• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical investigation of fluorescence changes caused by methanol bridge based on ESIPT reaction*

    2021-11-23 07:32:38XingleiZhang張星蕾LixiaZhu朱麗霞ZhengranWang王正然BifaCao曹必發(fā)QiaoZhou周悄YouLi李尤BoLi栗博HangYin尹航andYingShi石英
    Chinese Physics B 2021年11期
    關(guān)鍵詞:石英

    Xinglei Zhang(張星蕾), Lixia Zhu(朱麗霞), Zhengran Wang(王正然), Bifa Cao(曹必發(fā)), Qiao Zhou(周悄),You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英)

    Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    Keywords: DFT/TDDFT,fluorochromic,excited state intramolecular proton transfer,methanol bridge

    1. Introduction

    Excited state intramolecular proton transfer (ESIPT), as one of the most elementary processes,has been widespread in biological and chemical reactions.[1-3]ESIPT is the relocation of the proton in the excited state, generating a proton transfer tautomer.[4-6]Usually,dual fluorescence can be observed,and one is from the normal emission and another is due to the tautomeric emission with large Stokes shift.[7-9]Molecules with these unique properties have been developed and applied in laser dyes,[10]luminescent materials,[11]molecular switches,[12]and fluorescent probes.[13,14]The control and regulation of the ESIPT process still faces huge challenges.[15]It has long been known that the ESIPT reactions were sensitive to the surrounding solvent environment, which can be regulated by the interactions between solute and solvent molecules.[16-18]

    Isoquinoline is a nitrogenous aromatic compound,[19]which has important application value in the fields of organic luminescence materials.[20]Isoquinoline derivatives are typical bifunctional molecule with both proton donor and acceptor groups.[21]It has always been one of the significant research directions for organic synthesis workers.[22]Gomez Pinheiroet al.synthesized a new isoquinoline derivative 3-hydroxy-4-pyridylisoquinoline (2a) mildly, with the features of solvatochromic and acidochromic.[23]In their experimental studies, it can be noted that only a single emission was observed in the tetrahydrofuran (THF) solvent, while double emission of 2a was obviously observed in the methanol(MeOH)solvent.The 2a system showed significantly sensitive emission characteristics to the solvent effects. These type of fluorosolvatochromic compounds laid a promising foundation for the development of solvent-sensitive fluorescent probes.However,the reason for this different fluorescent phenomenon is still unclear.

    Herein, we investigate the proton transfer process of 2a complex in MeOH and compare it with the monomer form in THF. According to the protonation of the solvent, 2a system was divided into monomer form and hydrogen bonded complex form.[24]The geometric parameters were analyzed to characterize the nature and strength of hydrogen bonds(HBs)in 2a monomer form and complex form. The formation and fracture of HBs were analyzed by calculating infrared spectrum(IR).And the type of interaction intuitively was visually shown by using the reduced density gradient (RGD) isosurface. The electron density distribution was drawn by frontier molecular orbital. In addition,the potential energy curves were scanned to reveal the feasible transfer channels. Moreover,further explanation of the transfer mechanism of the double HBs system formed between MeOH and 2a was investigated.

    2. Theoretical calculation method

    All the theoretical calculation was based on the Gaussian 09 program suite.[25]The geometric of ground-state (S0) and the excited-state(S1)with B3LYP[28,29]functional and TZVP basis sets[30-32]were optimized by using the density functional theory(DFT)and time-dependent DFT(TDDFT)theory.[26,27]In order to accurately simulate the effect of MeOH on the ESIPT process of the 2a system, the explicit solvent model was selected to calculate the 2a-MeOH complex, which was coordinated by a MeOH molecule via two HBs.[33-36]The effect of protonation of solvent on 2a system was simulated based on the polarizable continuum model (PCM) using the integral equation formalism variant(IEFPCM).[37,38]In addition, to clarify the characteristic of intra- and inter-molecular HBs, the non-covalent interactions (NCI) analysis was executed by Multiwfn program.[39,40]The potential energy curves were scanned along the stretching direction at a step of 0.1 ?A.

    3. Results and discussion

    3.1. Optimized geometric structures

    The optimized geometry structures of 2a and 2a-MeOH complex(enol and keto forms)in S0and S1states are shown in Fig. 1. For 2a monomer form in THF, the intramolecular HB can form between the proton donor (-OH) and the proton acceptor(-N-)located in the aryl isoquinoline.[41]While in MeOH solvent, the nitrogen and hydroxyl groups on 2a molecule coordinate with an explicit solvent molecule forming a complex with the formation of two intermolecular HBs.We have labelled the specific atoms associated with proton transfer to facilitate the observation of structural parameters.In addition,the geometric parameters of enol form are shown in Table 1. For 2a-E form, uniquely, the intermolecular HB H1···N1, where proton transfer can occur, increased from 2.113 ?A to 2.198 ?A,and the bond length of O1-H1decreased from 0.977 ?A to 0.973 ?A,upon excitation to the S1state. The variation of parameters demonstrated that the proton on the hydroxyl group is less likely to break away,and it would be more stable than S0state. Further,the prolonged intramolecular HB is not conducive to the ESIPT process.

    In the case of 2a-MeOH-E form, the coordination intermolecular HBs are labeled as HB1(O2-H2···O3) and HB2(O3-H3···N2), which form a proton-bridge.[42]Comparing with the S0state, the bond length of O2-H2and O3-H3are both increased from 0.989 ?A to 1.005 ?A and 0.979 ?A to 0.982 ?A,respectively. The H2and H3atoms show a tendency to move away from the donor. The intermolecular HB1and HB2are shortened from 1.761 ?A to 1.665 ?A and 1.981 ?A to 1.954 ?A, respectively. The narrow of HB1and HB2in the S1state indicate that the interaction between 2a and MeOH is intensified which may stimulate the ESIPT process.[43]As a result,by comparing the distance between the hydrogen atom and the donor in the monomer and complex, it can be known that the proton is more likely to depart from hydroxyl in 2a-MeOH complex, and therefore undergo ESIPT process.[44]Furthermore, in 2a-MeOH keto form, two new intermolecular HBs emerge in the S1state,labeled as HB3(O3-H2···O2)and HB4(N2-H3···O3). The appearance of tautomer proves the occurrence of ESIPT process through MeOH-bridge.

    Fig. 1. The optimized geometries of 2a and 2a-MeOH calculated at the B3LYP/TZVP theoretical level.

    Table 1. Bond lengths(?A)and angles(°)associated with hydrogen bonding of 2a monomer and 2a-MeOH in the S0 and S1 states.

    3.2. Infrared vibrational spectra

    Monitoring the movement of O-H group stretching vibration in IR spectrum can characterize the change of the corresponding HB intensity. The calculation results of the IR spectra of the 2a monomer and 2a-MeOH complex in the S0state and the S1state are shown in Fig. 2. For the monomer, the stretching vibration frequency of O1-H1move in the direction of greater wavenumber shows blue-shift. It is difficult for the detachment of proton as the stretching vibration requires more energy. Then after the formation of 2a-MeOH complex,the O2-H2group in the ground state shows a significant red shift to 3296 cm?1from 3688 cm?1in 2a monomer. And the red-shift further moves to 3003 cm?1when the complex is excited to the S1state. The movement of stretching vibration frequency peaks indicates that the vibration energy required for the O-H group is reduced,in which the proton tends to be transferred away from the donor. The vibration peak corresponding to the O3-H3group in MeOH solvent has the shift from the location of 3520 cm?1in the S0state to 3465 cm?1in the S1state. Therefore,the HB1and HB2in the excited state have similar movement toward the smaller wavenumber.[45]It means that the bond energy is strengthened, which is consistent with the conclusions drawn from the previous molecular structure parameters. Compared with the monomer,the complex exhibits proton movement reaction,and it becomes easier after being excited to the S1state. It can be concluded that the bridging by MeOH molecular has significant facilitate effects on the ESIPT process in 2a system.

    Fig.2. The calculated IR spectra of 2a monomer(a)and 2a-MeOH complex(b)in the S0 and S1 states.

    3.3. Electronic spectra and frontier molecular orbitals

    The electronic transition properties in the first two excited states of 2a monomer and 2a complex are presented in Table 2. The vertical excitation energy of 2a monomer and 2a complex are in good agreement with the experimental absorption in THF (355 nm) and MeOH (354 nm),[23]respectively.It verifies that the function and base set used in the calculation are appropriate. Moreover, the transitions from S0to S1correspond to the maximum oscillator strength for both monomer and complex structures.Therefore,only the S0→S1transition is investigated in this paper.

    Front molecular orbitals are used to describe the charge redistribution and transfer characteristics of excited states as depicted in the Fig. 3. The transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital(LUMO)corresponds to a distinctπ-π*type feature,for both monomer and complex form. The charge distribution shifts from hydroxyl to N1atom in these two systems,makes the hydroxyl more acidic and the isoquinoline becomes more basic.[46]These acid-base changes can promote the occurrence of proton transfer process. It is worth noting that there is almost no charge density on the MeOH molecule,indicating that the methanol molecule is still in the ground state while only the 2a molecule was electronically excited.[47]Furthermore, by comparing the LUMO in the two systems, it can be found that the charge distribution on hydroxyl are significantly reduced in the 2a-MeOH complex than that in the 2a monomer. The pyridine ring is twisted, and the change of structure leads to the different optical properties.[48]This also proves that the addition of MeOH molecule makes the 2a molecule more prone to proton transfer.

    Fig.3. The HOMO and LUMO orbitals of 2a monomer and 2a-MeOH complex structures.

    3.4. Non-covalent interactions analysis

    The non-covalent interactions (NCI) provide conditions for identifying the interaction and understanding the corresponding intensities.[49]The electron densitiesρ(r) analysis and the reduced density gradient(RDG)isosurfaces visualization is one of the methods.[50]In addition, the second largest eigenvalue of Hessian matrix of electron densityλ2(r) was also demanded. The interaction exhibits attractive ifλ2(r) is less than zero and displays repulsive ifλ2(r)exceeds zero.The relevant functions are shown as below:

    The scatter diagrams of the RDG(r) value versus the Ω(r)value of 2a and 2a-MeOH are mapped out in Fig. 4. The value of the function represents in different colors according to the color gradient bar below, and clearly presents the different NCI types. Therefore, we can not only know the occurrence area of weak interaction,but also can distinguish the type of interaction intuitively. For the 2a monomer, there is a red disk between oxygen and hydrogen atoms corresponding to the positive value about 0.023 in the scattergram. After being excited to the S1state,the interaction corresponding to the peak position of scattered points is still strong repulsion. It clarifies why it is difficult for the monomer form to undergo a proton transfer process. However,for 2a-MeOH complex,the elliptic plates at the junction of 2a and MeOH show blue color which represent strong hydrogen bond interactions. It can be seen that the blue color is deep upon excitation to the S1state.In addition, the dark blue and light blue pieces correspond to HB1and HB2, respectively. The value of HB1spike shifted from?0.041 in the S0state to?0.052 in the S1state, and the value of HB2spike in the shifted from?0.03 to?0.032 in the S1state compared with the S0state. The color difference and spikes shift of the HBs describe the enhancement of intramolecular interactions upon excited into the S1state.And these results,once again,emphasize that the involving of MeOH effectively promote the ESIPT process and keep highly consistent with the above discussions.

    Table 2. Calculated electronic excitation energies(nm)and corresponding oscillator strengths(OS)of 2a monomer and 2a-MeOH complex.

    Fig.4. The RDG scatter diagrams and corresponding isosurfaces of 2a and 2a-MeOH for enol forms at S0 and S1 states.

    3.5. Potential energy curves

    The protic solvent effect on the ESIPT process can be revealed by constructing the potential energy curve. The molecular energy of S0state and S1state in two solvents was calculated with the variation of hydrogen bond distance, as shown in Fig. 5. The 2a monomer form has one pathway from proton donor (O-H) to proton acceptor (-N-) since aprotic solvent THF can neither provide protons nor break intramolecular HBs. The energy along the O-H bond in 2a shows that the barrier was 31.41 kcal/mol in S0state and reduced to 25.01 kcal/mol in S1state. Therefore, the proton transfer reaction is difficult to occur for both S0and S1states.[51]

    As a typical solvent with both proton donor and receptor, enables 2a to undergo ESIPT process assisted by MeOH molecule. The potential transfer channels of 2a-MeOH were considered to have three types which were depicted alongside the energy curves.[52]The stepwise mechanism is discussed firstly.The proton transferred from solute 2a to solvent MeOH(type 1)or from solvent MeOH to solute 2a(type 2),each proton transfer process occurs sequentially. The other pathway follows concerted mechanism in which proton transfer process occurs simultaneously along HB1and HB2(type 3). For type 1-3 pathways, the energy barriers are 11.47, 12.19, and 11.81 kcal/mol in the S0state,respectively.The relatively high energy barrier makes proton transfer process hardly occur in the S0state.[53]While in the S1state,the barrier was reduced to 4.8, 6.83, and 6.42 kcal/mol, respectively. Obviously, the type 1 stepwise mechanism seems to be an easier barrier for the proton transfer reaction. The H2atom on the isoquinoline departs in the first step,transfers to the MeOH along the intermolecular HB1and then following the H3atom moves to the O2atom via the intermolecular HB2. As a consequence,with the aid of a bridge composed by single MeOH molecule, the proton transfer energy barrier was effectively reduced. And the ESIPT process was successfully implemented through the sequential type reaction channel.

    Fig. 5. The potential energy curves of 2a monomer (a) and three potential pathways of 2a-MeOH complex,(b)type 1,(c)type 2,(d)type 3,at S0 and S1 states.

    3.6. Absorption and emission spectra

    The corresponding absorption and fluorescence spectra of 2a and 2a-MeOH are shown in Fig.6. The simulated computation of absorption peaks at 359 nm and 342 nm stay closely aligned with the experimental data(355 nm and 354 nm),[23]respectively. For 2a monomer, two emission peaks are obtained by optimized structure which correspond to the 2a-E and 2a-K states. As a matter of fact, only one emission was detected in experiment. These are consistent with the previous scanning result of the potential energy curves and the proton cannot transfer according to the high energy barrier. In addition,the computation peak of the 2a monomer in the E state at 407 nm is in accord with the single emission at 401 nm. As a result, the single fluorescence peak in THF solvent is ascribe to the 2a-E form.

    Fig.6.The calculated absorption and fluorescence spectra of 2a monomer(a)and 2a-MeOH complex(b)forms(data in brackets are experimental values).

    While in the MeOH solvent, after photoexcitation, there are two emission peaks at 423 nm and 516 nm which separately coincident with the experimental data 398 nm and 519 nm.[23]According to the scanned potential energy curve,as the solvent molecular involved in the reaction, the 2a-MeOH complex possesses an ESIPT process in sequential way after excitation. Thus, the first fluorescence meets with 2a-MeOH-E*(enol from in S1state) and the dual fluorescence is derived from the tautomer 2a-MeOH-K*(keto from in S1state). In conclusion, the bridging effect of MeOH promotes the occurrence of dual emission of 2a system.

    4. Conclusion

    In summary, we have theoretically investigated the fluorescence changes induced by methanol bridge based on ESIPT reaction in 2a system. After bridging by MeOH molecule,the OH bond stretching vibration frequency spike has a blueshift in 2a monomer and it turns into a red-shift in 2a complex upon excitation. The charge distribution on the hydroxy of 2a dramatically decreased, indicating that proton can be easily deviated. And RDG analysis shows that the participation of MeOH changed interaction from strong repulsion into strong mutual attraction. These results prove that the bridging of MeOH is completely indispensable for the ESIPT process. Upon photo-excitation, the barrier of proton transfer is 25.01 kcal/mol for 2a monomer while it drops to 4.80 kcal/mol for 2a-MeOH complex. The significantly decrease of the ESIPT barrier will contribute to the ESIPT process effectively.Concurrently,the mechanism of ESIPT in 2a-MeOH has been carefully clarified that the transfer began from 2a molecular via stepwise reaction channel.As a consequence,the active involvement of the MeOH bridges a viable pathway for the ESIPT process and results in fluorochromic phenomenon.These unique characteristics provide valuable guidance for controlling ESIPT processes and designing and synthesizing similar molecules to improve the performance of luminescent materials in the future.

    猜你喜歡
    石英
    石英及方石英的堿浸動力學研究
    中科院地質(zhì)與地球物理研究所:首次在火星隕石中發(fā)現(xiàn)柯石英
    科學導報(2020年50期)2020-09-09 01:13:21
    磷酸對油胺浮選石英的抑制作用①
    礦冶工程(2020年2期)2020-05-24 05:03:06
    高頻寬帶帶阻石英晶體濾波器的研制
    電子測試(2018年15期)2018-09-26 06:01:20
    關(guān)于寬帶石英濾波器配套諧振器的選用
    電子制作(2018年14期)2018-08-21 01:38:10
    元素錄井在準噶爾盆地石英灘地區(qū)Y 6 井的地質(zhì)應(yīng)用
    錄井工程(2017年3期)2018-01-22 08:40:02
    嚴重楔狀缺損石英纖維樁樹脂修復臨床分析
    石英云母片巖力學性質(zhì)各向異性的模擬方法探討
    醇胺藥劑與石英界面作用的分子動力學模擬
    光源類石英管材分揀實驗系統(tǒng)
    av.在线天堂| 高清日韩中文字幕在线| 18禁在线播放成人免费| 国产在视频线精品| 欧美3d第一页| 成人午夜精彩视频在线观看| 插逼视频在线观看| 国产精品秋霞免费鲁丝片| 欧美性感艳星| 亚洲欧美中文字幕日韩二区| 精品久久久噜噜| 成人综合一区亚洲| 在线看a的网站| 九九久久精品国产亚洲av麻豆| 欧美日韩视频高清一区二区三区二| 精品久久久久久久末码| 成年av动漫网址| 免费黄频网站在线观看国产| 亚洲最大成人中文| 日产精品乱码卡一卡2卡三| 午夜激情久久久久久久| 国模一区二区三区四区视频| 久久精品久久久久久久性| 成人一区二区视频在线观看| 黄色配什么色好看| 在线观看免费日韩欧美大片 | 人体艺术视频欧美日本| 1000部很黄的大片| 欧美精品一区二区免费开放| 午夜免费鲁丝| 超碰97精品在线观看| a级毛色黄片| 男人添女人高潮全过程视频| 免费少妇av软件| 蜜桃在线观看..| 男的添女的下面高潮视频| 日韩中文字幕视频在线看片 | 欧美激情极品国产一区二区三区 | 久久久久久久精品精品| 夜夜骑夜夜射夜夜干| av线在线观看网站| .国产精品久久| 欧美日韩在线观看h| 日韩强制内射视频| 免费看av在线观看网站| 岛国毛片在线播放| 亚洲怡红院男人天堂| av国产精品久久久久影院| 国产无遮挡羞羞视频在线观看| kizo精华| 日韩中字成人| 欧美成人一区二区免费高清观看| 久久久a久久爽久久v久久| 精品国产一区二区三区久久久樱花 | 看非洲黑人一级黄片| 啦啦啦在线观看免费高清www| 97热精品久久久久久| 国产精品蜜桃在线观看| 女性生殖器流出的白浆| 久久久久久久久大av| 美女福利国产在线 | 午夜日本视频在线| 久久影院123| 久久精品夜色国产| 人妻一区二区av| 国产极品天堂在线| 舔av片在线| 最近的中文字幕免费完整| 青春草视频在线免费观看| 高清午夜精品一区二区三区| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 午夜视频国产福利| 亚洲精品,欧美精品| av一本久久久久| 国产淫片久久久久久久久| tube8黄色片| 成人免费观看视频高清| 亚洲av.av天堂| 久久国产亚洲av麻豆专区| 久久精品国产亚洲网站| 伦精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产男人的电影天堂91| 精品一区二区三区视频在线| 秋霞伦理黄片| 久久99精品国语久久久| 有码 亚洲区| 丝袜脚勾引网站| 秋霞伦理黄片| 一区二区三区精品91| 国产精品精品国产色婷婷| 97精品久久久久久久久久精品| 国产在线男女| 欧美精品一区二区免费开放| 亚洲va在线va天堂va国产| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| 大码成人一级视频| 97精品久久久久久久久久精品| 99久久精品一区二区三区| 日韩av不卡免费在线播放| 国产精品爽爽va在线观看网站| 性色av一级| 在线精品无人区一区二区三 | 亚洲精品456在线播放app| 亚洲无线观看免费| 亚洲av成人精品一二三区| 精品久久久精品久久久| a级一级毛片免费在线观看| 国产黄片美女视频| 五月玫瑰六月丁香| 建设人人有责人人尽责人人享有的 | 蜜臀久久99精品久久宅男| 一级二级三级毛片免费看| 成人二区视频| 天堂中文最新版在线下载| 国产精品欧美亚洲77777| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产精品专区欧美| 最近手机中文字幕大全| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 天堂8中文在线网| 亚洲国产成人一精品久久久| 国产有黄有色有爽视频| 亚洲国产欧美人成| 纯流量卡能插随身wifi吗| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 99久国产av精品国产电影| 黄色欧美视频在线观看| 成人黄色视频免费在线看| 国产av国产精品国产| 高清在线视频一区二区三区| 成人毛片60女人毛片免费| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| h日本视频在线播放| 国产精品人妻久久久影院| 男人和女人高潮做爰伦理| 国产又色又爽无遮挡免| 亚洲天堂av无毛| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 久久久久久久久久久丰满| 寂寞人妻少妇视频99o| 黑人猛操日本美女一级片| 热re99久久精品国产66热6| 大香蕉久久网| 啦啦啦在线观看免费高清www| 麻豆乱淫一区二区| 国产av精品麻豆| 少妇的逼好多水| 久久精品久久久久久久性| 国产成人精品福利久久| 一区在线观看完整版| 欧美zozozo另类| 在线观看一区二区三区激情| 最黄视频免费看| 插阴视频在线观看视频| 日韩成人伦理影院| 高清日韩中文字幕在线| 成人二区视频| 91久久精品电影网| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 美女福利国产在线 | 日日撸夜夜添| 水蜜桃什么品种好| 女性生殖器流出的白浆| 国产精品一区二区在线不卡| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 欧美性感艳星| 美女中出高潮动态图| 只有这里有精品99| 老司机影院成人| 99re6热这里在线精品视频| 国内揄拍国产精品人妻在线| 麻豆精品久久久久久蜜桃| 黄色日韩在线| 国产精品免费大片| av在线app专区| 日韩人妻高清精品专区| 欧美成人一区二区免费高清观看| 中国美白少妇内射xxxbb| 黄片wwwwww| 一本久久精品| 亚洲无线观看免费| 日韩av免费高清视频| 亚洲成人一二三区av| 亚洲经典国产精华液单| 搡老乐熟女国产| 九九爱精品视频在线观看| 人妻夜夜爽99麻豆av| 嫩草影院新地址| 最近最新中文字幕大全电影3| 亚洲激情五月婷婷啪啪| 亚洲四区av| 熟女av电影| 国产伦精品一区二区三区视频9| 久久久久网色| 99精国产麻豆久久婷婷| 久久97久久精品| 免费黄频网站在线观看国产| 亚洲成人中文字幕在线播放| 99热全是精品| 大陆偷拍与自拍| 精品一区在线观看国产| 亚洲精品乱码久久久v下载方式| 国产永久视频网站| 亚洲综合精品二区| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| 一区二区三区精品91| 亚洲va在线va天堂va国产| 人人妻人人看人人澡| 亚洲av成人精品一二三区| 51国产日韩欧美| 久久国产精品大桥未久av | 欧美精品亚洲一区二区| 成人高潮视频无遮挡免费网站| 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 交换朋友夫妻互换小说| 国产精品久久久久成人av| 国产成人freesex在线| xxx大片免费视频| 亚洲成人一二三区av| 高清黄色对白视频在线免费看 | 国产爽快片一区二区三区| 国产永久视频网站| 一本一本综合久久| 国产精品一区二区在线观看99| 噜噜噜噜噜久久久久久91| 老女人水多毛片| 2022亚洲国产成人精品| 中文乱码字字幕精品一区二区三区| 精品酒店卫生间| 有码 亚洲区| 久久久久久久久久久丰满| 只有这里有精品99| 97精品久久久久久久久久精品| 黑丝袜美女国产一区| 麻豆国产97在线/欧美| 亚洲人成网站在线播| 久久久午夜欧美精品| 久久国内精品自在自线图片| 九草在线视频观看| 视频中文字幕在线观看| 亚洲人成网站在线观看播放| 777米奇影视久久| 中文字幕制服av| 午夜日本视频在线| 水蜜桃什么品种好| 午夜福利网站1000一区二区三区| 99久久综合免费| 麻豆成人av视频| 免费久久久久久久精品成人欧美视频 | 免费大片黄手机在线观看| 九色成人免费人妻av| 九九爱精品视频在线观看| 只有这里有精品99| 久久人人爽人人片av| 成年美女黄网站色视频大全免费 | 综合色丁香网| 日日摸夜夜添夜夜添av毛片| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 日韩制服骚丝袜av| 99热这里只有精品一区| 成人黄色视频免费在线看| 51国产日韩欧美| 欧美xxⅹ黑人| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 久久久久久久精品精品| 久久久久久久久久成人| 久久人人爽av亚洲精品天堂 | 女人十人毛片免费观看3o分钟| 久久久欧美国产精品| 777米奇影视久久| 直男gayav资源| 欧美日韩在线观看h| 少妇 在线观看| 男女免费视频国产| 最近手机中文字幕大全| 国产熟女欧美一区二区| 99久久综合免费| 十八禁网站网址无遮挡 | 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 午夜福利影视在线免费观看| 老司机影院毛片| 国精品久久久久久国模美| 日日摸夜夜添夜夜添av毛片| 久久影院123| 久久这里有精品视频免费| 我的女老师完整版在线观看| 亚洲精品一区蜜桃| 男女下面进入的视频免费午夜| 久久精品久久久久久久性| 中文字幕av成人在线电影| 国产精品熟女久久久久浪| 一个人看的www免费观看视频| 久久久久久久精品精品| 日本黄色日本黄色录像| 色视频在线一区二区三区| 欧美高清成人免费视频www| 亚洲内射少妇av| 免费少妇av软件| 亚洲av.av天堂| 欧美高清性xxxxhd video| 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 亚州av有码| 中文字幕免费在线视频6| 免费人妻精品一区二区三区视频| 少妇 在线观看| 交换朋友夫妻互换小说| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| av福利片在线观看| 欧美成人一区二区免费高清观看| 99视频精品全部免费 在线| 久久6这里有精品| 97超碰精品成人国产| 日韩av免费高清视频| 黄色欧美视频在线观看| 少妇的逼好多水| 国产色婷婷99| 亚洲av福利一区| videos熟女内射| www.色视频.com| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 22中文网久久字幕| 亚洲欧美日韩另类电影网站 | 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区成人| 免费看光身美女| 在线观看美女被高潮喷水网站| 91精品一卡2卡3卡4卡| 91久久精品国产一区二区三区| 人妻 亚洲 视频| 亚洲欧洲日产国产| 亚洲精品一二三| 亚洲国产欧美人成| kizo精华| 黄色怎么调成土黄色| 中国美白少妇内射xxxbb| 久久久久人妻精品一区果冻| 欧美日本视频| 丰满迷人的少妇在线观看| 国产午夜精品一二区理论片| 国产精品三级大全| 赤兔流量卡办理| 色哟哟·www| 午夜免费观看性视频| 国产亚洲午夜精品一区二区久久| 亚洲av中文字字幕乱码综合| 亚洲av电影在线观看一区二区三区| 久久亚洲国产成人精品v| 久久影院123| 中文资源天堂在线| 视频中文字幕在线观看| 亚洲最大成人中文| 好男人视频免费观看在线| 免费av不卡在线播放| 天天躁日日操中文字幕| 欧美日韩综合久久久久久| 欧美日韩国产mv在线观看视频 | 秋霞在线观看毛片| 亚洲av国产av综合av卡| 久久99热6这里只有精品| 在线观看免费日韩欧美大片 | 一级黄片播放器| 日产精品乱码卡一卡2卡三| 色视频www国产| 久久99蜜桃精品久久| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 人妻系列 视频| 日韩一本色道免费dvd| 国产 精品1| 亚洲av中文av极速乱| 在线免费十八禁| 久久精品人妻少妇| 国产无遮挡羞羞视频在线观看| 久久国产乱子免费精品| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| 精品亚洲成a人片在线观看 | 在线精品无人区一区二区三 | 国产女主播在线喷水免费视频网站| 国产 精品1| 亚洲av国产av综合av卡| 蜜桃亚洲精品一区二区三区| 一区二区三区精品91| 国产黄色视频一区二区在线观看| 天堂中文最新版在线下载| 亚洲aⅴ乱码一区二区在线播放| 国产免费又黄又爽又色| 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 国产在线男女| 午夜激情久久久久久久| 老师上课跳d突然被开到最大视频| 亚洲欧美成人综合另类久久久| 嘟嘟电影网在线观看| 蜜臀久久99精品久久宅男| 精品人妻熟女av久视频| 欧美最新免费一区二区三区| 成人影院久久| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 亚洲av在线观看美女高潮| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 成人亚洲欧美一区二区av| 亚洲精品国产色婷婷电影| 一个人免费看片子| 亚洲美女视频黄频| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 久久国内精品自在自线图片| 在线精品无人区一区二区三 | 国产高清三级在线| 男女下面进入的视频免费午夜| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 国产精品免费大片| 欧美高清性xxxxhd video| 久久久亚洲精品成人影院| 一区二区三区免费毛片| 欧美变态另类bdsm刘玥| 少妇人妻久久综合中文| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在| 国产黄片视频在线免费观看| 国产欧美日韩一区二区三区在线 | 尤物成人国产欧美一区二区三区| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 人妻制服诱惑在线中文字幕| 极品少妇高潮喷水抽搐| 国产精品成人在线| 亚洲国产精品国产精品| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲5aaaaa淫片| 亚洲av不卡在线观看| 精品一区二区免费观看| 日韩欧美一区视频在线观看 | 91精品国产九色| 亚洲国产精品专区欧美| 人妻 亚洲 视频| 视频中文字幕在线观看| 熟女电影av网| 韩国av在线不卡| 亚洲成人中文字幕在线播放| 又黄又爽又刺激的免费视频.| 亚洲精品色激情综合| 欧美高清成人免费视频www| 一区二区三区四区激情视频| 熟女电影av网| 日韩一区二区三区影片| 99久久精品热视频| 成人午夜精彩视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美三级亚洲精品| 99热这里只有是精品在线观看| 免费播放大片免费观看视频在线观看| 亚洲三级黄色毛片| 久久人人爽av亚洲精品天堂 | 少妇人妻精品综合一区二区| 又大又黄又爽视频免费| 久久精品熟女亚洲av麻豆精品| 免费大片18禁| 欧美日韩综合久久久久久| 国产精品人妻久久久久久| 免费观看无遮挡的男女| 成人毛片60女人毛片免费| 免费看av在线观看网站| 97超视频在线观看视频| 国产又色又爽无遮挡免| 亚洲婷婷狠狠爱综合网| 日韩av不卡免费在线播放| 中文字幕亚洲精品专区| 久久人人爽人人爽人人片va| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看| 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| 一级片'在线观看视频| 亚洲在久久综合| 夜夜骑夜夜射夜夜干| 免费高清在线观看视频在线观看| 国产乱人偷精品视频| 久久久精品94久久精品| 少妇高潮的动态图| 在线免费十八禁| 婷婷色综合大香蕉| 国产日韩欧美在线精品| 黄色怎么调成土黄色| 免费观看在线日韩| 一级av片app| 国产欧美另类精品又又久久亚洲欧美| 欧美人与善性xxx| 亚洲欧美清纯卡通| 亚洲真实伦在线观看| av黄色大香蕉| 成人漫画全彩无遮挡| 熟女电影av网| 热re99久久精品国产66热6| 亚洲一级一片aⅴ在线观看| 日韩成人伦理影院| 日韩免费高清中文字幕av| 亚洲精品,欧美精品| 精品亚洲成a人片在线观看 | 少妇高潮的动态图| 熟女人妻精品中文字幕| 国产精品秋霞免费鲁丝片| 国产av一区二区精品久久 | 国产探花极品一区二区| 日韩免费高清中文字幕av| 国产精品福利在线免费观看| 直男gayav资源| 国产亚洲最大av| 色网站视频免费| 建设人人有责人人尽责人人享有的 | av卡一久久| 亚洲精品视频女| 国产久久久一区二区三区| 精品一区在线观看国产| 大陆偷拍与自拍| 国产精品一二三区在线看| 国产成人91sexporn| 熟女av电影| 我要看黄色一级片免费的| 亚洲精品亚洲一区二区| 欧美成人午夜免费资源| 久久久久人妻精品一区果冻| 在线天堂最新版资源| 国产视频内射| 中国三级夫妇交换| 日本黄色日本黄色录像| 丝袜脚勾引网站| 国产伦精品一区二区三区视频9| 国产又色又爽无遮挡免| 国产在视频线精品| 一区在线观看完整版| 免费人成在线观看视频色| 午夜福利视频精品| 日产精品乱码卡一卡2卡三| 观看免费一级毛片| 久久99热这里只频精品6学生| 永久免费av网站大全| 欧美日韩亚洲高清精品| 欧美少妇被猛烈插入视频| 久久女婷五月综合色啪小说| 99热这里只有是精品在线观看| 日韩中文字幕视频在线看片 | 男人爽女人下面视频在线观看| 精华霜和精华液先用哪个| 午夜免费观看性视频| 欧美成人一区二区免费高清观看| 国产精品成人在线| 美女中出高潮动态图| 欧美成人a在线观看| 只有这里有精品99| 精品一区二区三卡| 嫩草影院入口| 亚洲欧美精品专区久久| 亚洲第一av免费看| 毛片一级片免费看久久久久| 免费人妻精品一区二区三区视频| 黄色欧美视频在线观看| 欧美成人a在线观看| 日本与韩国留学比较| 大又大粗又爽又黄少妇毛片口| 欧美zozozo另类| 国产精品国产三级专区第一集| 在线观看一区二区三区激情| 久久国产亚洲av麻豆专区| 日产精品乱码卡一卡2卡三| 国产成人a区在线观看| 国产成人免费无遮挡视频| 亚洲精品视频女| 国产成人a区在线观看| 男男h啪啪无遮挡| 亚洲精品久久久久久婷婷小说| 国产 一区 欧美 日韩| 女人十人毛片免费观看3o分钟| 国产黄色免费在线视频| 免费少妇av软件| 精品久久久久久久末码| 国产 一区精品| 亚洲丝袜综合中文字幕| 最后的刺客免费高清国语| 精华霜和精华液先用哪个| 国产精品人妻久久久久久| 久久久色成人|