• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si*

    2021-11-23 07:31:56JianKaiXu徐健凱LiJuanJiang姜麗娟QianWang王茜QuanWang王權(quán)HongLingXiao肖紅領(lǐng)ChunFeng馮春WeiLi李巍andXiaoLiangWang王曉亮
    Chinese Physics B 2021年11期
    關(guān)鍵詞:李巍王茜王權(quán)

    Jian-Kai Xu(徐健凱) Li-Juan Jiang(姜麗娟) Qian Wang(王茜) Quan Wang(王權(quán))Hong-Ling Xiao(肖紅領(lǐng)) Chun Feng(馮春) Wei Li(李巍) and Xiao-Liang Wang(王曉亮)

    1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Microelectronics,University of Chinese Academy of Sciences,Beijing 100049,China

    4Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Beijing 100083,China

    5The State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    6Institute of Novel Semiconductors,Shandong University,Jinan 250100,China

    Keywords: GaN extension,MOCVD,nitrogen flow,growth temperature

    1. Introduction

    GaN is an attractive material for application as highfrequency, high-power electronic devices, light-emitting diodes,and lasers,due to its wide band gap,high critical electric field strength, high electron saturation velocity, and high thermal stability.[1-6]Up to now,GaN compound semiconductor materials have received extensive attention.[7-14]Numerous studies have been conducted to determine the suitability of materials as substrates for GaN, such as GaN, SiC, sapphire,and Si.[15-21]Due to its cost-effectiveness,larger wafer diameter,higher thermal conductivity relative to sapphire,and the ability to integrate with mature Si-based processing technologies, Si is one of the best choices for substrates. However, the large lattice constant mismatch (?16.9%) and thermal expansion coefficient mismatch(56%)between GaN and Si substrate lead to high defect density and cracks.[22,23]Many groups have attempted to grow flat and crack-free GaN films in the past few decades with several methods, including the pre-deposition of Al on the Si surface, introduction of high temperature AlN(HT-AlN)buffer layers and adoption of stepgraded AlxGa1?xN interlayers. The pre-deposition of Al can effectively suppress the unnecessary formation of SiNx.[24]Introducing HT-AlN buffer layers compensates tensile stress in GaN and adopting step-graded AlxGa1?xN interlayers helps achieve a gradual change of lattice constants and thermal expansion coefficient from AlN to GaN.[17,25]

    The quest for cost reduction promoted the continuous increase in the size of Si substrates for GaN epitaxial growth,while uniformity of the crystal quality of the large size Si wafer has also come out. There are few reports about the uniformity of the crystal quality of the GaN epitaxial layer on the Si substrate.In 2014,Pinoset al.[26]reported the coefficient of variation of the 9.1%GaN(0002)XRD rocking curve FWHM on a 6-inch Si substrate. In 2017,Jiet al.[27]reported a 2.4%coefficient of variation of epitaxial wafers of the same size. In this paper,we realize 6-inch Si substrate high quality flat and crack-free GaN epitaxial growth by MOCVD through increasing the nitrogen flow and increasing the growth temperature of HT-AlN and AlGaN buffer layers near the primary flat of the wafer. The GaN layer has extended more adequately on the Si substrate.

    2. Experiments

    In this study, the samples were grown on 6-in(1 in=2.54 cm) Si (111) substrates by our group’s selfmade metal-organic chemical vapor deposition (MOCVD).Trimethylgallium (TMGa), trimethylaluminum (TMAl), and ammonia were used as the precursors for Ga, Al, and N,respectively. The initial 1-mm-thick Si (111) substrate was heated to 1050°C in the hydrogen atmosphere and annealed for about 5 min. The Al predeposition was firstly carried out on the Si surface for 15 s to avoid the formation of amorphous SiNx. The buffer layers consisted of a 150-nm HT-AlN buffer layer and three step-graded AlxGa1?xN intermediate layers withx=0.75, 0.5, and 0.25. The growth conditions for AlN and AlGaN buffer layer are above 1000°C at a pressure of 75 Torr(1 Torr=1.33322×102Pa). The outlet of the nitrogen flow gas is located in the center of the MOCVD gas/particle screening flange. The role of the nitrogen gas is to push various gases to the edge of the rotating wafer carrier. In the process of growing AlN and AlGaN layers,we adjusted different nitrogen flow rates for five samples named A-E(A:150 sccm,B: 200 sccm, C: 250 sccm, D: 350 sccm, E: 500 sccm). In samples F-I, in order to further relieve the tensile stress, an LT-AlN layer was grown between Al pre-deposition and HTAlN layer.[28-31]The growth temperature in HT-AlN and Al-GaN layers growing process near the primary flat of the wafers were changed from 1025°C to 1065°C for samples F-I.The detailed description of all the samples are listed in Table 1.The thicknesses of AlxGa1?xN layers were monitored byinsituinterferometer to be about 200 nm, 250 nm, and 300 nm for samples and then about 2-μm-thick GaN was overgrown on these buffers. The thickness of the layers was verified by Hitachi S-4800 scanning electron microscope(SEM).The crystalline quality of AlN and GaN layers were measured using PANalytical X’Pert PRO MRD(Malvern Panalytical,Almelo,The Netherlands). Olympus BX51M optical microscopy was used to characterize GaN surface morphologies.

    Table 1. Detailed description of the nine samples.

    3. Results and discussion

    The deposition of all samples was monitored byin-situinterferometer,and the wavelength of the light source used for the reflectometry was 900 nm. Figure 2(a) shows the typical trace of thein-situoptical reflectivity during MOCVD growth.The growth stages corresponding to Fig.2(a)are(i)HT-AlN,(ii)AlGaN-1 layer,(iii)AlGaN-2,(iv)AlGaN-3,and(v)GaN layers. The stage between(iv)and(v)is a conversion process from AlGaN growth to GaN growth. Figure 2(b) is a crosssectional view of the epitaxial structure measured by SEM,and it is clear that the thickness of each layer is quite close to the designed epitaxial structure of Fig.1. Additionally,during the epitaxial process,the substrate revolves around the center of the rotating wafer carrier at high speed with the primary flat of the substrate perpendicular to the radial direction of the rotating wafer carrier. Therefore, we selected 5 locations including the center point in the direction perpendicular to the primary flat on the wafer which is shown in Fig.3.

    Fig.1. Schematic structure of the samples grown.

    Fig. 2. (a) Typical traces of in-situ optical reflectivity at different growth stages, which are separated by dot lines: (i) AlN buffer, (ii)-(iv)AlGaN buffer,and(v)GaN epilayer. (b)Cross-sectional SEM images of the epilayers.

    Fig.3. Locations on top of the samples.

    Firstly,we studied the influence of different nitrogen gas flow rates on the extension of GaN on Si substrate. Figure 4 displays images of sample A to sample E after growth. It can be seen that each sample has two distinct areas, a bright area and a dark area. At the same time,with the increase of nitrogen flow rate,the bright areas increased significantly,while the dark area decreased.Further,figure 5 shows that the surface of the epitaxial wafer is observed through an optical microscope,and it is found that the surface of the bright area has no cracks,but the surface of the dark area is very rough. By increasing the nitrogen flow rate,the crack-free area on the surface of the epitaxial wafer gradually enlarged,and the rough area reduced to close to the primary flat. This indicates that increasing the nitrogen flow rate can effectively improve the extension of the epitaxial layers.

    Fig.4. The images of sample A(a),sample B(b),sample C(c),sample D(d),and sample E(e).

    Fig.5. Optical microscopy views of(a)surface without cracks(bright area of the wafer in Fig.4)and(b)rough surface(dark area of the wafer in Fig.4).

    It was proposed that adatom diffusion was considered to be responsible for the material quality and surface morphology.[32]During the growth of the epitaxial layers,nitrogen gas accelerates the precursor along the surface of the wafers and its pump out from the gas outlet near the edge of the rotating wafer carrier. As N2participates in the mixing of the reaction gases,the concentration of the reactants decreases,which reduces the speed of epitaxial growth. Increasing nitrogen gas flow may leads to the lower growth rate. Throughin-situinterferometer,we can get the total growth time of the AlN layer and three AlGaN layers on Si substrate under different nitrogen flow rate conditions,which is shown in Fig.6.Consistent with the above discussion,under the same epitaxial thickness,as the nitrogen flow rate increases,the total growth time of the AlN layer and the three AlGaN layers gradually increases. The lower growth rate allows more time to diffuse on the surface of the epitaxial layers, which was considered to be responsible for the material quality and surface morphology.[30]Flat and high quality AlN and AlGaN buffer layers can be the precondition of GaN growth.

    Fig. 6. Total growth time of AlN and three AlGaN layers on location(0,?40)of all samples with different nitrogen flow rates.

    Fig.7. XRD ω-2θ scan plots of GaN(0002)to AlN(0002)reflection of sample A(a)and sample E(b).

    Figures 7(a) and 7(b) show the XRDω-2θscan results of the epitaxial layer at different positions on sample A (nitrogen flow rate of 150 sccm) and sample E (nitrogen flow rate of 500 sccm), respectively. The diffraction peaks correspond to GaN,AlGaN-3,AlGaN-2,AlGaN-1,and AlN in the order from left to right. And the black, red, blue, pink, and green curves correspond to the x-rays diffraction results at the positions (0, 40), (0, 20), (0, 0), (0,?20), (0,?40) on the epitaxial wafer, respectively. When the nitrogen flow rate is 150 sccm, as shown in Fig. 7(a), the closer the test point to the primary flat, the weaker the diffraction peak intensity of the HT-AlN layer and the three AlGaN layers, especially the position (0,?40). At the same time, the diffraction peaks of each layer at the test point near the primary flat are not as sharp as the location far from the primary flat. It indicates that, in the wafer, the crystal quality distribution of the epitaxial layer is uneven along the direction perpendicular to the primary flat. When the flow rate increased to 500 sccm, the crystal quality distribution of the epitaxial layer is more uniform along the direction perpendicular to the primary flat,and the diffraction peaks are sharper for the HT-AlN and three Al-GaN layers at each position of the wafer, as can be seen in Fig. 7(b). Therefore, a higher nitrogen flow rate is beneficial to improve the uniformity of the epitaxial layer crystal quality on the Si substrate, which is consistent with the results of optical microscopy.

    Fig.8. XRD ω-2θ scan plots of GaN(0002)to AlN(0002)reflection of all samples on location(0,40)(a)and location(0,?40)(b).

    Further, the effect of nitrogen flow rate on the material quality at different positions on the epitaxial wafer is also studied. Figures 8(a) and 8(b) displays the XRDω-2θscan results on the wafer at locations far away from the primary flat (0, 40) with that near the primary flat (0,?40), respectively. The diffraction peaks correspond to GaN, AlGaN-3,AlGaN-2,AlGaN-1,and AlN in order from left to right. The black, red, blue, pink, and green curve correspond to the xray diffraction results under the nitrogen flow conditions of 150 sccm, 200 sccm, 250 sccm, 350 sccm, and 500 sccm,respectively. With the increase of nitrogen purge flow rate(150 sccm→500 sccm),the diffraction peak intensities of each epitaxial layer does not change significantly at the position(0,40) which is far away from the primary flat. However, at the position(0,?40)near the primary flat,the diffraction peak intensities of the HT-AlN layer and the three AlGaN layers are increased with the increase of the nitrogen flow.This indicates that increasing the nitrogen flow rate can significantly improve the material quality near the primary flat on the epitaxial wafer,and thus a more uniform material.

    In order to more intuitively characterize the effect of different nitrogen flow rate on the crystal quality of the epitaxial layers on the Si substrate, we performed an XRDωrocking scan at different positions on the samples A-E. As shown in Fig. 9(a), as the nitrogen purge flow rate increases, for samples A-E,the(0002)FWHM value of the AlN epitaxial layer is more consistent in the direction perpendicular to the primary flat,indicating a more uniform AlN crystal quality. And the significant improvement of the AlN crystal quality located close to the primary flat may account for it. The high crystal quality uniformity of AlN epitaxial layer is an important foundation for GaN epitaxial growth. From Fig.9(b),with the increase of nitrogen purge flow rate,for samples A-E,the(0002)FWHM value of the GaN epitaxial layer near the primary flat exhibits a considerable decrease. The crystal quality uniformity of the GaN epitaxial layer in the direction perpendicular to the primary flat has been improved,which is consistent with AlN epitaxial layer.

    Fig.9. (a)AlN(0002)and(b) GaN(0002)XRD FWHMs of samples A-E of different locations on the surface.

    In order to further improve the extension of the GaN layer,growth temperature of HT-AlN and AlGaN layers near the primary flat of the wafers were changed from 1025°C to 1065°C for samples F-I.Figure 10 shows the images of samples F-I.By increasing the local growth temperature of AlN and Al-GaN buffer layers near the primary flat,the crack-free area on the surface of the epitaxial wafer gradually enlarged, and the rough area reduced significantly,which is shown in Fig.10(i).For samples F-I,the sizes of the crack-free area are 129.1 cm2,146.3 cm2,159.1 cm2,and 168.6 cm2,respectively.Therefore,increasing the growth temperature can effectively improve the extension of the epitaxial layers.

    Fig.10. The images of sample F(f),sample G(g),sample H(h),sample I(i).

    It was proposed that with the increase of the temperature,the AlN nucleation probability increases,and the grain size decrease rapidly,so there is a more uniform and flat AlN buffer layer surface,as well as improved quality of AlN crystals.[33]XRDωrocking scan at different positions on the samples F-I has been measured and the result was shown in Fig. 11.With the increasing of the growth temperature near the primary flat of the wafers, as shown in Fig. 11(a), the (0002)FWHM value of the AlN epitaxial layer has been decreased.The (0002) FWHM value of the GaN has further decreased which is shown in Fig. 11(b). The variation of the (0002)FWHM value of the GaN has dropped to 2.3%. We can conclude that the crystal quality near the primary flat has been notably improved. Therefore,the crystal quality uniformity of the epitaxial layer in the direction perpendicular to the primary flat has been improved by indeed increasing the local growth temperature.

    Fig.11. (a)AlN(0002)and(b)GaN(0002)XRD FWHMs of samples A-E of different locations on the surface.

    4. Conclusion

    In this research,we adjusted the nitrogen flow rate and the local growth temperature near the primary flat of the wafers to study the influence on extension of GaN epitaxial layers on Si substrates. By increasing the nitrogen flow rate and the local growth temperature near the primary flat of the wafers,we have found that the crack-free area on the surface of the epitaxial wafer gradually enlarged,and the rough area reduced to close to the primary flat and at the same time,the crystal quality uniformity has been improved. This research provides an effective method for extension of GaN epitaxial layer growth on Si substrates.

    猜你喜歡
    李巍王茜王權(quán)
    王茜作品
    Dynamic development model for long gap discharge streamer-leader system based on fractal theory
    吐蕃王權(quán)研究海外學(xué)術(shù)史鉤沉①
    淺析赫梯國王維護(hù)王權(quán)統(tǒng)治的監(jiān)管措施
    王茜作品賞析
    程彥鵬、王茜、劉文作品
    如果歷史是一群喵
    老公“長大”了
    老公“長大”了
    愛你(2018年22期)2018-08-17 03:06:00
    同步衛(wèi)星相關(guān)問題釋疑
    91精品三级在线观看| 亚洲色图综合在线观看| 日本黄色片子视频| 18+在线观看网站| 国产免费一级a男人的天堂| 极品人妻少妇av视频| 中文字幕最新亚洲高清| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 寂寞人妻少妇视频99o| 亚洲国产av影院在线观看| av天堂久久9| 熟女人妻精品中文字幕| 精品人妻在线不人妻| 熟女电影av网| av又黄又爽大尺度在线免费看| videossex国产| 国产爽快片一区二区三区| 在线精品无人区一区二区三| 日韩中字成人| 美女福利国产在线| 日日啪夜夜爽| 日本免费在线观看一区| 久久久久久伊人网av| 91精品国产国语对白视频| 成人二区视频| 看十八女毛片水多多多| 一级毛片 在线播放| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久久免| 国产免费现黄频在线看| 精品国产一区二区久久| 最后的刺客免费高清国语| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 国产男人的电影天堂91| 精品一区二区三区视频在线| 久热这里只有精品99| 国产免费一级a男人的天堂| 亚洲综合色网址| 我要看黄色一级片免费的| 新久久久久国产一级毛片| 高清不卡的av网站| 精品少妇久久久久久888优播| 大香蕉久久成人网| 成人午夜精彩视频在线观看| 免费观看在线日韩| 亚洲美女黄色视频免费看| 亚洲美女视频黄频| 综合色丁香网| 国产精品嫩草影院av在线观看| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 在线看a的网站| 少妇人妻久久综合中文| 日本爱情动作片www.在线观看| 精品一区二区三区视频在线| 国产亚洲精品第一综合不卡 | 麻豆乱淫一区二区| av在线老鸭窝| 亚洲国产精品999| 狠狠婷婷综合久久久久久88av| 婷婷色麻豆天堂久久| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频 | 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 亚洲国产av影院在线观看| 精品久久蜜臀av无| 日韩强制内射视频| 天堂俺去俺来也www色官网| 国产精品人妻久久久久久| 国产精品国产三级专区第一集| 欧美另类一区| 美女视频免费永久观看网站| 色网站视频免费| 亚洲精品乱久久久久久| 亚洲精品第二区| 国产不卡av网站在线观看| 亚洲精品日韩在线中文字幕| 久久午夜综合久久蜜桃| 欧美 日韩 精品 国产| 国产在线免费精品| 各种免费的搞黄视频| 2021少妇久久久久久久久久久| tube8黄色片| 国产成人精品久久久久久| 久久久国产一区二区| 亚洲国产色片| 99re6热这里在线精品视频| 五月伊人婷婷丁香| 国产精品久久久久成人av| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 一级二级三级毛片免费看| 另类精品久久| 国产男女超爽视频在线观看| 色哟哟·www| 在线免费观看不下载黄p国产| 蜜桃在线观看..| 午夜日本视频在线| 午夜福利视频精品| 熟妇人妻不卡中文字幕| 蜜桃在线观看..| 午夜影院在线不卡| 国产精品久久久久成人av| 少妇熟女欧美另类| 中文字幕久久专区| 亚洲成色77777| 成人毛片a级毛片在线播放| 少妇丰满av| 一二三四中文在线观看免费高清| 一级黄片播放器| 成人综合一区亚洲| 极品少妇高潮喷水抽搐| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站| 少妇的逼好多水| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片| 国产精品秋霞免费鲁丝片| 亚洲国产最新在线播放| 亚洲第一av免费看| 哪个播放器可以免费观看大片| 国产免费视频播放在线视频| 国产淫语在线视频| 婷婷色麻豆天堂久久| 久久99热这里只频精品6学生| 黑人巨大精品欧美一区二区蜜桃 | 日韩人妻高清精品专区| 亚洲精品久久午夜乱码| 精品一区二区三卡| 一区二区三区精品91| 久久韩国三级中文字幕| 精品一区二区三卡| 日韩伦理黄色片| 人妻人人澡人人爽人人| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 热99久久久久精品小说推荐| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久成人av| 少妇的逼水好多| 国产 一区精品| 热re99久久国产66热| 亚洲第一av免费看| 制服诱惑二区| 一级毛片我不卡| 秋霞伦理黄片| 亚洲国产av影院在线观看| 久久久久网色| 亚洲性久久影院| 日本wwww免费看| 在现免费观看毛片| 九草在线视频观看| 丰满乱子伦码专区| 新久久久久国产一级毛片| 22中文网久久字幕| 午夜福利视频精品| 日韩精品免费视频一区二区三区 | 亚洲av男天堂| 国产乱来视频区| 久久久久久久久久成人| 久久久久久伊人网av| 水蜜桃什么品种好| 免费高清在线观看日韩| 亚洲内射少妇av| 另类精品久久| 欧美xxⅹ黑人| 9色porny在线观看| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 成人漫画全彩无遮挡| 狠狠精品人妻久久久久久综合| 老司机影院毛片| 男女边吃奶边做爰视频| 久久久久久久久久久丰满| 国产成人精品无人区| 国产日韩一区二区三区精品不卡 | 91国产中文字幕| 啦啦啦视频在线资源免费观看| 一级爰片在线观看| 看非洲黑人一级黄片| 女性被躁到高潮视频| 99国产精品免费福利视频| www.色视频.com| 精品人妻熟女av久视频| 大陆偷拍与自拍| 国产国拍精品亚洲av在线观看| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| xxxhd国产人妻xxx| 另类亚洲欧美激情| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 色94色欧美一区二区| 精品久久蜜臀av无| 在线亚洲精品国产二区图片欧美 | 国产乱来视频区| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品| 人成视频在线观看免费观看| 毛片一级片免费看久久久久| 99久久精品一区二区三区| av福利片在线| 99热全是精品| 插逼视频在线观看| xxxhd国产人妻xxx| 午夜免费观看性视频| 成人国产麻豆网| 狂野欧美激情性bbbbbb| 国产精品久久久久久久电影| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久成人aⅴ小说 | 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 嫩草影院入口| 日韩成人伦理影院| 日韩av免费高清视频| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 色婷婷久久久亚洲欧美| 九草在线视频观看| 免费大片18禁| 国产免费又黄又爽又色| 少妇人妻 视频| 水蜜桃什么品种好| 男女免费视频国产| 精品卡一卡二卡四卡免费| 久久久欧美国产精品| 精品国产一区二区久久| 如何舔出高潮| 欧美日韩成人在线一区二区| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 久久久久久久精品精品| 成年女人在线观看亚洲视频| 我的女老师完整版在线观看| 国产爽快片一区二区三区| 国产黄色免费在线视频| 国内精品宾馆在线| 亚洲中文av在线| 午夜激情久久久久久久| 又黄又爽又刺激的免费视频.| 中文欧美无线码| av女优亚洲男人天堂| 国产免费现黄频在线看| 一区二区三区四区激情视频| a级片在线免费高清观看视频| 免费不卡的大黄色大毛片视频在线观看| 嘟嘟电影网在线观看| 中文天堂在线官网| 99久久精品国产国产毛片| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级| 精品久久久噜噜| 搡女人真爽免费视频火全软件| 国产日韩欧美视频二区| 大香蕉久久网| av免费在线看不卡| 国产精品一区www在线观看| 亚洲欧美成人精品一区二区| 欧美bdsm另类| 最近手机中文字幕大全| 大又大粗又爽又黄少妇毛片口| 亚洲精品视频女| 啦啦啦视频在线资源免费观看| 涩涩av久久男人的天堂| 久久精品国产自在天天线| 99热6这里只有精品| 国产成人精品久久久久久| 男男h啪啪无遮挡| 亚洲欧美成人精品一区二区| 精品一区在线观看国产| 在线观看免费视频网站a站| 国产成人91sexporn| 国产精品久久久久久精品古装| 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 亚洲成色77777| 黄色怎么调成土黄色| 考比视频在线观看| 免费av中文字幕在线| 国产一区有黄有色的免费视频| 搡女人真爽免费视频火全软件| 欧美丝袜亚洲另类| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 亚洲国产精品一区二区三区在线| 亚洲精品国产av成人精品| 少妇高潮的动态图| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| 久久久久人妻精品一区果冻| 久久久欧美国产精品| 久久久国产一区二区| 久久久国产欧美日韩av| 十分钟在线观看高清视频www| 中文字幕制服av| 国产黄频视频在线观看| 国产精品一二三区在线看| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 精品国产一区二区三区久久久樱花| xxxhd国产人妻xxx| 日韩,欧美,国产一区二区三区| 久久影院123| 久久狼人影院| 高清av免费在线| 丁香六月天网| 亚洲一级一片aⅴ在线观看| 国产深夜福利视频在线观看| 日韩不卡一区二区三区视频在线| 欧美成人午夜免费资源| 视频区图区小说| 久热久热在线精品观看| 欧美日韩精品成人综合77777| 亚洲人与动物交配视频| 国产黄色免费在线视频| a级毛色黄片| 久久热精品热| 免费黄色在线免费观看| 国产永久视频网站| a级毛片黄视频| 欧美三级亚洲精品| 日韩亚洲欧美综合| 高清黄色对白视频在线免费看| 中文字幕精品免费在线观看视频 | 桃花免费在线播放| 新久久久久国产一级毛片| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 乱人伦中国视频| 多毛熟女@视频| 亚洲精品456在线播放app| 美女大奶头黄色视频| 亚洲四区av| 九九在线视频观看精品| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 女性生殖器流出的白浆| 国产免费一区二区三区四区乱码| 老司机影院毛片| 99久久综合免费| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| 少妇高潮的动态图| 国产免费一区二区三区四区乱码| 99视频精品全部免费 在线| 大片免费播放器 马上看| 国产免费现黄频在线看| 精品久久久精品久久久| 日本-黄色视频高清免费观看| 中文字幕精品免费在线观看视频 | 亚洲av福利一区| 亚洲第一av免费看| 色哟哟·www| 日韩欧美一区视频在线观看| 久久久久人妻精品一区果冻| 亚洲在久久综合| 国产黄片视频在线免费观看| av有码第一页| 好男人视频免费观看在线| 亚洲成色77777| 99久久综合免费| 免费高清在线观看日韩| 欧美 亚洲 国产 日韩一| 夜夜看夜夜爽夜夜摸| 国语对白做爰xxxⅹ性视频网站| 国产男女超爽视频在线观看| 2021少妇久久久久久久久久久| 欧美xxⅹ黑人| 九色亚洲精品在线播放| 大香蕉久久成人网| 在线亚洲精品国产二区图片欧美 | 日韩电影二区| 久久ye,这里只有精品| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 大香蕉久久网| 一区二区三区乱码不卡18| 全区人妻精品视频| 女性被躁到高潮视频| 91久久精品电影网| 青春草国产在线视频| 久久99精品国语久久久| 晚上一个人看的免费电影| 免费播放大片免费观看视频在线观看| 内地一区二区视频在线| 各种免费的搞黄视频| 欧美97在线视频| 欧美国产精品一级二级三级| 高清视频免费观看一区二区| 在线观看免费高清a一片| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 亚洲欧美精品自产自拍| 少妇人妻精品综合一区二区| 蜜臀久久99精品久久宅男| 建设人人有责人人尽责人人享有的| 日本av免费视频播放| 丝袜在线中文字幕| 亚洲国产av影院在线观看| 午夜福利视频在线观看免费| 午夜激情久久久久久久| 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 亚洲成人av在线免费| 2021少妇久久久久久久久久久| 国产女主播在线喷水免费视频网站| 最近的中文字幕免费完整| 国产极品天堂在线| 亚洲av不卡在线观看| 国产一区二区在线观看av| 国产色爽女视频免费观看| 少妇的逼好多水| 日韩在线高清观看一区二区三区| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 免费日韩欧美在线观看| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| av福利片在线| 一个人免费看片子| 精品久久国产蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av在线观看视频网站免费| 香蕉精品网在线| 亚洲国产av影院在线观看| 国产成人精品一,二区| 男女高潮啪啪啪动态图| 伊人久久精品亚洲午夜| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 最近的中文字幕免费完整| 日本av免费视频播放| 免费黄网站久久成人精品| 一本—道久久a久久精品蜜桃钙片| 男人添女人高潮全过程视频| 久久综合国产亚洲精品| 夫妻性生交免费视频一级片| 亚洲欧美中文字幕日韩二区| 午夜av观看不卡| 内地一区二区视频在线| 大片电影免费在线观看免费| a级片在线免费高清观看视频| 国产av国产精品国产| 大陆偷拍与自拍| 下体分泌物呈黄色| 国产 一区精品| 十八禁高潮呻吟视频| 精品午夜福利在线看| kizo精华| 卡戴珊不雅视频在线播放| 日本-黄色视频高清免费观看| 久久久久国产精品人妻一区二区| 国产一区二区在线观看日韩| 午夜福利视频在线观看免费| 中文字幕最新亚洲高清| 亚洲经典国产精华液单| 亚洲精品日本国产第一区| freevideosex欧美| av黄色大香蕉| 黑人高潮一二区| kizo精华| 国产免费一区二区三区四区乱码| 国产永久视频网站| 中文字幕亚洲精品专区| 大码成人一级视频| 伦精品一区二区三区| 99九九在线精品视频| 亚洲精品aⅴ在线观看| 日本黄色片子视频| 桃花免费在线播放| 97超碰精品成人国产| 少妇猛男粗大的猛烈进出视频| 大话2 男鬼变身卡| 国产精品久久久久久精品古装| 桃花免费在线播放| 亚洲精品一二三| 亚洲成人手机| 久久免费观看电影| 免费黄网站久久成人精品| 亚洲综合色网址| 高清视频免费观看一区二区| 夜夜骑夜夜射夜夜干| 2022亚洲国产成人精品| 国产深夜福利视频在线观看| 免费av中文字幕在线| 国产成人精品福利久久| 老司机影院成人| 国产黄频视频在线观看| 精品亚洲成国产av| 日韩强制内射视频| 国产高清不卡午夜福利| 秋霞在线观看毛片| 国产成人91sexporn| 国产午夜精品一二区理论片| 99久久综合免费| 欧美精品人与动牲交sv欧美| 中文字幕免费在线视频6| 在线观看三级黄色| 日本黄色日本黄色录像| av不卡在线播放| 中文欧美无线码| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 国产精品久久久久久久电影| 在线观看www视频免费| 亚洲av.av天堂| 少妇的逼水好多| 嫩草影院入口| 亚洲av中文av极速乱| 亚洲av在线观看美女高潮| 欧美另类一区| 波野结衣二区三区在线| 一边摸一边做爽爽视频免费| 国产成人免费观看mmmm| 久久av网站| 美女cb高潮喷水在线观看| 国产黄频视频在线观看| 国产精品麻豆人妻色哟哟久久| 国产日韩一区二区三区精品不卡 | 亚洲,一卡二卡三卡| 男女免费视频国产| 国产精品久久久久久久久免| 2018国产大陆天天弄谢| 日韩熟女老妇一区二区性免费视频| 黄色视频在线播放观看不卡| 搡女人真爽免费视频火全软件| 成人午夜精彩视频在线观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩成人在线一区二区| 又黄又爽又刺激的免费视频.| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 国产一级毛片在线| 爱豆传媒免费全集在线观看| 免费人成在线观看视频色| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜添av毛片| 久久精品久久精品一区二区三区| 亚洲经典国产精华液单| 亚洲四区av| 高清不卡的av网站| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 亚洲av国产av综合av卡| 免费看av在线观看网站| 亚洲av成人精品一二三区| 国产色爽女视频免费观看| 久久久国产一区二区| 久久亚洲国产成人精品v| 中国国产av一级| 亚洲在久久综合| 2021少妇久久久久久久久久久| av免费观看日本| 久久狼人影院| 热re99久久国产66热| 免费高清在线观看视频在线观看| 国产精品麻豆人妻色哟哟久久| 久久精品久久精品一区二区三区| 男的添女的下面高潮视频| 亚洲av在线观看美女高潮| 18禁在线播放成人免费| 久久99一区二区三区| 免费黄网站久久成人精品| 搡老乐熟女国产| 永久网站在线| 久久久久久人妻| 男女国产视频网站| 肉色欧美久久久久久久蜜桃| 嘟嘟电影网在线观看| 夫妻午夜视频| 亚洲av二区三区四区| 日韩一区二区三区影片| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产网址| 亚洲五月色婷婷综合| 十分钟在线观看高清视频www| 十八禁网站网址无遮挡| 国产 精品1| 亚洲av.av天堂| 日本黄色日本黄色录像| 狂野欧美激情性bbbbbb| 18禁裸乳无遮挡动漫免费视频| 黄色配什么色好看| 狂野欧美白嫩少妇大欣赏| 中国三级夫妇交换| 岛国毛片在线播放| 午夜激情福利司机影院| 精品久久蜜臀av无| 久久精品人人爽人人爽视色| 啦啦啦啦在线视频资源| 大片电影免费在线观看免费| 久久久久久久久久人人人人人人| 蜜桃国产av成人99| 激情五月婷婷亚洲| 永久网站在线| 99久久人妻综合| 日韩成人av中文字幕在线观看| 男女啪啪激烈高潮av片| 亚洲欧美色中文字幕在线| 精品少妇内射三级|