richards模型模擬結果
注::開花后天數,d;:對應的籽粒千粒質量,g。
Note:: waterlogging days after anthesis, d;: the thousand-grain mass corresponding to, g.
表3 不同漬水處理下冬小麥籽粒灌漿特征參數
對兩個不同類型冬小麥的灌漿特征參數與漬水天數進行分析,結果如表4所示。由表4可知,鄭麥9023(耐漬型)灌漿特征參數中與花后漬水天數(,d)呈極顯著線性關系(<0.01),max、ave與花后漬水天數呈顯著線性關系(<0.05),而max與花后漬水天數無顯著線性關系;揚麥20(敏感型)灌漿特征參數中的max、ave與花后漬水天數呈極顯著線性關系(<0.01),而、max與花后漬水天數無顯著線性關系。從回歸關系式得出:花后漬水天數每增加1 d,擬合鄭麥9023(耐漬型)灌漿過程的Richards模型中的縮短0.827 d、max提前0.163 d、ave降低0.004 mg/d;擬合揚麥20(敏感型)灌漿過程的Richards模型中的max降低0.046 mg/d、ave降低0.032 mg/d。
根據表2中Richards模型計算冬小麥3階段籽粒灌漿持續(xù)時間和單粒平均灌漿速率,結果如表5所示。未漬水時兩個品種冬小麥的籽粒灌漿漸增期、快增期和緩增期灌漿進程就存在差異,鄭麥9023(耐漬型)籽粒灌漿漸增期持續(xù)天數(1)較短,快增期持續(xù)天數(2)和緩增期持續(xù)天數(3)較長,2、3分別是1的2.09、2.93倍;而揚麥20(敏感型)的各時期持續(xù)天數基本相同,為12 d左右?;ê鬂n水對鄭麥9023(耐漬型)1、2、3有明顯影響,花后漬水5 d時鄭麥9023(耐漬型)1顯著延長0.421 d(<0.05),2和3顯著縮短0.510 d和1.952 d,2和3縮短天數之和超過了1延長天數,導致縮短;隨著花后漬水天數持續(xù)增加,1不再顯著延長,2和3仍呈顯著縮短趨勢?;ê鬂n水條件下,揚麥20(敏感型)1、2、3變化無明顯規(guī)律,而漸增期單粒平均灌漿速率(1)、快增期單粒平均灌漿速率(2)和緩增期單粒平均灌漿速率(3)隨著漬水天數增加呈顯著降低趨勢(<0.05),而鄭麥9023(耐漬型)在漬水條件下各灌漿階段的灌漿速率與CK相比基本無差異,即各階段灌漿速率受漬水影響不顯著。對于耐漬型冬小麥,花后漬水主要顯著縮短快增期和緩增期灌漿持續(xù)天數,最終導致活躍灌漿期天數顯著縮短;對于敏感型冬小麥,花后漬水主要顯著降低漸增期、快增期和緩增期灌漿速率,從而使整個灌漿期平均灌漿速率顯著降低。
表4 籽粒灌漿特征參數與花后漬水天數回歸分析
注::籽粒灌漿特征參數;:花后漬水天數,下同。
Note:: grain fillingcharacteristic parameters;: waterlogging days after anthesis, the same as below.
表5 不同漬水處理下冬小麥籽粒各階段灌漿持續(xù)天數和灌漿速率
對兩個品種冬小麥的各階段籽粒灌漿特征參數與花后漬水天數進行分析,結果如表6所示。由表6可知,鄭麥9023(耐漬型)1與花后漬水天數()呈極顯著線性正相關(<0.01),2、3與花后漬水天數呈極顯著線性負相關,而1、2、3與花后漬水天數無顯著線性關系;揚麥20(敏感型)1、2與花后漬水時間呈極顯著線性負相關(<0.01),3與花后漬水時間呈顯著線性負相關(<0.05),而1、2、3與花后漬水天數無顯著線性關系。從回歸關系式得出,漬水增加1 d,鄭麥9023(耐漬型)漸增期灌漿持續(xù)時間增加0.083 d,而快增期、緩增期灌漿持續(xù)時間分別減少0.492、0.963 d;揚麥20漸增期、快增期和緩增期單粒灌漿速率分別降低0.011、0.040和0.010 mg/d。
表6 各階段籽粒灌漿參數與花后漬水天數回歸分析
冬小麥在不同生育期對漬水的敏感性不同,一般認為生殖生長階段漬水脅迫對冬小麥的影響大于營養(yǎng)生長階段,開花期前后是冬小麥對漬水最為敏感的時期[7-8]?;ê鬂n水使冬小麥減產嚴重,吳啟俠等[24]研究認為灌漿期漬澇5~15 d鄭麥9023產量下降7.6%~43.7%;丁錦峰等[25]研究認為花后漬水5~15 d揚輻麥4號籽粒產量下降15%~34%;本研究表明花后漬水5~17 d鄭麥9023減產10.84%~36.52%,揚麥20減產14.25%~47.84%(表 1),與之前研究得出的花后漬水使小麥產量下降幅度基本一致。Araki等[26-27]研究認為,花后漬水造成冬小麥產量下降的主要原因是千粒質量降低;丁錦峰等[25,28]研究認為,花后漬水顯著減低穗粒數和千粒質量。雖然研究表述花后漬水造成產量下降的主要因素不盡一致,但均表明花后漬水造成冬小麥產量下降的主要因素之一是千粒質量顯著下降。本試驗結果表明,花后漬水使每穗粒數減少,但不是引起產量下降的主導因素,其主要因素是千粒質量下降,與大多數研究結果一致。
小麥產量的80%~90%來自花后光合產物[16],花后是冬小麥增加單粒質量,提高產量的關鍵生育期。大量研究表明冬小麥單粒質量主要受籽粒灌漿速率和持續(xù)時間影響,這兩個性狀既受品種遺傳特性的影響,也受環(huán)境因素的影響?;ê鬂n水主要是通過縮短灌漿周期,降低灌漿速率來降低千單粒質量,且不同基因型小麥間存在一定差異[29-30]。高溫脅迫主要是通過降低灌漿速率來降低千單粒質量,且對籽粒灌漿快增期的影響最為重要[31]。嚴重缺水顯著降低小麥籽粒灌漿速率,而適度干旱脅迫可促進小麥籽粒灌漿速率[32]。由此可見不同環(huán)境因素影響小麥單粒質量的因素具有差異化。本研究結果表明,花后漬水使冬小麥籽粒灌漿歷時縮短,灌漿速率降低,最終導致千粒質量下降,產量降低。但不同基因型小麥間存在一定差異,花后漬水主要縮短耐漬型冬小麥活躍灌漿期天數,最大灌漿速率出現時間前移,花后漬水天數每增加1 d,縮短0.827 d、max提前0.163 d;而對于敏感型冬小麥主要是降低灌漿速率,花后漬水天數每增加1 d,max降低0.046 mg/d、ave降低0.032 mg/d(表4)。其可能與2個品種的遺傳因素有關,鄭麥9023單粒質量僅與籽粒灌漿持續(xù)期、平均灌漿速率和最大灌漿速率顯著相關[33],而揚麥20千粒質量與最大灌漿速率、平均灌漿速率以及籽粒灌漿漸增期、快增期和緩增期的灌漿速率均呈極顯著正相關,而與灌漿持續(xù)時間長短無顯著性關系[34]。
小麥籽粒灌漿過程主要分為漸增期、快增期、緩增期,大量研究表明小麥灌漿籽粒的物質積累量主要集中在快增期[35-36],也有研究表明單粒質量與灌漿持續(xù)時間(有效灌漿期和活躍灌漿期)、尤其灌漿中后期(快增期和緩增期)呈顯著正相關[33],總之小麥籽粒物質積累主要集中在快增期和緩增期。本研究得出,對于耐漬型冬小麥,花后漬水縮短快增期和緩增期灌漿持續(xù)時間;對于敏感型小麥,花后漬水降低其漸增期、快增期和緩增期灌漿速率,且對快增期灌漿速率的影響大于緩增期和漸增期,從而降低小麥籽粒的千粒質量,最終導致小麥減產。
1)花后漬水5、9、13和17 d鄭麥9023(耐漬型)分別減產10.84%、19.51%、25.93%和36.52%,揚麥20(敏感型)分別減產14.25%、25.84%、37.26%和47.84%,減產的主要原因是千粒質量降低,花后漬水天數每增加1 d,冬小麥鄭麥9023(耐漬型)和揚麥20(敏感型)千粒質量分別降低0.961和0.996 g。
2)對耐漬型冬小麥,花后漬水主要顯著縮短灌漿持續(xù)時間,且主要是顯著縮短籽粒灌漿快增期和緩增期的持續(xù)天數;對敏感型冬小麥,花后漬水顯著降低籽粒灌漿三階段的灌漿速率。
3)花后漬水增加1 d,鄭麥9023籽?;钴S灌漿期縮短0.827 d,籽粒灌漿漸快增期、緩增期灌漿持續(xù)天數分別縮短0.492、0.963 d,揚麥20籽粒單粒最大灌漿速率降低0.046 mg/d、單粒平均灌漿速率降低0.032 mg/d,籽粒灌漿漸增期、快增期和緩增期單粒灌漿速率分別降低0.011、0.040和0.010 mg/d。
[1] 國家統計局. 中國統計年鑒2020[M]. 北京:中國統計出版社,2020.
[2] Yang H S, Zhai S L, Li Y F, et al. Waterlogging reduction and wheat yield increase through long-term ditch-buried straw return in a rice-wheat rotation system[J]. Field Crops Research, 2017, 209: 189-197.
[3] 柳道明,賈文婕,王小燕,等. 噴施外源6-BA對小麥孕穗期漬害的調控效應[J]. 作物雜志,2015(2):84-88.
Liu Daoming, Jia Wenjie, Wang Xiaoyan, et al. Effects of exogenous 6-BA on wheat with waterlogging at booting stage[J]. Crops, 2015(2): 84-88. (in Chinese with English abstract)
[4] 張佩,吳洪顏,江海東,等. 長江中下游油菜春季濕漬害災損風險評估研究. 氣象與環(huán)境科學,2019,42(1):11-17.
Zhang Pei, Wu Hongyan, Jiang Haidong, et al. Risk assessment study on rapeseed suffering from spring wet damages in the middle and lower reaches of Yangtze River[J]. Meteorological and Environmental Sciences, 2019, 42(1): 11-17. (in Chinese with English abstract)
[5] 王小燕,高春保,盧碧林,等. 江漢平原小麥開花前降水分布特點及同期漬害的產量效應[J]. 長江流域資源與環(huán)境,2013,22(12):1642-1647.
Wang Xiaoyan, Gao Chunbao, Lu Bilin, et al. Characteristics of rainfall before anthesis and corresponding effects of waterlogging on grain yield in Jianghan plain[J]. Resources and Environment in the Yangtze Basin, 2013, 22(12): 1642-1647. (in Chinese with English abstract)
[6] 吳洪顏,張佩,徐敏,等. 長江中下游地區(qū)冬小麥春季澇漬害災損風險時空分布特征[J]. 長江流域資源與環(huán)境,2018,27(5):1152-1158.
Wu Hongyan, Zhang Pei, Xu min, et al. Spatial-temporal variations of the risk of winter wheat loss suffered from spring waterlogging disaster in the middle and lower Yangtze River reaches[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 1152-1158. (in Chinese with English abstract)
[7] Shao G C, Lan J J, Yu S E, et al. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages[J]. Photosynthetica, 2013, 51(3): 429-437.
[8] Romina P, Abeledo L G, Miralles D J. Physiological traits associated with reductions in grain number in wheat and barley under waterlogging[J]. Plant and Soil, 2018, 429: 469-481.
[9] Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis waterlogging[J]. Photosynthetica, 2008, 46(1): 21-27
[10] 向永玲,方正武,趙記伍,等. 灌漿期澇漬害對弱筋小麥籽粒產量及品質的影響[J]. 麥類作物學報,2020,40(6):730-736.
Xiang Yongling, Fang Zhengwu, Zhao Jiwu, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat[J]. Journal of Triticeae Crops, 2020, 40(6): 730-736. (in Chinese with English abstract)
[11] Yan S C, Wu Y, Fan J L, et al. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat[J]. Agricultural Water Management, 2019, 213: 983-995.
[12] Kumar A, Yadav R, Gupta S, et al. Identification of genotypes and marker validation for grain filling rate and grain filling duration in wheat under conservation agriculture[J]. Indian Journal of Genetics and Plant Breeding, 2018, 78(3): 309-316.
[13] Yadav G, Ellis R H. Effects of rain shelter or simulated rain during grain filling and maturation on subsequent wheat grain quality in the UK[J]. Journal of Agricultural Science, 2016, 155(2): 300-316.
[14] Thapa S, Jessup K E, Pradhan G P, et al. Canopy temperature depression at grain filling correlates to winter wheat yield in the U. S. Southern High Plains[J]. Field Crops Research, 2018, 217: 11-19.
[15] Tian L, Bi W, Liu X, et al. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (L.) under field conditions[J]. Acta Physiologiae Plantarum, 2019, 41(5): 63-77.
[16] 楊麗麗,任建宏,劉溢建,等. 小麥花后水分虧缺和復水對同化物轉運和籽粒灌漿的影響[J]. 西北植物學報,2020,40(11):1909-1911.
Yang Lili, Ren Jianhong, Liu Yijian, et al. Effect of water deficit and rehydration on the post-flowering assimilate transport and grain filling in wheat[J]. Acta Botanica Boreali Occidentalia Sinica. 2020, 40(11): 1909-1911. (in Chinese with English abstract)
[17] 徐云姬,許陽東,李銀銀,等. 干濕交替灌溉對水稻花后同化物轉運和籽粒灌漿的影響[J]. 作物學報,2018,44(4):544-568.
Xu Yunji, Xu Yangdong, Li Yinyin, et al. Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice[J]. Acta Agronomica Sinica, 2018, 44(4): 554-568. (in Chinese with English abstract)
[18] 苗永杰,閻俊,趙德輝,等. 黃淮麥區(qū)小麥主栽品種粒重與籽粒灌漿特性的關系[J]. 作物學報,2018,44(2):260-267.
Miao Yongjie, Yan Jun, Zhao Dehui, et al. Relationship between grain filling parameters and grain weight in leading wheat cultivars in the Yellow and Huai Rivers Valley[J]. Acta Agronomica Sinica, 2018, 44(2): 260-267. (in Chinese with English abstract)
[19] 薛香,吳玉娥,陳榮江,等. 小麥籽粒灌漿過程的不同數學模型模擬比較[J]. 麥類作物學報,2006,26(6):169-171.
Xue Xiang, Wu Yu′e, Chen Rongjiang, et al. Comparison of different mathematical equations for simulating the grain filling process of wheat[J]. Journal of Triticeae Crops, 2006, 26(6): 169-171. (in Chinese with English abstract)
[20] 姚素梅,康躍虎,呂國華,等. 噴灌與地面灌溉條件下冬小麥籽粒灌漿過程特性分析[J]. 農業(yè)工程學報,2011,27(7):13-17.
Yao Sumei, Kang Yuehu, Lü Guohua, et al. Analysis on grain filling characteristics of winter wheat under sprinkler irrigation and surface irrigation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 13-17. (in Chinese with English abstract)
[21] 于晶晶,王小燕,段營營,等. 江漢平原主推小麥品種抗?jié)n能力研究[J]. 湖北農業(yè)科學,2014,53(4),760.
Yu Jingjing, Wang Xiaoyan, Duan Yingying, et al. Studies on the waterlogging resistance of main wheat varieties in Jianghan Plain[J]. Hubei Agricultural Sciences, 2014, 53(4), 760. (in Chinese with English abstract)
[22] 朱慶森,曹顯祖,駱亦其. 水稻籽粒灌漿的生長分析[J]. 作物學報,1988(3):182-193.
Zhu Qingsen, Cao Xianzu, Luo Yiqi. Growth analysis on the process of grain filling in rice[J]. Acta Agronomica Sinica, 1988(3): 182-193. (in Chinese with English abstract)
[23] 孟兆江,孫景生,段愛旺,等. 調虧灌溉條件下冬小麥籽粒灌漿特征及其模擬模型[J]. 農業(yè)工程學報,2010,26(1):18-23. Meng Zhaojiang, Sun Jingsheng, Duan Aiwang, et al. Grain filling characteristics of winter wheat with regulated deficit irrigation and its simulation models[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 18-23. (in Chinese with English abstract)
[24] 吳啟俠,朱建強,楊威,等. 小麥對漬澇的響應及排水指標確定[J]. 農業(yè)工程學報,2014,30(16):91-98.
Wu Qixia, Zhu Jianqiang, Yang Wei, et al. Response of wheat to waterlogging and determination of drainage index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 91-98. (in Chinese with English abstract)
[25] 丁錦峰,蘇盛楠,梁鵬,等. 拔節(jié)期和花后漬水對小麥產量、干物質及氮素積累和轉運的影響[J]. 麥類作物學報,2017,37(11):1473-1479.
Ding Jingfeng, Su Shengnan, Liang Peng, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473-1479. (in Chinese with English abstract)
[26] Araki H, Hamada A, Hossain M A, et al. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling[J]. Field Crops Research, 2012, 137: 27-36.
[27] Hossain M A, Araki H, Takahashi T. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan[J]. Field Crops Research, 2011, 123(2): 100-108.
[28] 吳啟俠,朱建強,程倫國,等. 基于地下水埋深的江漢平原冬小麥防澇漬排水指標確定[J]. 農業(yè)工程學報,2017,33(3):121-127.
Wu Qixia, Zhu Jianqiang, Chen Lunguo, et al. Determination of groundwater depth-based drainage index against waterlogging and submergence for winter wheat in Jianghan Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 121-127. (in Chinese with English abstract)
[29] 武文明,陳洪儉,李金才,等. 氮肥運籌對孕穗期受漬冬小麥旗葉葉綠素熒光與籽粒灌漿特性的影響[J]. 作物學報,2012,38(6):1088-1096.
Wu Wenming, Chen Hongjian, Li Jincai, et al. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage[J]. Acta Agronomica Sinica 2012, 38(6): 1088-1096. (in Chinese with English abstract)
[30] 范雪梅,姜東,戴廷波,等. 花后干旱或漬水下氮素供應對小麥光合和籽粒淀粉積累的影響[J]. 應用生態(tài)學報,2005,16(10):1883-1888.
Fan Xuemei, Jiang Dong, Dai Tingbo, et al. Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1883-1888. (in Chinese with English abstract)
[31] 苗永杰. 高溫脅迫對小麥籽粒灌漿特性及主要品質性狀的影響[D]. 北京:中國農業(yè)科學院,2016.
Miao Yongjie. Effect of Wheat Stress on Grain Filling and Major Quality Traits of Common Wheat[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2016. (in Chinese with English abstract)
[32] 梁海燕,劉迪迪,張娜,等. 干旱脅迫對不同基因型小麥籽粒灌漿及內源激素的影響[J]. 西北農業(yè)學報,2015,24(5):41-47.
Liang Haiyan, Liu Didi, Zhang Na, et al. Effect of water stress on grain filling and endogenous hormone changes in wheat grains of different genotypes[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(5): 41-47. (in Chinese with English abstract)
[33] 馬新明,張娟娟,熊淑萍,等. 氮肥用量對不同品質類型小麥品種籽粒灌漿特征和產量的影響[J]. 麥類作物學報,2005,25(6):72-77.
Ma Xinming, Zhang Juanjuan, Xiong Shuping, et al. Effect of different amounts of nitrogen application on grain filling and yield of wheat varieties with different qualities[J]. Journal of Triticeae Crops, 2005, 25(6): 72-77. (in Chinese with English abstract)
[34] 朱冬梅,王慧,劉大同,等. 小麥籽粒灌漿與脫水特性[J]. 中國農業(yè)科學,2019,52(23):4251-4261.
Zhu Dongmei, Wang Hui, Liu Datong, et al. Characteristics of grain filling and dehydration in wheat[J]. Scientia Agricultura Sinica, 2019, 52(23): 4251-4261. (in Chinese with English abstract)
[35] 楊金宇,李援農,王凱瑜,等. 控釋氮肥與普通尿素配施比例和方法對冬小麥灌漿特性的影響[J]. 植物營養(yǎng)與肥料學報,2020,26(3):442-452.
Yang Jinyu, Li Yuannong, Wang Kaiyu, et al. Effects of blending ratio and application method of controlled-release nitrogen fertilizer and common urea on grain-filling properties of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 442-452. (in Chinese with English abstract)
[36] 趙凱男,常旭虹,張趙星,等. 地膜覆蓋對小麥土壤水熱狀況及灌漿特性的影響[J]. 麥類作物學報,2018,38(10):1237-1245.
Zhao Kainan, Chang Xuhong, Zhang Zhaoxing, et al. Effect of mulching on the moisture and temperature of soil and grain-filling characteristics of wheat[J]. Journal of Triticeae Crops, 2018, 38(10): 1237-1245. (in Chinese with English abstract)
Effects of waterlogging after anthesis on the grain filling characteristics of winter wheat with different waterlogging tolerances
Wu Qixia1,2, Tan Jinghong1,2, Zhu Jianqiang1,2, Wang Wei1,2, Han Rui1,2, Zou Juan3※
(1.,,434025,;2.,,434025,; 3.,,430064,)
Frequent occurrence of waterlogging has posed a great threat to the production of the crops in the middle and late stages of winter wheat growth in the Jianghan Plain, even the middle and lower reaches of the Yangtze River in China. However, the impact of waterlogging on the grain filling process is still unclear during this time. Taking Zhengmai 9023 (tolerant genotype) and Yangmai 20 (sensitive genotype) as research objects, this study aims to explore the effects of water logging after anthesis on grain filling of winter wheat under different tolerances. A systematic experiment was conducted under 5, 9, 13, and 17 d of waterlogging duration after anthesis of winter wheat in the test-pit with a controllable irrigation and drainage system. The soil moisture was kept at 90% field capacity in the waterlogging treatments. Meanwhile, the treatment with soil moisture at 70%-80% field capacity was used as a control. The grain filling was firstly simulated for two varieties of wheat under waterlogging environment stress using the Richard model. Subsequently, the yield component parameters were quantitatively analyzed the dynamic influence on grain filling, further to explore the influence process after anthesis waterlogging on winter wheat yield. The results showed that the waterlogging for 5, 9, 13, and 17 d after anthesis reduced the yield of Zhengmai 9023 (tolerant genotype) by 10.84%, 19.51%, 25.93%, 36.52% and Yangmai 20 (sensitive genotype) by 14.25%, 25.84%, 37.26%, 47.84%, respectively. The main reason was attributed to the decrease of thousand-grain mass. When waterlogging increased by 1 d after anthesis, the thousand-grain mass of Zhengmai 9023 (tolerance genotype) and Yangmai 20 (sensitive genotype) decreased by 0.961 and 0.996 g, respectively. The Richards equation presented better to simulate the grain filling of waterlogged winter wheat after anthesis. Specifically, the determination coefficients of the fitting equation were all above 0.99. Furthermore, there was a different influence mechanism of waterlogging after anthesis on the grain filling of wheat under different waterlogging tolerance. In waterlogging-tolerant wheat, the waterlogging was greatly contributed to shortening significantly the active days of the grain filling after anthesis, and specially shortened significantly the duration days in grain-filling fast increase period and grain-filling slowly increase period. In the waterlogging-sensitive wheat, the waterlogging after anthesis was mainly contributed to significantly reducing the filling rate in three periods of grain filling. Specifically, the waterlogging increased by 1 d after anthesis, and the grain filling active days of Zhengmai 9023 was shortened by 0.827 d, among which the duration days in grain-filling fast increase period and grain-filling slowly increase period was shortened by 0.492 and 0.963 d, respectively. Correspondingly, waterlogging increased by 1 d after anthesis, the maximum grain-filling rate per kernel of Yangmai 20 decreased by 0.046 mg/d, and the mean grain-filling rate per kernel decreased by 0.032 mg/d, the grain-filling rate per kernel in grain-filling pyramid period, grain-filling fast increase period and grain-filling slowly increase the period of winter wheat decreased by 0.011, 0.040 and 0.010 mg/d, respectively. The finding can provide strong theoretical support for the prevention and control of waterlogging disasters in winter wheat.
irrigation; yield; waterlogging stress; Richards model; grain-filling characteristic parameters; winter wheat
吳啟俠,譚京紅,朱建強,等. 花后漬水對不同耐漬型冬小麥籽粒灌漿特性的影響[J]. 農業(yè)工程學報,2021,37(18):74-81.doi:10.11975/j.issn.1002-6819.2021.18.009 http://www.tcsae.org
Wu Qixia, Tan Jinghong, Zhu Jianqiang, et al. Effects of waterlogging after anthesis on the grain filling characteristics of winter wheat with different waterlogging tolerances[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 74-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.18.009 http://www.tcsae.org
2020-10-04
2021-09-06
國家重點研發(fā)計劃(2016YFD0300405);濕地生態(tài)與農業(yè)利用教育部工程研究中心開放基金(KFT201906);公益性行業(yè)(農業(yè))科研專項(201203032)
吳啟俠,博士,高級實驗師,研究方向為作物生產水土環(huán)境調控。Email:qixiawu@yangtzeu.edu.cn
鄒娟,博士,副研究員,研究方向為小麥豐產抗逆栽培。Email:zoujuan1010@163.com
10.11975/j.issn.1002-6819.2021.18.009
S275
A
1002-6819(2021)-18-0074-08