呂昊暾,胡召田,于泳超,康 峰,鄭永軍
果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平前饋PID控制方法
呂昊暾1,胡召田1,于泳超2,康 峰2,鄭永軍1※
(1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 北京林業(yè)大學(xué)工學(xué)院,北京 100083)
為提高果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)性能,該研究基于已開(kāi)發(fā)的果園高位作業(yè)平臺(tái)調(diào)平機(jī)構(gòu),提出了前饋PID控制的自動(dòng)調(diào)平控制方法。首先對(duì)果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)進(jìn)行動(dòng)力學(xué)分析,建立被控對(duì)象數(shù)學(xué)模型。然后在數(shù)學(xué)模型的基礎(chǔ)上設(shè)計(jì)前饋PID控制算法,并對(duì)控制系統(tǒng)進(jìn)行仿真分析。仿真結(jié)果表明,前饋PID較傳統(tǒng)PID的控制性能更優(yōu),系統(tǒng)上升時(shí)間縮短18%,調(diào)節(jié)時(shí)間縮短19%,穩(wěn)態(tài)誤差控制在0.6%以內(nèi)。最后,搭建果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制系統(tǒng),并對(duì)調(diào)平系統(tǒng)進(jìn)行靜態(tài)與動(dòng)態(tài)試驗(yàn)。試驗(yàn)結(jié)果表明:前饋PID控制的調(diào)平性能優(yōu)于傳統(tǒng)PID控制,靜態(tài)調(diào)平中,前饋PID上升時(shí)間平均縮短20%,調(diào)節(jié)時(shí)間平均縮短30%,穩(wěn)態(tài)誤差控制在0.6%以內(nèi);動(dòng)態(tài)調(diào)平中,果園高位作業(yè)平臺(tái)以2 km/h的速度行駛于起伏較大的路面,工作臺(tái)俯仰角絕對(duì)值差最大為3.0°,平均絕對(duì)誤差為0.79°,均方根誤差為0.58°,工作臺(tái)傾角穩(wěn)定在±3°以內(nèi),較好地實(shí)現(xiàn)了果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制,滿足果園作業(yè)需求。
自動(dòng)化;果園;裝備;調(diào)平;前饋PID控制
隨著果園作業(yè)機(jī)械化的發(fā)展,果園管理過(guò)程中剪枝、套袋、采果等作業(yè)環(huán)節(jié)逐漸借助果園高位作業(yè)平臺(tái)輔助完成。國(guó)內(nèi)果園多集中在丘陵山區(qū),地面起伏不平,傳統(tǒng)果園高位作業(yè)平臺(tái)不能自適應(yīng)調(diào)節(jié),在丘陵山區(qū)工作時(shí)易造成作業(yè)人員精神緊張、工作效率低,甚至出現(xiàn)工作人員跌倒的安全問(wèn)題[1-3]。因此,研發(fā)具有自動(dòng)調(diào)平功能的果園高位作業(yè)平臺(tái),并提高其自動(dòng)調(diào)平控制性能,對(duì)改善果園高位作業(yè)平臺(tái)的安全性與工作效率具有重要意義。
國(guó)外對(duì)果園高位作業(yè)平臺(tái)的研究已經(jīng)比較成熟,并趨于智能化,歐美等國(guó)家的作業(yè)平臺(tái)主要針對(duì)平整性與通過(guò)性較好的果園[4];日韓等國(guó)家丘陵山地較多,作業(yè)平臺(tái)自動(dòng)調(diào)平功能得到較多的研究與應(yīng)用。Lee等[5-6]研制的SB系列果園高位作業(yè)平臺(tái),可在10°緩坡地區(qū)自動(dòng)調(diào)平使平臺(tái)保持水平;Jang[7]研發(fā)的果園高位作業(yè)平臺(tái)可在±20°內(nèi)使平臺(tái)角度保持在±0.5°以內(nèi)。自果園高位作業(yè)平臺(tái)進(jìn)入國(guó)內(nèi),自動(dòng)調(diào)平功能便得到了重視與發(fā)展,姜新宇等[8]針對(duì)果園高位作業(yè)平臺(tái)設(shè)計(jì)了基于單片機(jī)的自動(dòng)調(diào)平控制系統(tǒng);王永振等[9-10]設(shè)計(jì)了一種自動(dòng)調(diào)平控制系統(tǒng),并融合卡爾曼濾波的模糊PID算法,最大調(diào)平誤差為1.08°。此外,自動(dòng)調(diào)平控制在農(nóng)機(jī)具、山地拖拉機(jī)等領(lǐng)域也有不少研究,為果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制方法的研究提供了借鑒。丁為民等[11]設(shè)計(jì)了犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng)并實(shí)現(xiàn)了自動(dòng)調(diào)平控制,使犁旋一體機(jī)的傾斜角度基本保持在(-0.75°~1.5°)范圍內(nèi)。周浩等[12]設(shè)計(jì)了旋耕機(jī)自動(dòng)調(diào)平系統(tǒng),使自動(dòng)調(diào)平橫向壟面橫向的最大高差為1.9 cm,而非自動(dòng)調(diào)平高差達(dá)9.8 cm。胡煉等[13-14]設(shè)計(jì)了基于卡爾曼濾波算法融合水田激光平地機(jī)自動(dòng)調(diào)平控制系統(tǒng),平地鏟相對(duì)控制目標(biāo)角度平均絕對(duì)誤差為0.52°,最大誤差為1.15°。陳君梅等[15]設(shè)計(jì)的非線性水平PID控制器水田激光平地機(jī)控制系統(tǒng),懸空階躍的誤差小于0.1°,最大超調(diào)量約10%,過(guò)渡時(shí)間約2 s,水田中可以保持平地鏟傾角在±1°范圍內(nèi)。孫永佳等[16]設(shè)計(jì)了馬鈴薯聯(lián)合收獲機(jī)系統(tǒng)并提出模糊PID控制方法,靜態(tài)試驗(yàn)中調(diào)平時(shí)間為3 s,最大超調(diào)量為1.5%,動(dòng)態(tài)試驗(yàn)中車(chē)身傾角控制在±3°范圍內(nèi)。邵明璽等[17]設(shè)計(jì)了拖拉機(jī)后懸掛位姿調(diào)整系統(tǒng)并提出模糊PID控制方法,調(diào)平時(shí)間為1 s,無(wú)超調(diào)。莊肖波等[18]提出了魯棒反饋線性化的割臺(tái)高度控制策略,該控制器誤差均方根0.362 cm,小于PID控制誤差。Xie等[19-22]提出了一種用于聯(lián)合收割機(jī)割臺(tái)高度控制的兩自由度控制器,通過(guò)前饋控制器將地面高度變化的干擾進(jìn)行補(bǔ)償,可將割臺(tái)與地面高度的誤差穩(wěn)定在0.18 m內(nèi)。彭賀等[23-24]設(shè)計(jì)了一套車(chē)身自調(diào)平控制系統(tǒng),并提出了模糊PID控制算法,調(diào)平后車(chē)身傾角恢復(fù)到0°且試驗(yàn)與理論分析的調(diào)平位移最大誤差為14.23%。齊文超等[25-26]設(shè)計(jì)了拖拉機(jī)車(chē)身位姿調(diào)整系統(tǒng)并提出模糊PID控制方法,靜態(tài)調(diào)平時(shí)間為12.5 s,調(diào)平誤差小于0.5°,無(wú)超調(diào),動(dòng)態(tài)調(diào)平的車(chē)身傾斜角度可控制在±3°范圍內(nèi)。張錦輝等[27]基于神經(jīng)網(wǎng)絡(luò)PID算法設(shè)計(jì)了拖拉機(jī)車(chē)身與機(jī)具同步控制系統(tǒng),固定坡度時(shí)該算法的車(chē)身橫向傾角最大誤差為0.65°,隨機(jī)坡度路面上車(chē)身橫向傾角最大誤差為2.87°。
綜上可知,自動(dòng)調(diào)平控制多采用反饋控制,但反饋控制只有當(dāng)執(zhí)行機(jī)構(gòu)角度與目標(biāo)角度出現(xiàn)偏差時(shí),控制器才去調(diào)節(jié),而作業(yè)平臺(tái)具有較大的慣性與遲延,易造成系統(tǒng)調(diào)節(jié)時(shí)間長(zhǎng),誤差大。因此,本文在PID控制的基礎(chǔ)上,提出了基于地面角度前饋的控制方法。當(dāng)?shù)孛娼嵌茸兓瘯r(shí),通過(guò)前饋環(huán)節(jié)計(jì)算出前饋值,與PID控制輸出相加共同調(diào)節(jié)平臺(tái)傾角,以期實(shí)現(xiàn)作業(yè)平臺(tái)的快速、穩(wěn)定調(diào)平。
由中國(guó)農(nóng)業(yè)大學(xué)與北京林業(yè)大學(xué)前期聯(lián)合研制的果園高位作業(yè)平臺(tái)實(shí)物圖如圖1a所示[28],升降與調(diào)平機(jī)構(gòu)簡(jiǎn)圖如圖1b所示,其中調(diào)平機(jī)構(gòu)調(diào)節(jié)范圍為-10°~8°。俯仰液壓缸與工作臺(tái)底部的滑塊鉸接在一起,果園高位作業(yè)平臺(tái)控制器通過(guò)控制兩路俯仰液壓缸同時(shí)升降,并配合剪叉式升降架的固定鉸支座,使工作臺(tái)轉(zhuǎn)動(dòng)一定角度以抵消地面傾角。兩路俯仰液壓缸由比例閥控制,通過(guò)控制比例閥開(kāi)口大小及方向?qū)崿F(xiàn)液壓缸升降速度和升降方向控制,從而實(shí)現(xiàn)作業(yè)平臺(tái)俯仰調(diào)平。
前饋PID控制器由角度PID控制器、電流PI控制器和前饋補(bǔ)償環(huán)節(jié)3部分組成??刂圃砣鐖D2所示。
當(dāng)果園高位作業(yè)平臺(tái)行駛在一定坡度的地面時(shí),固定在工作臺(tái)的傾角傳感器檢測(cè)到工作臺(tái)角度與水平面角度的變化,并將角度信息傳遞到前饋PID控制器中。前饋PID控制器根據(jù)地面角度信息進(jìn)行分析處理,輸出脈沖寬度調(diào)制信號(hào)控制比例閥開(kāi)口大小,從而控制俯仰液壓缸升降。同時(shí)電流采樣模塊實(shí)時(shí)采集流經(jīng)比例電磁鐵的電流,控制器通過(guò)調(diào)節(jié)脈沖寬度調(diào)制信號(hào)占空比輸出穩(wěn)定的電流,最終實(shí)現(xiàn)工作臺(tái)的精準(zhǔn)調(diào)平。
比例電磁鐵電壓平衡方程為
式中u為比例電磁鐵電壓,V;為線圈電感,H;為比例電磁鐵內(nèi)阻,W;為線圈電流,A;為時(shí)間,s。
電磁鐵動(dòng)力學(xué)方程為
式中為銜鐵組件質(zhì)量,kg;為阻尼系數(shù),N/m2;K為銜鐵組件彈簧剛度,N/m;F為電磁鐵吸力,N;x為閥芯位移,m。
電磁鐵在工作行程的吸力方程為
式中K為電流-力轉(zhuǎn)換系數(shù),N/A;K為位移-力轉(zhuǎn)換系數(shù),N/m。
式中G()為比例閥電磁鐵模型傳遞函數(shù);1()為比例電磁鐵電壓-電流轉(zhuǎn)換傳遞函數(shù);2()為比例電磁鐵電流-位移轉(zhuǎn)換傳遞函數(shù);為拉普拉斯算子(復(fù)參數(shù))。
比例閥線性化流量方程為
式中Q為比例閥流量增益系數(shù);K為比例閥流量增益系數(shù);X為比例閥閥芯位移,m;K為流量壓力系數(shù);p為負(fù)載壓降,Pa。
液壓缸流量連續(xù)性方程為
式中A為調(diào)平液壓缸負(fù)載流量等效面積,m2;x為液壓缸活塞位移,m;C為液壓總泄漏系數(shù);V為液壓缸進(jìn)回油側(cè)總?cè)莘e,m3;為油液有效體積彈性模量,Pa。
活塞受力平衡方程為
式中為活塞及負(fù)載折算到活塞上的總質(zhì)量,kg;B為活塞及負(fù)載的粘性阻尼系數(shù),N/m2;為活塞上的負(fù)載彈簧剛度,N/m;F為作用在活塞上的負(fù)載力,N。
式中3()為比例閥控液壓缸傳遞函數(shù)。
2.3.1 調(diào)平機(jī)構(gòu)運(yùn)動(dòng)學(xué)模型
忽略鉸鏈間隙,視果園高位作業(yè)平臺(tái)調(diào)平機(jī)構(gòu)為剛性系統(tǒng),調(diào)平機(jī)構(gòu)簡(jiǎn)圖如圖3所示。
根據(jù)圖3中幾何關(guān)系可得
式中為調(diào)平液壓缸總體長(zhǎng)度,m。
基于式(9),利用Matlab繪制調(diào)平液壓缸活塞桿位移與變化曲線,如圖4所示,平臺(tái)角度正負(fù)代表平臺(tái)仰與俯,液壓缸位移正負(fù)代表液壓缸伸長(zhǎng)與縮短。
由圖4可以看出,液壓缸活塞桿位移與工作臺(tái)角度基本成比例關(guān)系,即
式中4()為調(diào)平機(jī)構(gòu)傳遞函數(shù);為位移與角度比例系數(shù),(°)/m。
2.3.2 調(diào)平機(jī)構(gòu)動(dòng)力學(xué)模型
根據(jù)虛位移原理可知,所有作用在該質(zhì)點(diǎn)系的主動(dòng)力在任何虛位移中所做的虛功之和等于0,即
將式(10)代入式(11)可得液壓缸推力F為
為防止電磁鐵線圈電感變化與線圈內(nèi)阻發(fā)熱導(dǎo)致電流的變化,需引入電流PI控制器,使系統(tǒng)調(diào)節(jié)更加精確與快速??刂破鲀?nèi)設(shè)電流檢測(cè)采樣電路,CPU通過(guò)實(shí)時(shí)監(jiān)測(cè)比例電磁鐵線圈電流,并根據(jù)目標(biāo)偏差值實(shí)時(shí)調(diào)節(jié)脈沖寬度調(diào)制大小從而實(shí)現(xiàn)電流動(dòng)態(tài)調(diào)節(jié)。
電流環(huán)PI控制器采用增量式PI算法,即
式中D[]為時(shí)刻控制器輸出PWM占空比的增量;[]為時(shí)刻控制器輸出PWM占空比值;e[n]為時(shí)刻電流誤差值;K為比例系數(shù);K為積分系數(shù)。
本文控制對(duì)象為不帶積分部件的液壓比例閥,采用位置式PID算法,即
式中()為時(shí)刻控制器的輸出電流,A;()為工作臺(tái)在時(shí)刻角度誤差,(°);K為微分系數(shù)。
由于作業(yè)平臺(tái)具有較大的慣性與遲延,采用前饋PID控制器可以直接對(duì)干擾進(jìn)行補(bǔ)償,及時(shí)消除干擾的影響,同時(shí),在反饋系統(tǒng)里加入前饋控制不僅不會(huì)破壞系統(tǒng)穩(wěn)定性,而且可以提高控制精度。
負(fù)載干擾對(duì)系統(tǒng)動(dòng)態(tài)性能影響很小[29],忽略負(fù)載力的影響,只針對(duì)角度的干擾進(jìn)行前饋補(bǔ)償,可得簡(jiǎn)化后比例閥控液壓缸模型為
式中5()為簡(jiǎn)化后比例閥控液壓缸傳遞函數(shù)。
注:Xi為控制系統(tǒng)的目標(biāo)角度,(°);Xo為控制系統(tǒng)的輸出角度,(°);Ga(s) 為系統(tǒng)角度PID控制器傳遞函數(shù);Gd(s) 為系統(tǒng)電流PI控制器傳遞函數(shù);Gf(s)為前饋補(bǔ)償環(huán)節(jié)傳遞函數(shù);N(s)為系統(tǒng)地面角度擾動(dòng);Ka為傾角傳感器傳遞函數(shù);Ke為電流檢測(cè)模塊傳遞函數(shù)。
系統(tǒng)的輸出函數(shù)可表示為
根據(jù)反饋的控制目標(biāo)-X=0(本文X()=0),可求得前饋補(bǔ)償環(huán)節(jié)傳遞函數(shù)G()為
由于G()的分子階次為7階,在實(shí)際工程應(yīng)用中極大地增加了CPU運(yùn)算量,而且會(huì)降低系統(tǒng)控制精度,由于分子的高階系數(shù)很小對(duì)系統(tǒng)性能影響較少,為此僅保留二階,在盡可能簡(jiǎn)化控制器的情況下減少系統(tǒng)誤差,由此可得
利用Matlab/simulink分別建立基于前饋PID控制和傳統(tǒng)PID控制的果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)數(shù)學(xué)模型。根據(jù)比例閥與液壓缸說(shuō)明書(shū)、文獻(xiàn)[30]和實(shí)際測(cè)量,參數(shù)如表1所示,simulink仿真模型如圖6所示。
由于丘陵果園地面坡度變化平緩,以-7.4°階躍信號(hào)模擬路面凸起等;按照單片機(jī)程序采樣時(shí)間設(shè)置控制系統(tǒng)仿真采樣時(shí)間為0.025 s;根據(jù)比例電磁閥可調(diào)節(jié)的最小和最大電流,電流大小范圍設(shè)置為-0.8~0.8 A;同時(shí)根據(jù)液壓缸系統(tǒng)特性設(shè)置死區(qū)開(kāi)啟電流為0.1 A。前饋PID控制和PID控制下階躍信號(hào)仿真結(jié)果如圖7所示。
表1 控制系統(tǒng)模型參數(shù)
注:Target angle為系統(tǒng)目標(biāo)角度,(°);Ga(z)為角度PID控制器脈沖傳遞函數(shù);Gd(z)為電流PI控制器脈沖傳遞函數(shù);Filter為前饋環(huán)節(jié)濾波器;Gain為比例環(huán)節(jié);In1、In2為輸入量,Out2為輸出量,Saturation為限幅環(huán)節(jié);Dead Zone為死區(qū)環(huán)節(jié);Scope為示波器;s為復(fù)參數(shù);z為復(fù)變量。
由圖7a可知,傳統(tǒng)PID控制的果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平系統(tǒng)的上升時(shí)間為1.54 s,調(diào)節(jié)時(shí)間為2.53 s,超調(diào)量為0,穩(wěn)態(tài)誤差為0.06°。由圖7b可知,前饋PID控制下的果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平系統(tǒng)的上升時(shí)間為1.26 s,調(diào)節(jié)時(shí)間為2.05 s,超調(diào)量為0,穩(wěn)態(tài)誤差為0.02°。對(duì)比可發(fā)現(xiàn),前饋PID較傳統(tǒng)PID跨越死區(qū)時(shí)間縮短50%,上升時(shí)間與調(diào)節(jié)時(shí)間分別縮短18%與19%,極大縮短了作業(yè)平臺(tái)的調(diào)平時(shí)間,驗(yàn)證了前饋PID控制的可行性。
為驗(yàn)證仿真模型的正確性,在山東省濟(jì)寧市杰威迅工業(yè)園進(jìn)行仿真驗(yàn)證試驗(yàn),手動(dòng)調(diào)節(jié)比例閥推桿使工作臺(tái)角度傾斜至-7.4°,模擬果園高位作業(yè)平臺(tái)從一定坡度路面恢復(fù)到平整路面的情形。工作臺(tái)角度采用固定于工作臺(tái)的傾角傳感器測(cè)量,防止不同儀器精度與零點(diǎn)不一引起的誤差。-7.4°階躍信號(hào)下傳統(tǒng)PID控制試驗(yàn)結(jié)果如圖8所示。其數(shù)據(jù)采集通過(guò)控制器串口輸出并保存。
將傳統(tǒng)PID試驗(yàn)結(jié)果圖8與傳統(tǒng)PID仿真結(jié)果圖7 a進(jìn)行對(duì)比分析,可以發(fā)現(xiàn),仿真與實(shí)際試驗(yàn)在起始階段時(shí)間差距接近0.6 s,其主要原因?yàn)橄到y(tǒng)響應(yīng)時(shí)間較長(zhǎng)(系統(tǒng)響應(yīng)時(shí)間主要包括單片機(jī)運(yùn)算時(shí)間、傾角傳感器采集信號(hào)時(shí)間、電磁閥電磁鐵和調(diào)平油缸克服靜摩擦力反應(yīng)時(shí)間)。將系統(tǒng)響應(yīng)時(shí)間減去,得調(diào)平試驗(yàn)中上升時(shí)間為1.63 s,調(diào)節(jié)時(shí)間為2.8 s,穩(wěn)態(tài)誤差為0.02°。仿真與試驗(yàn)的上升時(shí)間相差0.19 s,調(diào)節(jié)時(shí)間相差0.37 s,穩(wěn)態(tài)誤差相差0.04°,造成兩者數(shù)據(jù)相差的原因?yàn)樵囼?yàn)中存在的摩擦力與工作臺(tái)的震動(dòng)。試驗(yàn)調(diào)平階段波形與仿真調(diào)平階段波形幾乎一致,驗(yàn)證了果園高位作業(yè)平臺(tái)調(diào)平控制系統(tǒng)數(shù)學(xué)模型的有效性。
在果園高位作業(yè)平臺(tái)上安裝自動(dòng)調(diào)平控制系統(tǒng),于2021年3月在山東省濟(jì)寧市杰威迅工業(yè)園內(nèi)進(jìn)行試驗(yàn)。自動(dòng)調(diào)平控制系統(tǒng)中,控制器采用STM32F103VET6作為主控芯片,內(nèi)部集成MAX3232、INA181A3、MOSFET等器件,其中MAX3232與傾角傳感器通信;INA181A3通過(guò)檢測(cè)精密電阻電壓檢測(cè)該線路電流大??;MOSFET用于放大電壓信號(hào)驅(qū)動(dòng)電磁閥。傾角傳感器采用有田測(cè)控公司生產(chǎn)的CQ-200型工業(yè)級(jí)傾角傳感器,精度為0.02°,安裝于工作臺(tái)與底盤(pán)上,用于測(cè)量工作臺(tái)與底盤(pán)角度。
算法驗(yàn)證試驗(yàn)分靜態(tài)與動(dòng)態(tài)2種工況(試驗(yàn)現(xiàn)場(chǎng)如圖9),靜態(tài)試驗(yàn)是考察算法應(yīng)對(duì)路面角度突變的調(diào)平速度與準(zhǔn)確性,動(dòng)態(tài)試驗(yàn)考查在模擬實(shí)際作業(yè)路面行走狀態(tài)下算法運(yùn)行效果。
靜態(tài)試驗(yàn):在水平地面上,手動(dòng)調(diào)節(jié)比例閥推桿使工作臺(tái)角度傾斜-4.9°、-7.4°、-9.6°,分別啟動(dòng)傳統(tǒng)PID控制和前饋PID控制,使工作臺(tái)自動(dòng)調(diào)節(jié)到水平狀態(tài),測(cè)量調(diào)平所需時(shí)間及平臺(tái)水平狀態(tài)。
動(dòng)態(tài)調(diào)平試驗(yàn):在杰威迅工業(yè)園內(nèi)的樹(shù)林中,選擇一段長(zhǎng)約110 m,角度波動(dòng)在(-3.71°~8.95°)的路面,果園高位作業(yè)平臺(tái)以2 km/h的恒定速度行進(jìn)。首先在不啟動(dòng)調(diào)平控制情況下,測(cè)量地面顛簸情況,車(chē)身傾角傳感器記錄的路面角度變化如圖9 c。之后分別啟用傳統(tǒng)PID控制和前饋PID控制,在行進(jìn)中自動(dòng)調(diào)平,模擬實(shí)際果園作業(yè)環(huán)境,記錄試驗(yàn)過(guò)程中的平臺(tái)角度變化。
4.3.1靜態(tài)調(diào)平試驗(yàn)結(jié)果與分析
圖10a為果園高位作業(yè)平臺(tái)在傾斜角度-4.9°、-7.4°、-9.6°擾動(dòng)下的輸入電流曲線。在液壓系統(tǒng)中,比例閥電流與液壓缸速度成正相關(guān)關(guān)系,通過(guò)電流曲線可以看出液壓缸速度變化情況。由于工作臺(tái)具有較大的慣性與遲延,前饋PID控制前期電流較大,使得平臺(tái)易克服靜摩擦獲得更大的加速度,控制后期電流較小,使得具有較大慣性與遲延的平臺(tái)速度變慢,調(diào)平精度更高,調(diào)平更穩(wěn)定。
圖10b為果園高位作業(yè)平臺(tái)在傾斜角度-4.9°、-7.4°、-9.6°擾動(dòng)輸入的平臺(tái)傾角曲線。由圖10b可知,其中PID控制的上升時(shí)間為2.1 、1.6和1.95 s,調(diào)節(jié)時(shí)間為4.52 、2.80 和4.46 s,穩(wěn)態(tài)誤差為-0.30°、0.02°和0.90°,無(wú)超調(diào);前饋PID控制的上升時(shí)間為1.57、1.35和1.47 s調(diào)節(jié)時(shí)間為3.15、2.35、2.62 s,穩(wěn)態(tài)誤差為0.16°、0.10°和0.60°,無(wú)超調(diào)。前饋PID較傳統(tǒng)PID控制的上升時(shí)間平均縮短20%,調(diào)節(jié)時(shí)間平均縮短30%,穩(wěn)態(tài)誤差控制在0.6%以內(nèi),前饋PID控制應(yīng)對(duì)路面角度突變的性能更優(yōu),驗(yàn)證了該控制方法的可行性。
4.3.2動(dòng)態(tài)調(diào)平試驗(yàn)結(jié)果與分析
動(dòng)態(tài)調(diào)平試驗(yàn)結(jié)果如圖11所示。圖11a為傳統(tǒng)PID控制的自動(dòng)調(diào)平效果,圖11b為前饋PID控制的自動(dòng)調(diào)平效果。計(jì)算可得,PID控制下,工作臺(tái)俯仰角誤差最大為4.78°,平均絕對(duì)誤差為1.01°,均方根誤差為0.75°;前饋PID控制下,工作臺(tái)俯仰角誤差最大為3.0°,平均絕對(duì)誤差為0.79°,均方根誤差為0.58°??梢?jiàn),前饋PID控制提高工作臺(tái)俯仰角對(duì)路面傾角的跟蹤精度。靜態(tài)試驗(yàn)的前饋PID控制調(diào)節(jié)時(shí)間小于3 s,穩(wěn)態(tài)誤差小于1°,動(dòng)態(tài)試驗(yàn)的前饋PID控制將工作臺(tái)傾角控制在±3°以內(nèi),均滿足果園高位作業(yè)平臺(tái)作業(yè)需求。
本文針對(duì)果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平過(guò)程中調(diào)平時(shí)間較長(zhǎng),調(diào)平精度不高等問(wèn)題,提出了前饋PID控制方法,結(jié)論如下:
1)對(duì)果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)進(jìn)行動(dòng)力學(xué)建模,利用Matlab/simulink對(duì)系統(tǒng)仿真分析,仿真結(jié)果表明前饋PID控制下果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平系統(tǒng)上升時(shí)間為1.26 s,調(diào)節(jié)時(shí)間為2.05 s,穩(wěn)態(tài)誤差為0.02°,較PID控制調(diào)平時(shí)間更短,調(diào)平精度更高,驗(yàn)證了前饋PID控制的可行性。
2)對(duì)果園高位作業(yè)平臺(tái)模型進(jìn)行試驗(yàn)驗(yàn)證,結(jié)果表明,除去試驗(yàn)系統(tǒng)響應(yīng)時(shí)間,試驗(yàn)與仿真的上升時(shí)間相差0.19 s,調(diào)節(jié)時(shí)間相差0.37 s,穩(wěn)態(tài)誤差相差0.04°,波形幾乎一致,驗(yàn)證了果園高位作業(yè)平臺(tái)調(diào)平控制系統(tǒng)數(shù)學(xué)模型的有效性。
3)靜態(tài)調(diào)平試驗(yàn)中,果園高位作業(yè)平臺(tái)在-4.9°、-7.4°、-9.6°的角度擾動(dòng)下前饋PID控制的上升時(shí)間為1.57 、1.35 和1.47 s,調(diào)節(jié)時(shí)間3.15 、2.35 和2.62 s,穩(wěn)態(tài)誤差0.16°、0.10°和0.60°,且無(wú)超調(diào),較傳統(tǒng)PID控制的上升時(shí)間平均縮短20%,調(diào)節(jié)時(shí)間平均縮短30%,穩(wěn)態(tài)誤差控制在0.6%以內(nèi)。
4)動(dòng)態(tài)調(diào)平試驗(yàn)中,果園高位作業(yè)平臺(tái)以2 km/h的速度行駛于起伏較大的路面,前饋PID控制,下工作臺(tái)俯仰角誤差最大為3.0°,平均絕對(duì)誤差為0.79°,均方根誤差為0.58°,可將工作臺(tái)傾角控制在±3°范圍以內(nèi)。可見(jiàn)前饋PID控制能夠滿足果園高位作業(yè)平臺(tái)作業(yè)需求,相較傳統(tǒng)PID控制性能更優(yōu)。
試驗(yàn)過(guò)程中,角度數(shù)據(jù)存在著數(shù)據(jù)波動(dòng)較大的現(xiàn)象,主要由于果園高位作業(yè)平臺(tái)采用履帶底盤(pán)未安裝減震裝置,柴油機(jī)直接放置于底盤(pán)上等原因。因此后續(xù)工作將繼續(xù)研究濾波控制算法,并嘗試增加減震裝置,以獲得更快更精準(zhǔn)的調(diào)平效果。
[1] 鄭永軍,江世界,陳炳太,等. 丘陵山區(qū)果園機(jī)械化技術(shù)與裝備研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(11):1-20.
Zheng Yongjun, Jiang Shijie, Chen Bingtai, et al. Review on technology and equipment of mechanization in hilly orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 1-20. (in Chinese with English abstract)
[2] 王小龍,謝方平,劉大為,等. 果園升降平臺(tái)調(diào)平裝置的設(shè)計(jì)與試驗(yàn)[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,40(5):548-551.
Wang Xiaolong, Xie Fangping, Liu Dawei, et al. Design and experiment of the leveling deveice of the orchard lifting platform[J]. Journal of Hunan Agricultural University, 2014, 40(5): 548-551. (in Chinese with English abstract)
[3] 藍(lán)峰,蘇子昊,黎子明,等. 果園采摘機(jī)械的現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)機(jī)化研究,2010,32(11):249-252.
Lan Feng, Su Zihao, Li Ziming, et al. The actuality and development directions of fruit harvesting machine[J]. Journal of Agricultural Mechanization Research, 2010, 32(11): 249-252. (in Chinese with English abstract)
[4] 王永振. 果園多功能遙控作業(yè)平臺(tái)的研制與試驗(yàn)[D]. 泰安:山東農(nóng)業(yè)大學(xué),2018.
Wang Yongzhen. Design and Experiment of Multi-function Remote Operation Platform in Orchard[D]. Taian: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[5] Lee S, Kim J T, Park W Y. Structural analysis for the development of a vertically raise type aerial work machinery[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 225?231.
[6] Lee S, Kim J T, Park W Y. Development of centralized controller with remote control and hydraulic lift[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 232?241.
[7] Jang I J. Development of a lifting utility with balance-controlled platform[J]. Journal of Biosystems Engineering, 2011, 32(11): 171-191.
[8] 姜新宇,唐娟. 果園升降作業(yè)平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)設(shè)計(jì)[J]. 現(xiàn)代農(nóng)村科技,2017(4):78-80.
[9] 王永振,樊桂菊,宋月鵬,等. 果園升降平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)設(shè)計(jì)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2017,38(1):96-101.
Wang Yongzhen, Fan Guijiu, Song Yuepeng, et al. Design of automatic leveling control system for orchards lifting platform[J]. Journal of Chinese Agricultural Mechanization Research, 2017, 38(1): 96-101. (in Chinese with English abstract)
[10] 樊桂菊,王永振,張曉輝,等. 果園升降平臺(tái)自動(dòng)調(diào)平控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):38-46.
Fan Guiju, Wang Yongzhen, Zhang Xiaohui, et al. Design and experiment of automatic leveling control system for orchards lifting platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 38-46. (in Chinese with English abstract)
[11] 丁為民,孫元昊,趙思琪,等. 犁旋一體機(jī)自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):25-31.
Ding Weimin, Sun Yuanhao, Zhao Siqi, et al. Design and test of automatic leveling system of plough rotary machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 25-31. (in Chinese with English abstract)
[12] 周浩,胡煉,羅錫文,等. 旋耕機(jī)自動(dòng)調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(S1):117-123.
Zhou Hao, Hu Lian, Luo Xiwen, et al. Design and experiment on auto leveling system of rotary tiller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Supp.1): 117-123. (in Chinese with English abstract)
[13] 胡煉,羅錫文,趙祚喜,等. 超聲波傳感器評(píng)定水田激光平地機(jī)水平控制系統(tǒng)性能[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(S1):73-76,81.
Hu Lian, Luo Xiwen, Zhao Zuoxi, et al. Evaluation of leveling performance for laser-controlled leveling machine in paddy field based on ultrasonic sensors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 73-76, 81. (in Chinese with English abstract)
[14] 胡煉,林潮興,羅錫文,等. 農(nóng)機(jī)具自動(dòng)調(diào)平控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(8):15-20.
Hu Lian, Lin Chaoxing, Luo Xiwen, et al. Design and experiment on auto leveling control system of agricultural implements[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 15-20. (in Chinese with English abstract)
[15] 陳君梅,趙祚喜,陳嘉琪,等. 水田激光平地機(jī)非線性水平控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(7):79-84.
Chen Junmei, Zhao Zuoxi, Chen Jiaqi, et al. Design of nonlinear leveling control system for paddy land leveler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 79-84. (in Chinese with English abstract)
[16] 孫永佳,周軍,李學(xué)強(qiáng),等. 馬鈴薯聯(lián)合收獲機(jī)車(chē)身調(diào)平系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S1):298-306.
Sun Yongjia, Zhou Jun, Li Xueqiang, et al. Design and experiment of body leveling system for potato combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 298-306. (in Chinese with English abstract)
[17] 邵明璽,辛喆,江秋博,等. 拖拉機(jī)后懸掛橫向位姿調(diào)整的模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(21):34-42.
Shao Mingxi, Xin Zhe, Jiang Qiubo, et al. Fuzzy PID control for lateral pose adjustment of tractor rear suspension[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 34-42. (in Chinese with English abstract)
[18] 莊肖波,李耀明. 基于魯棒反饋線性化的聯(lián)合收獲機(jī)割臺(tái)高度控制策略[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(11):123-130.
Zhuang Xiaobo, Li Yaoming. Header height control strategy of harvester based on robust feedback linearization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 123-130. (in Chinese with English abstract)
[19] Xie Y M, Alleyne A, Greer A, et al. Fundamental limits in combine harvester header height control[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2013, 135(3).
[20] Xie Y M, Alleyne A. Integrated design and control for header height control of combine harvesters[C]// Proceedings of the American Control Conference, IEEE, 2014: 2705-2710.
[21] Xie Y M, Alleyne A. Two degree of freedom control synthesis with applications to agricultural systems[J]. Journal of Dynamic Systems Measurement and Control, 2014, 136(5):051006.
[22] Xie Y M, Alleyne A. A robust two degree-of-freedom controller for systems with both model and measurement uncertainty[J]. Control Engineering Practice, 2014, 25: 55-65.
[23] 彭賀,馬文星,王忠山,等. 丘陵山地拖拉機(jī)車(chē)身調(diào)平控制仿真分析與試驗(yàn)[J]. 吉林大學(xué)學(xué)報(bào):工學(xué)版,2019,49(1):157-165.
Peng He, Ma Wenxing, Wang Zhongshan, et al. Control system of self-leveling in hilly tractor body through simulation and experiment[J]. Journal of Jilin University: Engineering and Technology Edition, 2019, 49(1): 157-165. (in Chinese with English abstract)
[24] 彭賀,馬文星,趙恩鵬,等. 丘陵山地輪式拖拉機(jī)車(chē)身調(diào)平系統(tǒng)設(shè)計(jì)與物理模型試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):36-44.
Peng He, Ma Wenxing, Zhao Enpeng, et al. Design and physical model experiment of body leveling system for roller tractor in hilly and mountainous region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 36-44. (in Chinese with English abstract)
[25] 齊文超,李彥明,陶建峰,等. 丘陵山地拖拉機(jī)姿態(tài)主動(dòng)調(diào)整系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(7):381-388.
Qi Wenchao, Li Yanming, Tao Jianfeng, et al. Design and experiment of active attitude adjustment system for hilly area tractors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 381-388. (in Chinese with English abstract)
[26] 齊文超,李彥明,張錦輝,等. 丘陵山地拖拉機(jī)車(chē)身調(diào)平雙閉環(huán)模糊PID控制方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):17-23,34.
Qi Wenchao, Li Yanming, Zhang Jinhui, et al. Double closed loop fuzzy PID control method of tractor body leveling on hilly and mountainous areas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 17-23,34. (in Chinese with English abstract)
[27] 張錦輝,李彥明,齊文超,等. 基于神經(jīng)網(wǎng)絡(luò) PID 的丘陵山地拖拉機(jī)姿態(tài)同步控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(12):356-366.
Zhang Jinhui, Li Yanming, Qi Wenchao, et al. Synchronous control system of tractor attitude in hills and mountains based on neural network PID[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 356-366. (in Chinese with English abstract)
[28] 于泳超,康峰,鄭永軍,等. 果園高位自動(dòng)調(diào)平作業(yè)平臺(tái)設(shè)計(jì)及仿真[J]. 北京林業(yè)大學(xué)學(xué)報(bào),2021,43(2):150-159.
Yu Yongchao, Kang Feng, Zheng Yongjun, et al. Design and simulation of the auto-matic leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. (in Chinese with English abstract)
[29] 肖晟,強(qiáng)寶民. 基于對(duì)稱四通閥控非對(duì)稱液壓缸的電液比例位置控制系統(tǒng)建模與仿真[J]. 機(jī)床與液壓,2009,37(6):95-97,101.
Xiao Sheng, Qiang Baomin. The model and simulation of electro-hydraulic proportional position-control system based on a symmetrical hydraulic cylinder controlled by symmetrical four-way valve[J]. Machine Tool & Hydraulics, 2009, 37(6): 95-97,101. (in Chinese with English abstract)
[30] 馮斌. 液壓油有效體積彈性模量及測(cè)量裝置的研究[D].杭州:浙江大學(xué),2011.
Feng Bin. Study on Effective Fluid Bulk Modulus and Measurement in Hydraulic Systems[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)
Feedforward PID control method for the automatic leveling of an orchard high-position operation platform
Lyu Haotun1, Hu Zhaotian1, Yu Yongchao2, Kang Feng2, Zheng Yongjun1※
(1.,,100083,; 2.,,100083,)
A high-position platform has gradually been utilized to realize the heavy tasks in an orchard, such as thinning flowers and fruit, bagging, and picking in modern mechanized agriculture. However, traditional high-position platforms cannot adjust adaptively in current orchards that are mostly concentrated in hilly and mountainous areas. Particularly, it is easy to cause stress, even the staff falling down from high place when working. Therefore, it is highly urgent to improve the automatic leveling control performance of high-position platform for higher efficiency and safety in hilly areas. In this study, an automatic control system was proposed for the self-developed leveling mechanism of high-position platform using feedforward PID control. A systematic dynamic analysis was also conducted via the electromagnet, proportional valve-controlled hydraulic cylinder, and leveling mechanism. A mathematical model was then established for the feedforward PID control in the automatic leveling system. Three parts were selected to design the model, including the current PI controller, angle PID controller, and feedforward compensator. Specifically, the current PI controller was used to reduce the internal error of the system, whereas, the feedforward compensator was used to increase the response speed with a low steady-state error. Furthermore, the angle information was first transmitted from the inclination sensor to the controller. After processing the
angle information, the feedforward PID controller output the corresponding current for the proportional valve, further to drive the pitch cylinder for the extension or retraction, and finally to tailor the angle of the platform for the standard movement. As such, the simulation of leveling control system demonstrated that the feedforward PID control presented a better performance than PID control. Firstly, the rise time of feedforward PID control was 1.26 s, while the regulation time was 2.05 s, respectively, compared with PID control. Secondly, the steady-state error was 0.020, which was lower than that of PID control. At the same time, a systematic test was also carried out to verify the high-position platform model. Correspondingly, it was found that the experimental and simulated values of rising time, adjustment time, and steady-state error differed by 0.19 s, 0.37 s, and 0.04°, respectively, whereas, those of waveforms were almost the same. It infers that the mathematical model was feasible for the leveling control system of the platform in an orchard. Finally, an automatic leveling control system was built for the high-position platform to conduct static and dynamic tests. The test results showed that the leveling performance of feedforward PID control was better than that of traditional PID control. In the static leveling, the high-position platform was leveled at an angle of -4.9°, -7.4°, and -9.6° relative to the ground. The rise time of feedforward PID control was 1.57, 1.35, and 1.47 s, while the leveling time was 3.15, 2.35, and 2.62 s, excluding the system response time. More importantly, the rise time, adjustment time, and steady-state error were shortened by 20%, 30%, and 0.6%, compared with the PID control. In the dynamic leveling, the high-position platform traveled on undulating roads at a speed of 2 km/h. The maximum error of pitch angle was -3.0°, the average absolute error was 0.79°, the mean square error was 0.58°, and the inclination angle was stable at ±3° for the workbench. Consequently, the automatic leveling control system can fully meet the operating requirements of high-position platform in hilly and mountainous areas.
automatic; orchards; equipments; leveling; feedforward PID control
呂昊暾,胡召田,于泳超,等. 果園高位作業(yè)平臺(tái)自動(dòng)調(diào)平前饋PID控制方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(18):20-28.doi:10.11975/j.issn.1002-6819.2021.18.003 http://www.tcsae.org
Lyu Haotun, Hu Zhaotian, Yu Yongchao, et al. Feedforward PID control method for the automatic leveling of an orchard high-position operation platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 20-28. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.18.003 http://www.tcsae.org
2021-05-21
2021-09-07
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFD0700600)
呂昊暾,博士,講師,研究方向?yàn)橹悄苻r(nóng)業(yè)裝備技術(shù)與研發(fā)。Email:lvhaotun@cau.edu.cn
鄭永軍,博士,教授,研究方向?yàn)橹悄苻r(nóng)業(yè)裝備技術(shù)與研發(fā)。Email:zyj@cau.edu.cn
10.11975/j.issn.1002-6819.2021.18.003
S225.93
A
1002-6819(2021)-18-0020-09