• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab-initio calculations of bandgap tuning of In1?xGaxY (Y = N,P)alloys for optoelectronic applications

    2021-11-23 07:29:44MuhammadRashidJamilMahmoodShahidRamayAsifMahmoodandGhaithan
    Chinese Physics B 2021年11期

    Muhammad Rashid Jamil M Mahmood Q Shahid M Ramay Asif Mahmood A and Ghaithan H M

    1Department of Physics,Ghazi University City Campus,Dera Ghazi Khan,32200,Pakistan

    2Department of Physics,COMSATS University Islamabad,Islamabad 44000,Pakistan

    3Basic and Applied Scientific Research Center(BASRC),College of Science of Dammam,Imam Abdulrahman Bin Faisal University,P.O.Box 383,Dammam 31113,Saudi Arabia

    4Department Physics,College of Science,Imam Abdulrahman Bin Faisal University,P.O.Box 1982,Dammam 31441,Saudi Arabia

    5Physics and Astronomy Department,College of Science,King Saud University,Riyadh,Saudi Arabia

    6Chemical Engineering Department,College of Engineering,King Saud University,Riyadh,Saudi Arabia

    Keywords: density functional theory,direct bandgap III-V semiconductors,tuning of optical band gap,solar cell applications

    1. Introduction

    The shortage of energy supply and increasing its demand have inspired the scientific community to explore the variety of materials for optoelectronic applications since the last two decades. Owing to their bandgap span from infrared region to ultraviolet region, the III-V compounds and their alloys are considered to be potential materials for optical applications.[1-6]For optical systems, the gallium nitride(GaN),gallium phosphide(GaP),and their alloys are of great importance in making low cost, small size, and fast functional blue light-emitting diodes (LEDs), laser diodes, photodetectors, solar cell for visible light, and long-wavelength emitters.[7,8]The knowledge of the bandgap and its engineering during alloy formation is significant for understanding optical properties in a wide range of energy spectrum.The optical behaviors of compounds depend on their desities of states (DOSs) and their investigation is an effective tool for obtaining the true knowledge of electronic structures.[9,10]The III-V binary compounds GaN, InN, GaP, InP, and their alloys (In1?xGaxN and In1?xGaxP) have simple cubic zinc blende (ZB) structures and can be easily grown into the cubic phase.[11]

    The nature and range of bandgap play a vital role in selecting the high-efficiency materials for optoelectronic applications. The direct bandgap semiconductors are superior to indirect bandgap semiconductors because phonons induced in the indirect band materials create heating and slow down the absorption of light and recombination rate in optical devices. Ultimately, the device efficiency decreases, thereby ejecting such materials from the market of the electronic industry.[12-18]The GaN(Eg=3.44 eV),InN(Eg=0.7 eV),and InP (Eg=1.35 eV) are direct band semiconductors operating in an ultraviolet to infrared region of spectrum while GaP (Eg= 2.26 eV) is indirect bandgap semiconductor in visible region.[19-22]The alloy formation of In1?xGaxN and In1?xGaxP tune the bandgap from 0.7 eV to 3.44 eV and 1.35 eV to 2.26 eV to explore the highest efficiency in infrared,visible, and ultraviolet regions. This is the direct and easiest approach to the investigating of the bandgap-dependent electronic behavior and optical response of these semiconductor systems.

    From an experimental viewpoint, InGaN and InGaP are evidenced to be the most suitable systems for photovoltaic applications in which In content ranges from 0%and 100%. The InGaN-based solar cells demand the 2.4 eV, and the InGaPbased solar cells requires 1.5-eV bandgap in the visible region for maximum efficiency which is obtained by changing the In content.[23,24]The multi-junction solar cells for ultrahigh efficiency can be achieved by depositing the thin epitaxial layer of InxGa1?xN on a GaN substrate. This condition is unsettled at a high In concentration due to the lattice mismatch between substrate and thin film, caused by phase separation and structural defects.[25]However, at lower content of In quantum confinement, the hetero-structure of In-GaN/GaN possesses the larger quality and stability. Furthermore,it has been elaborated that an In fraction of 30%-40%is the best suitable for the InGaN-based solar cells. This proportion is achieved by minimizing the phase separation and lattice mismatch problems and also by the high performance of solar cells at longer wavelengths.[26]Therefore,quantum well structures of InGaN with a 25-?A-thick layer evidence a drastic improvement in photoluminescence(PL)intensity. On the other hand, the quantum efficiency of green-emitting LED of InGaP system is 10%in hexagonal phase but the phase transformation from cubic to hexagonal phase converts the indirect bandgap into direct bandgap,which has not yet been certified experimentally. The theoretical work of Ample Laref explains the optical behaviors of the In1?xGaxN and In1?xGaxP through the full-potential linearly augmented plane wave method by changing the indium content but the provided description is limited.[22,27,28]Therefore, it is needed to explore them comprehensively.

    In the present work, the electronic and optical behaviors of studied materials are elucidated by the PBE-GGA approximation[29]and electronic bandgap is evaluated by the most versatile Trans Balaha modified potential(TB-mBJ).[30]The optical behavior is analyzed according to the composition variation of Ga ions in the InP and InN and pressure insertion. The techniques, pressure variation, and composition variations tailor the bandgap for the highest absorption of light to increase optical efficiency for solar cell applications. The details of optical properties are discussed in terms of dielectric constants,refraction,dispersion,polarization,absorption,and optical loss factor.

    2. Method

    To investigate the optical measurements of Ga-doped InN & InP alloys, we perform the simulation by the DFTdependent full-potential linearized augmented plane wave method through the Wein2k code. The studied compounds are relaxed and optimized to calculate the ground state parameters in the Zinc blend phase in the PBE-sol approximation which is more accurate than local density approximation(LDA).[31,32]To determine the Hamiltonian of the system,optimized structures are converged by self-consistent field. In Hamiltonian,exchange-correlation energy (Exc) is generally approximated by the familiar LDA, GGA, or hybrid approximations.[33,34]These approximations are generally used to find precise parameters for the ground state while excited state properties are undervalued. For instance,the bandgap described through these approximations is robustly undervalued. The difficulty related with the above said approximations lies in undervaluing the bandgap which is self-interaction error and limiting the derivative discontinuity. On the other side, the hybrid functional is more costly and LDA+U/GGA+Uare restricted to localized states.[35]Therefore,to elucidate the above problems, Trans and Blaha,[36]and Kolleret al.[37]improved Backe-Johnson potential (TB-mBJ) by precisely computing the electronic structures of semiconductors, insulators, and metal oxides. The optical properties related to the bandgap are calculated by using this potential effect. Furthermore,the solutions of the wave function are divided into two circumstances: one is the spherical harmonic-type solution in the muffin-tin region where the core electrons are kept and the other is the plane wave-like wave function in the remaining region. The convergence of eigenvalues is achieved by takingKmax=8.0/RMT(Ryd)1/2for cut-off energy. The total energy value converges to 10?4Ryd/unit cell in self-consistent calculations. We take 4000kpoints of thek-mesh grid because energy released from the alloys in charge/energy convergence becomes constant at this or above value.

    3. Results and discussion

    3.1. Structural and electronic properties

    Fig. 1. The crystal structures of panel (a) InN/P, (b) In0.75Ga0.25N/P, (c)In0.50Ga0.50N/P,(d)In0.25Ga0.75N/P,and(e)GaN/P.

    In the system under study, the space group is selected and used for the convenience of convergence of energy. The electronic behaviors of In1?xGaxN/P, where (x= 0.0, 0.25,0.50, 0.75, and 1.0) are illustrated by using lattice constanta0(?A),electronic band gapEg(eV),and total density of states(TDOS). The lattice constant is optimized to relax the structures of Ga doped InN/P alloys. The lattice constant decreases with concentration of Ga atoms increasing because In(2.2 ?A)atom has a greater atomic radius than Ga atom (1.87 ?A) as shown in Fig.2(a). The bandgap increases with Ga atom concentration increasing because the smaller size of the Ga atom shrinks the density of states away from the forbidden energy region. The increasing trend of band gap for Ga atoms doped InN/P is shown in Fig.2(b). The accuracy of the results can be ensured from the binary InN/P and GaN/P band gaps,which is consistent with those reported in Refs.[40-45].

    Fig.2. Calculated lattice constant,band gap,static dielectric constant and refractive index of In1?xGaxN/P(x=0.0,0.25,0.50,0.75 and 1.0).

    Fig.3. Total density of states(TDOS)and partial density of states(PDOS)of(a)In1?xGaxN and(b)In1?xGaxP,where x=0.0,0.25,0.50,0.75,and 1.0.

    Moreover,to see the detailed electronic picture of binary structure and doped compounds, the total densities of states are plotted in Figs. 3(a) and 3(b). The band gaps of binary structure and doped compounds reported in Fig.3(b)are similar to those from a density of states in Fig. 3. The InN/P band gap indicates that the maximum absorption region is visible while the doping of Ga leads it to shift to the ultraviolet region. Therefore,with the help of bandgap tuning,the optoelectronic devices can be fabricated with desired energy range,thereby increasing the potential applications of studied materials in solar cells and other optoelectronic devices.To explore the optical behavior of studied materials,their optical parameters will be analyzed in detail below.

    3.2. Optical properties

    The optical properties of a semiconductor have dynamic significance due to their valuable information on a large scale that can be taken in our efforts to understand the properties of semiconductors, especially for optoelectronic applications in the direct bandgap materials. In optoelectronic In1?xGaxN/P motivates the researchers to explore them. The direct transition from the valence band to conduction bands takes place.The maxima of the valence band and minima of the conduction band at the same symmetry points form a direct bandgap that creates easy transition of electrons valence band to conduction band with energy loss decreasing. The efficiency of light-emitting device is enhanced due to the recombination rate rising.[46-50]The optical response in the existence of an external electric field of any physical system can be specified in terms of dielectric functionε(ω)=ε1(ω)+iε2(ω) .The Kramer-Kronig relation[42]is used to calculate the real part of dielectric functionε1(ω)that explains the dispersion of light from matter surface. The absorption of electromagnetic radiations is explained by the complex dielectric function of imaginary partε2(ω). The dielectric constant of frequencydependent real part and imaginary part are obtained from the Kramer-Kronig relation[22]as follows:

    where the principal integral value is represented by P,andkis the wave vector within the first Brillion zone (BZ) boundary.The Kramer-Kronig relation is used to solve the constituents of dielectric tensor between the real and imaginary part that explain photon matter interaction.

    The calculatedε1(ω) andε2(ω) for In1?xGaxN are presented in Figs.4(a)and 4(b), and for In1?xGaxP in Figs.4(c)and 4(d). The real part of dielectric constantε1(ω) explains the material polarization when it exposes to electromagnetic radiation. The value ofε1(ω) increases from zero energy value and to the values of the first resonance at 1 eV, 1.8 eV,2.1 eV,and 2.5 eV for In1?xGaxN alloys. The peak values of the second resonance occur between 6 eV and 7 eV because of matching the light and materials vibration frequency. The peaks between 6 eV and 12 eV have large variations because of different resonance frequencies. At high energy, plasma resonance breaks and peaks minimize to a negative value between 9 eV to 16 eV with a minimum value at 12 eV. The In1?xGaxN alloys show metallic response in this energy region because of bandgap incompatibility with the energy of incoming light. While for In1?xGaxP alloys, theε1(ω) reaches a peak value at 3 eV for InP and then shifts toward higher energy up to 4 eV for GaP by increasing the Ga atom concentration, as shown in Fig. 4(c), then monotonically drops to a minimum value at 5 eV, becoming negative which shows the metallic character. Therefore,all the light is reflected from the material surface. The materials behave as a superluminal-type material because negative values ofε1(ω)make the susceptibility and permeability negative like left-handed-type materials which have not been discovered yet.[51-53]Figures 4(a)and 4(c)show that the static dielectric constantε1(0)is dependent on material bandgap.By increasing the Ga atom concentration in InN/P,the value of static dielectric constantε1(0)increases.The Penn’s modelε1(0)≈1+(hωp/Eg)2,[54](whereEgandhωpare the bandgaps and plasma frequency of the material)is exactly related to band gaps.

    Fig.4. Real part and imaginary part of dielectric constant of[(a)and(b)]In1?xGaxN,and[(c)and(d)]In1?xGaxP for x=0.0,0.25,0.50,0.75 and 1.0.

    For the construction of optoelectronic device, the imaginary part of the dielectric constantε2(ω) has a significant role. The light energy is measured to attenuate when the electromagnetic wave of suitable frequency passes through a material medium. The calculated values of the absorption coefficient for In1?xGaxN/P alloys are plotted in Figs. 4(b)and 4(d). The threshold value of the absorption coefficient is the limit from which material starts the absorption of light.These measured optical band gaps and the band gaps measured from band structures(Fig.2(b))are consistent with each other,which shows the reliability of our calculated results. Moreover,the band gaps calculated from binary structures InN/InP and GaN/GaP are matched with the experimental band gaps 0.71 eV/1.42 eV and 3.44 eV/2.32 eV.[40-42]Theε2(ω) increases with Ga doping in InN and attains the first maximum peak at 6 eV,then at 9 eV,and finally at 11 eV.The different peaks of absorption occur because of different light-matter interactions and different energy delivering rates of photons to electrons. The doping of Ga atoms shifts the absorption peaks towards high energy. For In1?xGaxP alloys,maximum absorption occurs at 5 eV as shown in Fig. 4(d). The absorption bands for In1?xGaxN alloys lie between 1 eV and 14 eV while for In1?xGaxP alloys between 2 eV and 8 eV. Therefore, the tuning of band gaps makes the studied alloys suitable for visible and ultraviolet optoelectronic applications.

    The other optical parameters like refractive indexn(ω)and extinction coefficientk(ω) are related to the photon energy-matter interaction and calculated as a function ofε1(ω)andε2(ω)as follows:

    The complex refraction coefficient is related to the complex dielectric constant and expressed as

    The refractive indexn(ω)and extinction coefficientk(ω)are related to the real part and the imaginary part of the dielectric constant through the following equationsn2?k2=ε1(ω)and 2nk(ω)=ε2(ω)as shown in the following Figs.5(a)and 5(c).

    The zero-frequency values of refractive indexn(ω) for In1?xGaxN In1?xGaxP alloys are presented in Fig. 2(d). It shows thatn(0)decreases with the augment of Ga atom concentration and the absorption region shifts from visible to nearultraviolet region with the transparency changing. Moreover,the static refractive indexn(0)and real part of dielectric constantε1(0)exactly follow the relationn(0)=ε21(0)as shown in Fig.1(c)and Fig.2(d).[55-57]The value of refractive index increases from static value and reaches to 8 eV(InN),1.2 eV(0.25,0.5),2 eV(0.75),and 3 eV(GaN).The three fluctuating peaks at 6 eV,9 eV,and 11 eV are recorded which are related to the real part of the dielectric constant due to the same reason as that explained above. Furthermore,for In1?xGaxP alloys,it reaches 3 eV and 4.4 eV and then drops to minimum values.For vacuum, the absorption is zero and the refractive index is one,the increasing value of the refractive index shows that the light is absorbed by the material. Hence,the increasing of refractive index reduces the speed of light. From 12 eV for In1?xGaxN and 9 eV for In1?xGaxP,the value of refractive index becomes less than one,which increases the phase velocity(v=c/n) higher than speed of light. Therefore, the material becomes metallic and lift handed type as explained above for negative value of refractive index.[58-60]

    The metallic response allows a longer wavelengthλ=λ0/nand minimum photon energyE=hc/λ. Moreover, the doping shifts the negative region to a higher value and transfers the operative absorption from the visible to the ultraviolet region that is justified by the increasing bandgap of studied alloys. The extinction coefficientk(ω) has a similar behavior toε2(ω). The calculated values ofk(ω) are presented in Figs.5(b)and 5(d)for In1?xGaxN alloy and In1?xGaxP alloy.The values for InN are high at 5 eV,7 eV,and 11 eV,and with doping Ga they shift to higher energy while for In1?xGaxP alloys,the peaks are at 5 eV and then decrease to minimum values with doping of Ga atoms. In the In1?xGaxP alloys,a little bit of variations in the values ofε2(ω) andk(ω) may be due to theoretical approximations.

    The absorption coefficientα(ω)is another parameter that measures whether the materials are suitable for solar and other optoelectronic applications or not. The reported values of the absorption coefficient for In1?xGaxN/P alloys are presented in Figs.6(a)and 6(c). They measure the decay of the photon energy per centimeter into the material. The behavior of the absorption coefficientα(ω),the imaginary part of the dielectric constantε2(ω),and the extinction coefficientk(ω)are consistent, showing that the Kramer-Krong relation and the tensor matrix equally solve the optical parameters. Moreover, the absorption is linked with the extinction coefficient by the following expression:

    This relation shows that the absorption coefficient is the product of the wave vector and the extinction coefficient.

    The optical conductivityσ(ω) implies the flow of carriers when surplus photon energy is delivered to electrons in the valence band. The electrons move to the conduction band by overcoming the influence of nuclei, and thus increasing the optical current or photocurrent.[61]The calculated values of optical conductivity for the studied alloys are presented in Figs.6(b)and 6(d).

    Fig.5. Refractive index and extinction coefficient of[(a)and(b)]In1?xGaxN,[(c)and(d)]In1?xGaxP with x=0,0.25,0.50,0.75,and 1.0.

    Fig. 6. Absorption coefficient and optical conductivity of [(a) and (b)] In1?xGaxN and [(c) and (d)] In1?xGaxP with x=0.0, 0.25, 0.50, 0.75, and 1.0,respectively.

    During the light-matter interaction,the absorption,transmission,and conduction take place simultaneously. When the energy of the incident photons exceeds the bandgap, the kinetic energy of electrons increases and the electrical conductivity increases accordingly. Moreover,the optical conductivity is related to the dielectric constant by the following expression:

    whereε0andωare the permittivity of the free space and plasma frequency.

    Therefore,the optical conductivity is related to the imaginary part of the dielectric constant. It peaks at 9 eV and 11 eV for InN and at 10 eV and 13 eV for GaN,which shows that the optical conductivity peaks shift to higher energy by replacing Ga atom with In atom. On the other hand,the optical conductivity reaches a peak value at 5 eV for In1?xGaxP alloys. After attaining peak values, it decreases to a minimum value. The reason has been explained above, and the metallic nature of material in high energy lies in reflecting the light. The largest optical conductivity is found in the visible to the ultraviolet region of the spectrum.

    Fig.7. Reflectivity of(a)In1?xGaxN,(b)In1?xGaxP,where x=0.0,0.25,0.50,0.75 and 1.0.

    The reflection coefficientR(ω)is the incident-to-reflected light energy ratio which provides information about surface morphology.[62]It can be calculated from the refractive and extinction coefficient from the following relation:

    The reflectivity decreases by doping Ga atoms into InN. A similar trend is found in Ga-doped InP. Its value increases smoothly up to 6 eV for In1?xGaxN alloys, and a large fluctuation occurs due to the surface roughness and scattering of light at different angles. However, the maximum reflection zone for In1?xGaxN alloys is between 10 eV and 16 eV while for In1?xGaxP alloys is between 4 eV and 16 eV as shown in Figs. 7(a) and 7(b). It is also noted that the reflectivity increases with Ga content increasing because of atomic size changing but this effect is minor.

    4. Conclusions

    In the present study,the electronic and optical properties of In1?xGaxN/P(x=0.0,0.25,0.50,0.75,and 1.0)alloys are analyzed by using a full-potential linearized augmented plane wave method and modified Becke and Johnson potential(TBmBJ).The lattice constant decreases by doping Ga atoms into InN/P because of the smaller atomic size of Ga atom than that of In atom. The bandgap increases from 0.7 eV to 3.44 eV,and 1.41 eV to 2.32 eV with increasing the Ga content. The maximum absorption region shifts from the visible region to the ultraviolet region;therefore,the tuning of the bandgap increases the potential applications of alloys in solar cell and other opto-electronic devices. The static dielectric constantε1(0)and band gap are consistent with those from the Penn’s model. The dispersion and polarization of light are maxima in low energy region while the highenergy region behaves as a metal.Reflection of light is less in the energy region where absorption and optical conductivity are stronger,therefore,visible light solar cells possess the favored applications in the low doping region.

    Acknowledgment

    The authors (Shahid M Ramay and Asif Mahmood) extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No.RG-1435-004.

    午夜av观看不卡| 精品人妻在线不人妻| 免费黄网站久久成人精品| 欧美成人精品欧美一级黄| 久久人人爽人人片av| 国产成人aa在线观看| 成年av动漫网址| 青春草视频在线免费观看| 女性生殖器流出的白浆| 欧美日韩视频精品一区| 国产日韩一区二区三区精品不卡 | 91精品一卡2卡3卡4卡| 99精国产麻豆久久婷婷| 日本vs欧美在线观看视频| 日韩强制内射视频| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 蜜桃国产av成人99| 国产日韩欧美亚洲二区| 久久精品国产亚洲av涩爱| 成年美女黄网站色视频大全免费 | 国产成人av激情在线播放 | 晚上一个人看的免费电影| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 高清黄色对白视频在线免费看| 久久精品国产自在天天线| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 我要看黄色一级片免费的| 久久精品久久久久久久性| 精品人妻一区二区三区麻豆| 欧美变态另类bdsm刘玥| 少妇高潮的动态图| 久久女婷五月综合色啪小说| 18在线观看网站| 日韩大片免费观看网站| 美女国产视频在线观看| 亚洲国产欧美在线一区| 免费av中文字幕在线| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 香蕉精品网在线| 久久狼人影院| 久久鲁丝午夜福利片| 亚洲在久久综合| 少妇高潮的动态图| 成人手机av| 欧美国产精品一级二级三级| 国产精品99久久99久久久不卡 | 自拍欧美九色日韩亚洲蝌蚪91| 毛片一级片免费看久久久久| 丝袜在线中文字幕| 女性生殖器流出的白浆| 男人操女人黄网站| 亚洲,一卡二卡三卡| 热re99久久精品国产66热6| 亚洲国产精品999| a级毛片在线看网站| 啦啦啦在线观看免费高清www| 我要看黄色一级片免费的| 精品亚洲成国产av| 九九在线视频观看精品| 国产成人精品婷婷| 老司机影院成人| 中文字幕人妻熟人妻熟丝袜美| www.av在线官网国产| 亚洲精品日韩av片在线观看| 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 少妇高潮的动态图| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 日本欧美国产在线视频| 美女国产高潮福利片在线看| 久久久久国产精品人妻一区二区| 少妇 在线观看| 特大巨黑吊av在线直播| 日韩精品免费视频一区二区三区 | 久久久久久久久久久丰满| 丝袜喷水一区| 人妻 亚洲 视频| 国产精品人妻久久久久久| 精品酒店卫生间| 成人毛片60女人毛片免费| a级毛片在线看网站| 亚洲色图 男人天堂 中文字幕 | 视频在线观看一区二区三区| 夫妻午夜视频| 男人爽女人下面视频在线观看| 天天影视国产精品| 久久久久久久久久久久大奶| 99九九线精品视频在线观看视频| 亚洲人成网站在线播| 岛国毛片在线播放| 七月丁香在线播放| 亚洲欧美清纯卡通| 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 搡老乐熟女国产| 韩国av在线不卡| 日韩一区二区视频免费看| 交换朋友夫妻互换小说| 在线观看国产h片| 国产乱来视频区| 久久av网站| 一区二区三区精品91| 国产精品一区二区在线不卡| 久热久热在线精品观看| 欧美日韩综合久久久久久| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻熟人妻熟丝袜美| 制服丝袜香蕉在线| 精品久久久久久久久av| 亚洲精品中文字幕在线视频| 熟女电影av网| 男女边吃奶边做爰视频| 亚洲国产欧美日韩在线播放| 全区人妻精品视频| 大片电影免费在线观看免费| 久久人人爽人人片av| 不卡视频在线观看欧美| 国产成人91sexporn| 春色校园在线视频观看| a级片在线免费高清观看视频| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 三上悠亚av全集在线观看| 久久久国产精品麻豆| 国产极品粉嫩免费观看在线 | 亚洲精品美女久久av网站| 哪个播放器可以免费观看大片| 亚洲精品久久午夜乱码| 如何舔出高潮| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 午夜激情福利司机影院| 免费看不卡的av| 日本av免费视频播放| 观看美女的网站| 欧美日韩亚洲高清精品| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久| 麻豆精品久久久久久蜜桃| 人妻 亚洲 视频| 91aial.com中文字幕在线观看| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 欧美三级亚洲精品| 欧美性感艳星| 欧美亚洲日本最大视频资源| 国产在线视频一区二区| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 亚洲在久久综合| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o| 少妇高潮的动态图| xxx大片免费视频| 97精品久久久久久久久久精品| 91精品三级在线观看| 久久精品久久久久久噜噜老黄| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 婷婷色综合大香蕉| 国产精品熟女久久久久浪| 亚洲丝袜综合中文字幕| 69精品国产乱码久久久| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 极品少妇高潮喷水抽搐| 午夜av观看不卡| 大片免费播放器 马上看| 亚洲第一av免费看| 国产极品粉嫩免费观看在线 | 欧美激情极品国产一区二区三区 | 中文字幕精品免费在线观看视频 | 亚洲欧美一区二区三区黑人 | 男女边吃奶边做爰视频| 香蕉精品网在线| 国产av码专区亚洲av| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| 精品人妻熟女毛片av久久网站| 久久久久久伊人网av| 大香蕉97超碰在线| 亚洲在久久综合| 十分钟在线观看高清视频www| a 毛片基地| 热99久久久久精品小说推荐| 久久久久久久久大av| 国内精品宾馆在线| 在线观看免费视频网站a站| 免费高清在线观看视频在线观看| 插阴视频在线观看视频| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 美女国产高潮福利片在线看| 色94色欧美一区二区| 久久人人爽人人爽人人片va| 18禁观看日本| 国产黄色免费在线视频| 嫩草影院入口| 97超碰精品成人国产| 日韩精品有码人妻一区| 国产成人aa在线观看| 免费看光身美女| 亚州av有码| 人妻系列 视频| 亚洲人成77777在线视频| 一级毛片电影观看| 十八禁高潮呻吟视频| 国产永久视频网站| 一区二区三区乱码不卡18| 午夜免费观看性视频| 亚洲天堂av无毛| 最近手机中文字幕大全| 日本黄色日本黄色录像| 亚洲av福利一区| 日本黄色片子视频| 99视频精品全部免费 在线| 日本wwww免费看| 欧美日韩av久久| 91精品三级在线观看| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 国产精品欧美亚洲77777| 亚洲美女搞黄在线观看| 亚洲精品乱码久久久久久按摩| 久久久久久久精品精品| 国产精品国产av在线观看| 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品| 日本色播在线视频| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 99九九在线精品视频| 亚洲精品一二三| 欧美日韩成人在线一区二区| 一级毛片我不卡| 另类亚洲欧美激情| 一级毛片 在线播放| 亚洲五月色婷婷综合| 亚洲人成77777在线视频| 久久久精品94久久精品| 天天影视国产精品| 少妇人妻 视频| 老司机亚洲免费影院| 中国美白少妇内射xxxbb| 久久久久视频综合| 国产欧美日韩一区二区三区在线 | 性色av一级| 午夜福利在线观看免费完整高清在| 亚洲精品国产色婷婷电影| 亚洲av不卡在线观看| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| 最新的欧美精品一区二区| 一级毛片我不卡| 久久av网站| 久久人人爽人人爽人人片va| 免费黄频网站在线观看国产| 国产极品粉嫩免费观看在线 | 日本黄大片高清| 亚洲精品av麻豆狂野| 午夜免费观看性视频| 日日撸夜夜添| 亚洲国产成人一精品久久久| 国产精品成人在线| 男人爽女人下面视频在线观看| av有码第一页| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 精品国产一区二区久久| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| 一级毛片我不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 看免费成人av毛片| 成人影院久久| 男人添女人高潮全过程视频| 亚洲av.av天堂| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 日本欧美国产在线视频| 在线天堂最新版资源| 国产高清有码在线观看视频| 国产精品99久久久久久久久| 99九九线精品视频在线观看视频| a级片在线免费高清观看视频| 国产国拍精品亚洲av在线观看| 新久久久久国产一级毛片| 制服诱惑二区| 青春草国产在线视频| 欧美一级a爱片免费观看看| av网站免费在线观看视频| 亚洲高清免费不卡视频| 免费看光身美女| 成人漫画全彩无遮挡| 午夜免费观看性视频| 国产一区亚洲一区在线观看| 伊人久久国产一区二区| 一区二区av电影网| 91精品国产九色| 久久久午夜欧美精品| 国产精品熟女久久久久浪| 大陆偷拍与自拍| 日日爽夜夜爽网站| 看免费成人av毛片| 最近中文字幕高清免费大全6| 久久亚洲国产成人精品v| 97在线视频观看| 日韩电影二区| 国产亚洲欧美精品永久| 亚洲欧美色中文字幕在线| 少妇人妻 视频| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站| 汤姆久久久久久久影院中文字幕| 亚洲精品成人av观看孕妇| 我的老师免费观看完整版| 免费观看的影片在线观看| 色94色欧美一区二区| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免| 久久久久人妻精品一区果冻| 一级毛片aaaaaa免费看小| av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 国产精品国产三级国产av玫瑰| 亚洲精品国产av蜜桃| 欧美日韩在线观看h| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 丝袜脚勾引网站| 午夜福利网站1000一区二区三区| 午夜激情av网站| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 肉色欧美久久久久久久蜜桃| 国产精品久久久久成人av| 99精国产麻豆久久婷婷| 美女cb高潮喷水在线观看| 九九在线视频观看精品| 99久久精品国产国产毛片| 全区人妻精品视频| 老司机亚洲免费影院| 精品熟女少妇av免费看| 最近手机中文字幕大全| 在线看a的网站| 日本欧美国产在线视频| 欧美精品一区二区大全| 免费黄色在线免费观看| 国产精品偷伦视频观看了| 国产精品国产三级国产专区5o| 久久久午夜欧美精品| 久久精品国产亚洲网站| 如日韩欧美国产精品一区二区三区 | 婷婷成人精品国产| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 又大又黄又爽视频免费| 极品少妇高潮喷水抽搐| 成人国语在线视频| 涩涩av久久男人的天堂| 777米奇影视久久| 成人综合一区亚洲| 久久久精品94久久精品| 久久av网站| 观看美女的网站| 99re6热这里在线精品视频| 久久久久久久精品精品| videosex国产| 人妻人人澡人人爽人人| 你懂的网址亚洲精品在线观看| 亚洲国产最新在线播放| av.在线天堂| 一本大道久久a久久精品| 天堂中文最新版在线下载| 日韩亚洲欧美综合| 伊人亚洲综合成人网| a 毛片基地| 男女边摸边吃奶| 亚洲欧美日韩另类电影网站| 亚洲色图 男人天堂 中文字幕 | 欧美一级a爱片免费观看看| 国产亚洲欧美精品永久| 国产精品人妻久久久久久| 成人漫画全彩无遮挡| 伦精品一区二区三区| 久久99热这里只频精品6学生| 欧美激情极品国产一区二区三区 | 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 欧美97在线视频| 国产精品欧美亚洲77777| 18+在线观看网站| 黑人欧美特级aaaaaa片| av有码第一页| 我要看黄色一级片免费的| 满18在线观看网站| 在线免费观看不下载黄p国产| 国产黄色免费在线视频| 飞空精品影院首页| 99热网站在线观看| 青春草视频在线免费观看| 免费av中文字幕在线| a级片在线免费高清观看视频| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 人妻人人澡人人爽人人| 少妇熟女欧美另类| 美女大奶头黄色视频| 最近的中文字幕免费完整| 只有这里有精品99| 熟妇人妻不卡中文字幕| 国产欧美另类精品又又久久亚洲欧美| 99久久精品一区二区三区| 搡老乐熟女国产| 精品人妻熟女毛片av久久网站| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 国产精品99久久99久久久不卡 | 乱码一卡2卡4卡精品| 亚洲av福利一区| 国产av一区二区精品久久| 中文字幕最新亚洲高清| 日韩,欧美,国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲经典国产精华液单| 亚洲av免费高清在线观看| 日韩人妻高清精品专区| 国产69精品久久久久777片| 看非洲黑人一级黄片| 极品少妇高潮喷水抽搐| 夫妻午夜视频| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 欧美激情极品国产一区二区三区 | 美女视频免费永久观看网站| 99热网站在线观看| 久久精品熟女亚洲av麻豆精品| 久久久久人妻精品一区果冻| 黄色一级大片看看| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 成人二区视频| 99久久中文字幕三级久久日本| 男女无遮挡免费网站观看| 国产视频首页在线观看| 欧美日本中文国产一区发布| 最后的刺客免费高清国语| 满18在线观看网站| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久| 午夜福利视频在线观看免费| 午夜久久久在线观看| 麻豆成人av视频| 精品卡一卡二卡四卡免费| 日本黄大片高清| 人妻系列 视频| 日韩中字成人| 久久久国产欧美日韩av| 国产视频首页在线观看| 五月开心婷婷网| 国产在视频线精品| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩另类电影网站| 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 久久午夜综合久久蜜桃| 成人亚洲精品一区在线观看| 国产片特级美女逼逼视频| 久久99蜜桃精品久久| 久久精品国产亚洲av天美| 国产国拍精品亚洲av在线观看| 亚洲性久久影院| 国产免费一区二区三区四区乱码| 天天躁夜夜躁狠狠久久av| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 国产精品不卡视频一区二区| 一区二区三区免费毛片| 精品人妻偷拍中文字幕| 如何舔出高潮| 亚洲综合色网址| 日韩成人伦理影院| 丝袜美足系列| 男女边摸边吃奶| 亚洲精品国产av蜜桃| 777米奇影视久久| 麻豆成人av视频| 一级毛片我不卡| 亚洲av中文av极速乱| 99热这里只有精品一区| 亚洲综合色网址| 亚洲在久久综合| 春色校园在线视频观看| 国产精品成人在线| 国产色爽女视频免费观看| 中国国产av一级| 亚洲成色77777| 欧美日韩av久久| 少妇被粗大猛烈的视频| 国产淫语在线视频| 久久精品久久精品一区二区三区| 寂寞人妻少妇视频99o| 欧美3d第一页| 日韩中文字幕视频在线看片| 人妻一区二区av| 日韩免费高清中文字幕av| 免费人妻精品一区二区三区视频| videos熟女内射| 成人漫画全彩无遮挡| 九九在线视频观看精品| 丰满饥渴人妻一区二区三| 日日撸夜夜添| 午夜福利,免费看| 亚洲精品国产av成人精品| freevideosex欧美| av在线app专区| 久久午夜综合久久蜜桃| 九九在线视频观看精品| 久久久精品区二区三区| 黑人高潮一二区| 91精品三级在线观看| 热99国产精品久久久久久7| 国产一区二区三区av在线| 亚洲av成人精品一区久久| 一级二级三级毛片免费看| 黑丝袜美女国产一区| 韩国av在线不卡| 七月丁香在线播放| 国产成人一区二区在线| 在现免费观看毛片| av免费观看日本| 久久狼人影院| 美女福利国产在线| 国产永久视频网站| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 老司机影院毛片| 国产精品国产三级国产专区5o| 十分钟在线观看高清视频www| 亚洲精品一二三| 春色校园在线视频观看| 日本色播在线视频| 日韩精品免费视频一区二区三区 | 免费观看的影片在线观看| 如日韩欧美国产精品一区二区三区 | av.在线天堂| 999精品在线视频| 精品久久蜜臀av无| 国产欧美亚洲国产| a 毛片基地| 极品人妻少妇av视频| 国产精品国产av在线观看| 一区二区三区乱码不卡18| 国产午夜精品久久久久久一区二区三区| 欧美精品高潮呻吟av久久| av国产精品久久久久影院| 美女大奶头黄色视频| 亚洲精品一区蜜桃| 国产日韩一区二区三区精品不卡 | 亚洲婷婷狠狠爱综合网| 欧美日韩成人在线一区二区| 亚洲第一av免费看| 91精品国产国语对白视频| 久久99一区二区三区| 纯流量卡能插随身wifi吗| a级毛片免费高清观看在线播放| 99精国产麻豆久久婷婷| 亚洲成人一二三区av| 久久人人爽人人爽人人片va| 国产免费现黄频在线看| 国产乱来视频区| xxx大片免费视频| 性高湖久久久久久久久免费观看| 韩国av在线不卡| 日韩中文字幕视频在线看片| 伦理电影大哥的女人| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 色94色欧美一区二区| 国产亚洲一区二区精品| 中文精品一卡2卡3卡4更新| videosex国产| 丰满饥渴人妻一区二区三| 久久人人爽人人爽人人片va| 久久女婷五月综合色啪小说| 啦啦啦啦在线视频资源| 午夜久久久在线观看| 人体艺术视频欧美日本| 欧美成人精品欧美一级黄| 国产片内射在线| 亚洲欧美一区二区三区黑人 | 美女视频免费永久观看网站| 国产精品欧美亚洲77777| 你懂的网址亚洲精品在线观看| 中文字幕亚洲精品专区| 国产高清国产精品国产三级| 三级国产精品欧美在线观看| 久久久久久久久久久丰满| 校园人妻丝袜中文字幕|