• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoemission oscillation in epitaxially grown van der Waals β-In2Se3/WS2 heterobilayer bubbles*

    2021-11-23 07:31:54JiyuDong董繼宇KangLin林康CongpuMu牟從普ZhiyanJia賈智研JinXu徐瑾AnminNie聶安民BochongWang王博翀JianyongXiang向建勇FushengWen溫福昇KunZhai翟昆TianyuXue薛天宇andZhongyuanLiu柳忠元
    Chinese Physics B 2021年11期
    關(guān)鍵詞:安民天宇

    Jiyu Dong(董繼宇) Kang Lin(林康) Congpu Mu(牟從普) Zhiyan Jia(賈智研) Jin Xu(徐瑾)Anmin Nie(聶安民) Bochong Wang(王博翀) Jianyong Xiang(向建勇) Fusheng Wen(溫福昇)Kun Zhai(翟昆) Tianyu Xue(薛天宇) and Zhongyuan Liu(柳忠元)

    1Center for High Pressure Science(CHiPS),State Key Laboratory of Metastable Materials Science&Technology,Yanshan University,Qinhuangdao 066004,China

    2Key Laboratory of Microstructure Materials Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    Keywords: bubble,monolayer WS2,heterostructure,In2Se3

    1. Introduction

    The optical, mechanical, and electrical properties of two-dimensional (2D) layered materials can be readily tuned via chemical doping, defect, or thickness reducing.[1-5]2D transition-metal dichalcogenides(TMDCs)as one of the typical semiconductors possess novel physical properties for the potential application in a next generation photodetector,fieldeffect transistors, valleytronic devices.[6-8]The 2D van der Waals heterostructures consisted with stacking different 2D layered materials have novel properties beyond their individual counterparts, which provide opportunities in devices engineering.[9,10]For instance,the epitaxial grown multilayerβ-In2Se3on monolayer WS2have been shown to have the interlayers interaction effect constraining the phase transformation of adjacent few layersβ-In2Se3.[11]Ultrahigh photo responsivity and detectivity of photodetectors are gained because of an acceleration of electron-hole separation and charge transfer owing to constructing lateral MoS2and WS2heterostructures.[12]In addition,various lateral and vertical 2D materials heterostructures have been constructed and investigated in physics and materials field.[13-15]It has been demonstrated that heterostructures based on TMDCs can provide a platform for tailoring the devices properties.

    Recently, bubbles of monolayer or few layers 2D materials are created via various method and investigated in physics, chemistry, and devices.[1,5,16,17]A biaxial strain in bubbles can cause the direct-to-indirect band gap transition of few-layer TMDCs.[18]Strain localization excitons states formed a doughnut-like pattern around the nanoscale bubbles of monolayer WSe2and MoS2at room temperature.[19,20]Moreover,optical properties and lattice vibrations of graphene and TMDCs are sensitive with strain in material. Photoluminescence (PL) and Raman spectra oscillations can be found across graphene, monolayer WS2, and few layer WSe2bubble profile due to light interference.[1,11,16]In addition, PL of monolayer WS2is sensitive with strain, electric filed, and temperature. Monolayer WS2has a potential application for photodetectors due to strong PL with narrower emission bandwidth. Although properties of single crystal monolayer WS2bubbles have been investigated, there have not been reported about heterostructure bubbles of a millimeter-scale continuous monolayer polycrystalline WS2and other 2D layer materials so far.

    In this paper, verticalβ-In2Se3/monolayer WS2heterostructures were grown via a two-step chemical vapor deposition(CVD)and heterostructure bubbles on SiO2/Si substrate were created during the growth ofβ-In2Se3due to a hightemperature treatment.Characteristics ofβ-In2Se3/monolayer WS2heterostructure bubbles are investigated via optical and fluorescence(FL)images, Raman and PL spectra. The oscillatory behaviors are presented in mapping images of PL and Raman spectra of monolayerβ-In2Se3/monolayer WS2heterostructure bubbles due to the constructive and destructive interference. The mechanism for oscillatory behaviors of PL intensity, position, and width are elucidated via changing an exterior pressure of bubble. In addition,strain effect in PL position and width is also observed during the gradual decrease of exterior pressure of bubbles.

    2. Experimental section

    2.1. Thin film of millimeter-scale continuous monolayer WS222

    Thin films of millimeter-scale continuous monolayer WS2were grown on p-type silicon wafer with 300 nm in thickness of SiO2CVD method in a two-zone home-made tube furnace. As schematically shown in Fig. S1, precursors of sulfur powder (Alfa Aesar, purity 99.999%) of 1.2 g and WO3powder of 2 g (Alfa Aesar, purity 99.99%) were placed in two separated Al2O3crucibles located downstream at the low and high temperature zones,respectively. During the growth,the low and high temperature zones were set at 180°C and 950°C,respectively,and the sulfur and WO3vapor were carried to SiO2/Si substrate via a highly pure Ar gas at a flow rate of 50 sccm. After a growth time of 50 minutes,thin films of millimeter-scale continuous monolayer WS2were successfully grown on SiO2/Si wafers.

    2.2. In2Se3/monolayer WS2 heterostructure bubbles

    Theβ-In2Se3/monolayer WS2heterostructure bubbles were created by using CVD method in a home-made threezone tube furnace. Precursors of Se pellets of 0.08 g(Alfa Aesar, purity 99.999%) and In2O3powder of 0.1 g (Alfa Aesar,purity 99.99%)were placed in two separated Al2O3crucibles located downstream along the tube. The as-grown millimeterscale continuous monolayer WS2films were served as 2D substrates and were downstream placed 5 cm away from the crucible of In2O3. During the growth,the temperatures were kept at 270, 640, and 620°C for Se, In2O3, and substrate, respectively, and Se and In2O3vapors were carried to the substrate via a 34 sccm mixed gas flow of H2and Ar. Similar to the previous reports that heat treatment of large area WS2or WSe2monolayers can help to create bubbles of monolayer,[11,16]In2Se3/monolayer WS2heterostructure bubbles with spherical cap were created during the growth of In2Se3on WS2monolayer at 620°C.

    2.3. Characterizations

    Optical and FL images were taken via a Leica microscope(DM4000M) equipped with FL accessory. PL and Raman spectra were collected in a confocal micro Raman microscope system(HR Evolution, JY Horriba, Japan)with an excitation of 532 nm and spot size of~1μm in diameter. PL characterizations of bubbles under different exterior pressures are collected via a confocal micro Raman microscope system with a home-made vacuum chamber with a high-throughput optical window under an excitation of 532 nm focused on the center of bubble.Atomic force microscopy(AFM)measurement was performed on MultiMode 8(Veeco Instruments Inc.,USA)in a tapping mode. Structure was elucidated via an aberrationcorrected scanning transmission electron microscopy (ACSTEM,FEI Themis Z STEM)operating at 300 kV.

    3. Results and discussion

    Figure 1(a)and figure S2 present the optical images and corresponding FL images of a typical as-grown thin film of monolayer WS2on SiO2/Si substrate. It is clear that substrate is dominantly covered by monolayer WS2that is continuous over millimeter-scale. The polycrystalline thin film of monolayer WS2has a typical grain size of~100 μm, and the FL is greatly enhanced in intensity at the grain boundaries owing to the abundant structural defects.[21]The determined thickness of WS2from AFM height profile shown in Fig. S3 is~0.79 nm, which is consistent with previous results.[22,23]The high quality thin film of monolayer WS2enables the growth of layeredβ-In2Se3crystals via CVD method.The optical images shown in Figs.1(b)and 1(c)indicate that monolayer WS2is coated by layer structuredβ-In2Se3crystals with different thicknesses andβ-In2Se3/monolayer WS2heterostructures are obtained. Compared to the particles in the voids of monolayer WS2thin film,the well-defined multilayerβ-In2Se3crystals on WS2is indicating a preferential growth of the layeredβ-In2Se3on 2D substrates. The high magnification optical image (Fig. 1(c)) also shows the absence of straight edge in morphology for the first and second layers ofβ-In2Se3(i.e., monolayer and bilayer In2Se3), which is consistent with the reported results.[11]Figure 1(d)shows the FL image of the monolayer WS2thin film after the growth of In2Se3. In comparison with the monolayer WS2, the FL is significantly suppressed in intensity at the junction area of In2Se3/WS2. In addition, high density of brighter spots are evidenced in FL image, and fringes can be observed in spots with large size and are attributed to bubbles formed in monolayer WS2during growth of In2Se3.[11]It is also evident that bubbles of monolayer WS2have stronger FL signal than those ofβ-In2Se3/WS2heterostructure. From the variation in AFM height profile(inset of Fig.1(e))scanned along direction marked by the green line in Fig.1(e), the thickness of monolayerβ-In2Se3is calculated to be~1.01 nm,being in a good agreement with previous report forβ-In2Se3.

    Fig. 1. Optical, FL, AFM characterizations of monolayer WS2 before and after the growth of β-In2Se3: (a) optical image of millimeterscale continuous monolayer WS2 grown on SiO2/Si substrate, the inset is FL image of green wireframe marked in optical image, indicating that millimeter-scale WS2 is monolayer; (b) and (c) low- and high-magnification optical images of monolayer WS2 covered with β-In2Se3,indicating forming β-In2Se3/monolayer WS2 heterostructures; (d)FL image of β-In2Se3/monolayer WS2 heterostructure,indicating that FL is suppressed after covering β-In2Se3, which is corresponding to panel (c); (e) AFM image of β-In2Se3/monolayer WS2 heterostructure.The inset is the height profile from green wireframe, green dots come from AFM height profile, and green dashed line is linearly fitting the experiment dots according to the expression of h=?3.6+1.01n (h is height and n is a layer number of In2Se3), indicating a thickness of~1.01 nm for monolayer β-In2Se3.

    Raman and PL measurements were carried out to characterize the as-grown WS2monolayer and In2Se3/WS2heterostructures transferred on TEM grid. Compared to the Raman spectra of monolayer WS2, extra Raman bands are evidenced at the positions marked by the cyan for theβ-In2Se3/WS2heterostructures,as shown in Fig.2(a).The peaks located at~110 cm?1and 206 cm?1are assigned to the A11gand A21gmodes ofβ-In2Se3crystal, respectively. According to previous work, Raman bands in intensity are very weak in intensity for the In2Se3monolayer and bilayer.[11,24]The WS2monolayer possesses two characteristic peaks located at 353 cm?1and 419 cm?1,that are the in-plane mode of A1and out-of-plane mode of E', respectively. No significant change occurs for the A1and E'in frequency as well as intensity upon covering a layer of In2Se3with a thickness from monolayer to few-layer.[11]When thickness of the atopβ-In2Se3increases up to 14 layers,the degenerated A1mode of monolayer WS2is observed to be split into two peaks due to the tensile strain preserved in thickerβ-In2Se3crystals grown at high temperatures.[11]It also indicates a strong coupling between monolayer WS2and multilayer In2Se3. Upon covering one layer ofβ-In2Se3atop, PL is significantly decreased (by a factor of~20)in intensity for monolayer WS2,as shown in Fig.1(d)and Fig.2(b),and is even completely quenched with a 14-layerβ-In2Se3crystal atop.As shown in Fig.2(c),conduction band minimum and the valence band maximum of monolayer WS2are higher than those ofβ-In2Se3,indicating a type-II alignment interface betweenβ-In2Se3and WS2.[25-27]Due to a type-II alignment,the photo-excited electron in monolayer WS2is injected from conduction band of WS2to conduction band ofβ-In2Se3and photo-excited holes will transfer from the valence band ofβ-In2Se3to the valence band of WS2due to a type-II alignment ofβ-In2Se3/monolayer WS2. Since the In2Se3possesses an indirect bandgap, the suppression of PL in monolayer WS2after covering one layer ofβ-In2Se3atop is due to the decrease of photo-excited electron-hole recombination rate. In addition, the quench of PL in monolayer WS2is predominantly attributed to that the photo-excited electron in monolayer WS2will transfer from monolayer WS2to thickβ-In2Se3.

    Fig.2. (a)Raman and(b)PL characterizations of monolayer WS2 before and after covered with 1L and 14L β-In2Se3 on TEM grid. (c)Band alignment of monolayer β-In2Se3 and monolayer WS2. (d)SAED pattern and(e)atomic scale HAADF image of β-In2Se3/WS2 heterobilayer.

    In order to check the crystal structure and the crystallographic orientation of WS2and In2Se3, AC-STEM measurements were carried out on the heterobilayer of monolayer In2Se3/monolayer WS2. Figure 2(d) presents a selected area electron diffraction(SAED)pattern of a typical heterobilayerβ-In2Se3/WS2. Two sets of diffraction patterns with sharp spots are evidenced owing to the high quality of WS2and In2Se3crystal. The interplanar spacing of WS2and In2Se3are 0.27 nm and 0.35 nm corresponding to the(100)lattice plane of 1H-WS2andβ-In2Se3, respectively, which are consistent with previous results.[11,28,29]From the SAED pattern of the heterobilayer, it is clear that the monolayerβ-In2Se3crystal is nearly epitaxially grown on monolayer WS2. Diffraction pattern of single crystal WS2is presented in SAED shown in Fig. 2(d) due to large grain size (~100 μm) in polycrystalline thin film of monolayer WS2(shown in Fig. 1(a) and Fig. S2). Figure 2(e) shows an atomic scale high angle annular dark field(HAADF)image of theβ-In2Se3/WS2heterobilayer. Compared to the monolayer WS2(the dark domain as pointed out by the arrow),well-defined Moir′e patterns can be observed in the domain of the heterobilayer owing to an interference of two sets mismatched lattices.

    Fig. 3. (a) Optical and corresponding (b) FL images of monolayer WS2 covered by In2Se3, (c) optical and corresponding (d) FL images of the bubble of In2Se3/monolayer WS2 heterostructure,(e)AFM image of monolayer In2Se3/monolayer WS2 heterostructure bubble (corresponding to the green dashed rectangle in panel(c)),inset is the height profile corresponding to the white line in panel(e).

    Large number bubbles of In2Se3/monolayer WS2heterostructures were also created besides the monolayer WS2bubbles during the growth ofβ-In2Se3, as shown by the optical image and corresponding FL image of the as-grownβ-In2Se3/monolayer WS2heterostructure in Figs.3(a)and 3(b),respectively. These bubbles have a widely distributed diameters range from few tens of micrometers down to the order of sub-micrometer or even smaller. Interference fringes with different color are clearly observed in bubbles with large diameter owing to the light interference, resembling a diffraction grating under the illumination of white light.β-In2Se3/WS2heterostructure bubbles can be formed with the topβ-In2Se3crystal varying from monolayer to more than 10 layers in thickness. The FL image clearly demonstrates an enhancement of FL in intensity upon the formation of bubbles of monolayer WS2as well as heterobilayerβ-In2Se3/WS2,though the FL intensity of the latter is much weaker. No evident FL is observed for the In2Se3/WS2heterostructure when layer number ofβ-In2Se3is more than 1 layer in thickness.The enhancement in FL signal of bubbles is attributed to strain and/or the reduction in dielectric screening effect from the substrate.[30-32]Figures 3(c) and 3(d) show a high magnification optical image and corresponding FL image of a bubble spanning over monolayer WS2, monolayer In2Se3/WS2, and multilayers In2Se3/WS2. Interference fringe rings are clearly presented in the contrast of optical and FL image owing to the interference of incident and reflected light at surface of the bubble, also signifying the suppression of FL of WS2in the heterostructure.

    Fig. 4. PL and Ramana characterizations of In2Se3/WS2 heterobilayer bubbles. (a) PL, (b) Raman A1, and (c) Raman E' peaks mapping images of intensity(left),position(middle),and width(right)collected via using laser light of 532 nm. Scales bars are 10μm.

    In order to check the morphology of bubble, AFM measurements were carried out on a bubble spanning over a monolayer WS2and a heterobilayerβ-In2Se3/WS2, as marked by the green dashed rectangle in Fig. 3(c). Figure 3(e) displays the AFM image and figure S4 presents a line profile across the top of bubble. The bubble demonstrates a well-defined spherical cap (with a lateral size of~4.6 μm and height of~164 nm). Inset in Fig. 3(e) is a height profile along the marked white line, a thickness~1.08 nm for the monolayer In2Se3atop the monolayer WS2is clearly demonstrated.

    Raman and PL measurements were carried out to characterize bubbles of In2Se3/WS2heterobilayer because the FL signal is nearly completely suppressed for heterostructure bubbles with the layer number ofβ-In2Se3crystal more than one layer in thickness. Two heterobilayer bubbles with different lateral sizes were chosen for the characterization, as marked by the green dashed rectangle on the optical image and corresponding FL image in Fig.S5, where Newton’s rings and FL enhancement are clearly visible. Mapping images of peak intensity,position,and width for PL emission peak as well as for two characteristic Raman modes of the heterobilayer bubbles are presented in Fig.4.From the center to the edge of bubbles,rings with periodic variation in intensity are clearly presented in the mapping of PL peak and Raman peaks of the A1and E'modes(Figs.4(a)-4(c)),sharing a spatial period depending on the bubble size. These rings with oscillatory intensity can originate from the interference of the constructive and destructive light in which the optical path difference varies as the light moving from the center to the edge of a bubble. The mappings of PL emission as well as for two characteristic Raman modes also display an oscillatory behaviors of the shift in peak position and broadening in peak width, and are attributed to the localized oscillatory heating induced by the periodic enhancement and suppression of the incident laser in intensity over the surface of bubbles.[1,16]In comparison with the phenomenon in the pure monolayer WS2,[16]the oscillatory behavior in the PL emission and lattice vibrating is more profound in WS2for the In2Se3/WS2heterobilayer. This is attributed to lower thermal diffusivity in the In2Se3/WS2heterobilayer than of the monolayer WS2owing to the much lower thermal conductivity of monolayerβ-In2Se3(<4 W/m·K) than that of monolayer WS2(~60 W/m·K).[33,34]

    The interference phenomena at the surface of bubble depends on the optical path difference which is very sensitive to the bubble size(as shown in Fig.4)and the pressure balancing the interior and exterior gas of the bubble.[35]By placing the In2Se3/WS2heterobilayer bubble into a home-made vacuum chamber, it tends to be gradually inflated when the vacuum chamber is subjected to a slow purging with a pump. Meanwhile,a tensile strain owing to the inflation of the bubble can be precisely generated,[1]which was used to finely tune the properties of monolayer WS2via strain.[36]Figure 5 presents the PL collected at center position of theβ-In2Se3/WS2heterobilayer bubble subject to different exterior pressures. Typical PL spectra of the heterobilayer bubble at the exterior pressures of 100,70,50,30,and 10 kPa are shown in Fig.5(a),demonstrating a drastically modified emission characteristics of the monolayer WS2in the heterobilayer upon decreasing the exterior pressure. These spectra are deconvoluted by three Gaussian profiles(symbolized by X0,X1,and X2)and parameters of intensityIpeakand emission energyEpeakare summarized in Fig.5(b). An oscillatory behavior forIpeakandEpeakis clearly displayed, and superimposed on a nearly linear background forEpeakupon decreasing the exterior pressure of the heterobilayer bubble. The oscillation is resulted from the interference,while the persisting redshift ofEpeak(linear background)is attributed to the increase of tensile strain during the inflation of the heterobilayer bubble,which is consistent with previous results on the counter part of monolayer WS2.[32,36]

    Fig.5. PL characterizations for In2Se3/WS2 heterobilayer bubble subjected to different exterior pressures with an excitation of 532 nm focused on the center of bubble. (a)PL spectra of the heterobilayer bubble at some typical exterior pressures of 10, 30, 50, 70, and 100 kPa. The spectra were deconvoluted by three Gaussian profiles (symbolized by X0, X1, and X2). (b)Deconvoluted PL peak intensity Ipeak and position Epeak as a function of the exterior pressure.

    4. Conclusion

    In conclusion,β-In2Se3crystals are grown on a millimeter-scale continuous monolayer WS2attached on SiO2/Si substrate via two-step CVD technique,preparing vertical van de Waals heterostructure. After the growth ofβ-In2Se3at elevated temperatures, high density of In2Se3/WS2heterostructure bubbles with monolayer to multilayerβ-In2Se3crystals atop is observed. Newton rings are significantly observed in optical images of heterostructure bubbles due to constructive and destructive interference.In Raman and PL mapping images ofβ-In2Se3/WS2heterobilayer bubbles,significant oscillatory behaviors of emission intensity and peak positions are observed due to optical interference effect. However, oscillatory behaviors of peak position are also observed and come from a local heating effect induced by laser beam.The oscillatory mechanism of PL is further verified by changing the exterior pressure of bubbles. In addition, redshifted in peak positions are observed due to strain effect during decreasing the exterior pressure of bubbles.

    猜你喜歡
    安民天宇
    THE EXISTENCE AND NON-EXISTENCE OFSIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN*
    快樂的小草
    小主人報(2022年18期)2022-11-17 02:19:52
    Instructional Design Is A System
    青年生活(2020年19期)2020-10-14 21:54:16
    打羽毛球
    你最珍貴
    易安民聲
    Galloping Horse Treading on a Flying Swallow and Its Influence in Modern Advertising
    易安民聲
    當(dāng)你翱翔天宇 我在舉頭仰望
    太空探索(2016年11期)2016-07-12 10:32:49
    龔遂治亂安民的“高招”
    看免费成人av毛片| 一边摸一边做爽爽视频免费| 成人无遮挡网站| 好男人视频免费观看在线| 日韩免费高清中文字幕av| 丰满少妇做爰视频| 久久97久久精品| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 精品国产乱码久久久久久小说| 成人漫画全彩无遮挡| 九色亚洲精品在线播放| 另类亚洲欧美激情| 超色免费av| 亚洲欧洲日产国产| 国产 精品1| 在线观看一区二区三区激情| 亚洲av日韩在线播放| 最近最新中文字幕免费大全7| 亚洲成人手机| 久久久久久人妻| 在线精品无人区一区二区三| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 97精品久久久久久久久久精品| 亚洲三级黄色毛片| 亚洲精品自拍成人| 国产高清国产精品国产三级| 欧美丝袜亚洲另类| www.av在线官网国产| 国产 一区精品| 国产日韩一区二区三区精品不卡| 国产精品一二三区在线看| 午夜视频国产福利| 日本与韩国留学比较| 欧美少妇被猛烈插入视频| 五月天丁香电影| 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 热re99久久国产66热| 内地一区二区视频在线| 国产有黄有色有爽视频| 又粗又硬又长又爽又黄的视频| 国内精品宾馆在线| 久热这里只有精品99| 一级毛片黄色毛片免费观看视频| 亚洲综合色网址| 国产亚洲精品久久久com| 男女午夜视频在线观看 | 欧美日韩国产mv在线观看视频| 久久久久久人妻| 女人久久www免费人成看片| 两性夫妻黄色片 | 最后的刺客免费高清国语| 男男h啪啪无遮挡| 18禁在线无遮挡免费观看视频| 久久久久网色| 成年人午夜在线观看视频| 黄网站色视频无遮挡免费观看| 日韩 亚洲 欧美在线| 亚洲成人一二三区av| 国产乱人偷精品视频| 午夜福利乱码中文字幕| 久久婷婷青草| 国产在线免费精品| 欧美老熟妇乱子伦牲交| 亚洲成人av在线免费| 亚洲av国产av综合av卡| 国产成人免费观看mmmm| 91在线精品国自产拍蜜月| 精品久久久精品久久久| 51国产日韩欧美| 性色av一级| av在线老鸭窝| 国产精品.久久久| 最新的欧美精品一区二区| 国产精品秋霞免费鲁丝片| 亚洲精品色激情综合| 国产精品三级大全| 久久午夜福利片| 在现免费观看毛片| 99热这里只有是精品在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品国产精品| 欧美精品高潮呻吟av久久| 欧美变态另类bdsm刘玥| 成人免费观看视频高清| 精品福利永久在线观看| 看非洲黑人一级黄片| 菩萨蛮人人尽说江南好唐韦庄| 免费久久久久久久精品成人欧美视频 | 久久这里只有精品19| 亚洲欧美成人综合另类久久久| 免费不卡的大黄色大毛片视频在线观看| 深夜精品福利| 亚洲美女黄色视频免费看| 精品少妇久久久久久888优播| 飞空精品影院首页| 一级毛片黄色毛片免费观看视频| av天堂久久9| 在线观看www视频免费| 在线精品无人区一区二区三| 精品一区二区三区四区五区乱码 | 亚洲欧美日韩另类电影网站| 国产免费又黄又爽又色| 国产探花极品一区二区| 亚洲成人av在线免费| 欧美日韩av久久| 欧美精品亚洲一区二区| 婷婷色综合www| 欧美日韩av久久| 99热全是精品| 中文字幕亚洲精品专区| 亚洲第一av免费看| 免费在线观看完整版高清| 久久久久久久久久人人人人人人| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 亚洲一级一片aⅴ在线观看| 久久午夜综合久久蜜桃| 亚洲av免费高清在线观看| 亚洲精品第二区| 91成人精品电影| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 久久精品国产鲁丝片午夜精品| av.在线天堂| 免费久久久久久久精品成人欧美视频 | 国产乱来视频区| 国产成人一区二区在线| 极品人妻少妇av视频| 亚洲综合精品二区| 亚洲精品一二三| 一区在线观看完整版| 热re99久久国产66热| av黄色大香蕉| 日产精品乱码卡一卡2卡三| 欧美精品av麻豆av| 老熟女久久久| 国产精品 国内视频| 黄片播放在线免费| 久久久久久久亚洲中文字幕| 免费人妻精品一区二区三区视频| 美女内射精品一级片tv| 蜜桃在线观看..| 中文欧美无线码| 9191精品国产免费久久| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 乱人伦中国视频| 免费大片黄手机在线观看| 1024视频免费在线观看| 亚洲成国产人片在线观看| 日韩免费高清中文字幕av| av在线老鸭窝| 人人妻人人澡人人爽人人夜夜| 波多野结衣一区麻豆| 丰满迷人的少妇在线观看| 免费日韩欧美在线观看| 欧美成人午夜精品| 新久久久久国产一级毛片| 午夜福利,免费看| 成人亚洲欧美一区二区av| 一级,二级,三级黄色视频| 日韩精品有码人妻一区| 国国产精品蜜臀av免费| 久久精品国产综合久久久 | 熟女电影av网| 国产麻豆69| 老司机亚洲免费影院| 久久久欧美国产精品| 婷婷色综合大香蕉| av女优亚洲男人天堂| 亚洲精品一二三| 精品久久久久久电影网| 欧美成人午夜精品| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕 | 久久久久精品人妻al黑| 精品久久国产蜜桃| 黑人巨大精品欧美一区二区蜜桃 | 香蕉精品网在线| 精品熟女少妇av免费看| 啦啦啦视频在线资源免费观看| 日本欧美视频一区| 18禁观看日本| 免费高清在线观看视频在线观看| 免费日韩欧美在线观看| 久久久国产精品麻豆| 一级片'在线观看视频| 欧美亚洲日本最大视频资源| 日本-黄色视频高清免费观看| 久久午夜综合久久蜜桃| tube8黄色片| 这个男人来自地球电影免费观看 | 人人妻人人添人人爽欧美一区卜| 成人综合一区亚洲| 国产极品粉嫩免费观看在线| 国产精品一区www在线观看| 伦精品一区二区三区| 日韩大片免费观看网站| 久久久久久人人人人人| 日韩一本色道免费dvd| 91精品伊人久久大香线蕉| 少妇被粗大的猛进出69影院 | 最近手机中文字幕大全| 欧美日韩视频精品一区| www.熟女人妻精品国产 | 黄片无遮挡物在线观看| 成人18禁高潮啪啪吃奶动态图| 侵犯人妻中文字幕一二三四区| 国产精品麻豆人妻色哟哟久久| 亚洲欧美精品自产自拍| 日韩不卡一区二区三区视频在线| 国产亚洲欧美精品永久| 成人国产av品久久久| 女人久久www免费人成看片| 国产欧美亚洲国产| 一级片免费观看大全| 黑人高潮一二区| 高清不卡的av网站| 18禁动态无遮挡网站| 国产xxxxx性猛交| 满18在线观看网站| 一区在线观看完整版| 天堂8中文在线网| 51国产日韩欧美| 国产精品国产av在线观看| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 老熟女久久久| 观看av在线不卡| 久久久久精品性色| 香蕉丝袜av| 久久热在线av| 欧美97在线视频| 日韩中字成人| 国产亚洲一区二区精品| 国产精品 国内视频| 精品国产国语对白av| 久久av网站| 亚洲成国产人片在线观看| 国产成人欧美| 久久99精品国语久久久| 曰老女人黄片| 亚洲欧美一区二区三区黑人 | 欧美亚洲日本最大视频资源| 母亲3免费完整高清在线观看 | 侵犯人妻中文字幕一二三四区| 国产高清不卡午夜福利| 国产成人免费无遮挡视频| 18+在线观看网站| 99久久中文字幕三级久久日本| 久久久精品区二区三区| 视频在线观看一区二区三区| 人妻少妇偷人精品九色| 在线看a的网站| 国精品久久久久久国模美| 在线观看免费视频网站a站| 又大又黄又爽视频免费| 另类精品久久| 亚洲精品日韩在线中文字幕| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 国产在视频线精品| 日韩熟女老妇一区二区性免费视频| 又大又黄又爽视频免费| 亚洲av免费高清在线观看| 综合色丁香网| 亚洲人与动物交配视频| 久热这里只有精品99| 亚洲色图 男人天堂 中文字幕 | 黑人巨大精品欧美一区二区蜜桃 | 国产精品熟女久久久久浪| 日韩电影二区| 日本-黄色视频高清免费观看| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 免费观看a级毛片全部| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 亚洲av电影在线进入| 极品人妻少妇av视频| 久久青草综合色| 亚洲av免费高清在线观看| 久久精品aⅴ一区二区三区四区 | 尾随美女入室| 最新的欧美精品一区二区| av一本久久久久| 9热在线视频观看99| 国产亚洲av片在线观看秒播厂| www.av在线官网国产| av免费观看日本| 亚洲国产精品一区三区| 丝袜在线中文字幕| 久久国产精品大桥未久av| 亚洲av成人精品一二三区| 一二三四在线观看免费中文在 | 国产福利在线免费观看视频| 男女高潮啪啪啪动态图| 久久久精品区二区三区| 亚洲国产精品999| 日韩人妻精品一区2区三区| av一本久久久久| 国产成人aa在线观看| 午夜福利乱码中文字幕| 中文天堂在线官网| 国产精品人妻久久久影院| 五月天丁香电影| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 男女国产视频网站| 狂野欧美激情性bbbbbb| 久久久久久久久久成人| 欧美人与性动交α欧美精品济南到 | 国产一级毛片在线| 宅男免费午夜| av片东京热男人的天堂| 欧美国产精品va在线观看不卡| kizo精华| 欧美精品人与动牲交sv欧美| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 国产69精品久久久久777片| 纯流量卡能插随身wifi吗| 久久婷婷青草| 大香蕉久久成人网| 观看美女的网站| 自线自在国产av| 色网站视频免费| 国产欧美另类精品又又久久亚洲欧美| 青春草国产在线视频| 免费人成在线观看视频色| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 秋霞伦理黄片| 日韩人妻精品一区2区三区| 看免费av毛片| 亚洲第一av免费看| 久久这里只有精品19| 99久国产av精品国产电影| 日韩熟女老妇一区二区性免费视频| 最近中文字幕高清免费大全6| 深夜精品福利| av国产精品久久久久影院| 久久精品aⅴ一区二区三区四区 | 男男h啪啪无遮挡| www.av在线官网国产| 日本爱情动作片www.在线观看| 欧美激情国产日韩精品一区| 亚洲色图综合在线观看| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 中文字幕免费在线视频6| 成年人免费黄色播放视频| 最新的欧美精品一区二区| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 日本免费在线观看一区| 国产成人精品婷婷| 久久久精品区二区三区| 国产在线视频一区二区| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 黑丝袜美女国产一区| 美女xxoo啪啪120秒动态图| 成年女人在线观看亚洲视频| 亚洲av国产av综合av卡| 青春草亚洲视频在线观看| 少妇人妻精品综合一区二区| 夫妻性生交免费视频一级片| 日本vs欧美在线观看视频| 国产一区二区在线观看日韩| 又黄又粗又硬又大视频| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 日本wwww免费看| 欧美成人午夜精品| videosex国产| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 高清黄色对白视频在线免费看| 日本爱情动作片www.在线观看| 天天影视国产精品| 69精品国产乱码久久久| 春色校园在线视频观看| 欧美日本中文国产一区发布| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 最新中文字幕久久久久| 国产av国产精品国产| 久久精品aⅴ一区二区三区四区 | 国产免费现黄频在线看| 91久久精品国产一区二区三区| 国产深夜福利视频在线观看| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 久久热在线av| 亚洲三级黄色毛片| 国产欧美日韩综合在线一区二区| 在线免费观看不下载黄p国产| 免费女性裸体啪啪无遮挡网站| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 人妻系列 视频| 制服丝袜香蕉在线| 好男人视频免费观看在线| 久久亚洲国产成人精品v| 一级片'在线观看视频| 一个人免费看片子| 中国三级夫妇交换| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| 韩国av在线不卡| 亚洲天堂av无毛| 亚洲美女搞黄在线观看| 少妇的丰满在线观看| 夜夜爽夜夜爽视频| 成人影院久久| 免费看光身美女| 亚洲成人手机| 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 91午夜精品亚洲一区二区三区| 午夜老司机福利剧场| 免费观看性生交大片5| 精品人妻一区二区三区麻豆| 成人手机av| 国产精品一区www在线观看| 国产成人精品福利久久| 国国产精品蜜臀av免费| 国产日韩欧美在线精品| 精品久久久久久电影网| 久久久久久人人人人人| 在线观看免费日韩欧美大片| 国产 精品1| 日本黄大片高清| 亚洲综合精品二区| 国产白丝娇喘喷水9色精品| 两个人看的免费小视频| 考比视频在线观看| 亚洲综合色网址| 97在线人人人人妻| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 男女免费视频国产| 欧美人与性动交α欧美软件 | 成人影院久久| 一区二区日韩欧美中文字幕 | 日本欧美视频一区| 高清黄色对白视频在线免费看| 久久青草综合色| 尾随美女入室| 亚洲欧洲精品一区二区精品久久久 | 成人午夜精彩视频在线观看| 成人国产av品久久久| av有码第一页| 丰满迷人的少妇在线观看| 男女无遮挡免费网站观看| 亚洲综合色惰| 中文字幕制服av| freevideosex欧美| av女优亚洲男人天堂| 99国产综合亚洲精品| 一二三四中文在线观看免费高清| 日韩成人伦理影院| 少妇的逼好多水| 午夜影院在线不卡| 国产片内射在线| 捣出白浆h1v1| 高清欧美精品videossex| 亚洲精品视频女| 婷婷成人精品国产| 女人精品久久久久毛片| 少妇的逼水好多| 国精品久久久久久国模美| 免费观看av网站的网址| 天堂俺去俺来也www色官网| 国产麻豆69| 日韩一区二区视频免费看| 日本爱情动作片www.在线观看| 插逼视频在线观看| 97精品久久久久久久久久精品| 日韩中字成人| 自线自在国产av| 亚洲欧美成人综合另类久久久| 高清欧美精品videossex| 飞空精品影院首页| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品精品| 两个人免费观看高清视频| 一本—道久久a久久精品蜜桃钙片| 欧美xxxx性猛交bbbb| 国产成人精品久久久久久| 看免费av毛片| 在线天堂中文资源库| 久久 成人 亚洲| 欧美激情极品国产一区二区三区 | 性高湖久久久久久久久免费观看| 中文乱码字字幕精品一区二区三区| 国产一区二区三区av在线| 久久久国产欧美日韩av| 黑人欧美特级aaaaaa片| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 亚洲欧洲国产日韩| 国产av一区二区精品久久| 一区二区三区四区激情视频| 亚洲精品aⅴ在线观看| 晚上一个人看的免费电影| 亚洲一级一片aⅴ在线观看| 尾随美女入室| 久久国内精品自在自线图片| 午夜日本视频在线| 日日啪夜夜爽| 丰满迷人的少妇在线观看| 九九在线视频观看精品| 久久精品久久久久久久性| 日韩大片免费观看网站| 亚洲,欧美,日韩| 又黄又粗又硬又大视频| 国产一区二区三区av在线| 国产精品久久久av美女十八| 久久99热这里只频精品6学生| 最近最新中文字幕大全免费视频 | 亚洲av福利一区| 精品一品国产午夜福利视频| av一本久久久久| 日韩成人伦理影院| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久久电影| 日韩一区二区三区影片| 成人国语在线视频| 欧美人与善性xxx| 免费日韩欧美在线观看| 看非洲黑人一级黄片| 久久这里有精品视频免费| 中文字幕av电影在线播放| 纵有疾风起免费观看全集完整版| 香蕉精品网在线| 国产男女内射视频| www.av在线官网国产| 人妻少妇偷人精品九色| 精品久久久久久电影网| 亚洲,欧美精品.| 国产成人免费无遮挡视频| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 咕卡用的链子| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 女人久久www免费人成看片| 一本久久精品| 一级片免费观看大全| 久久久久久人人人人人| 桃花免费在线播放| 亚洲第一av免费看| 高清av免费在线| 人妻一区二区av| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 熟女人妻精品中文字幕| 制服诱惑二区| 精品亚洲成a人片在线观看| 精品一区在线观看国产| 亚洲性久久影院| 精品少妇内射三级| 亚洲av欧美aⅴ国产| 妹子高潮喷水视频| 亚洲av.av天堂| 两个人免费观看高清视频| 日日爽夜夜爽网站| 男女下面插进去视频免费观看 | av有码第一页| 国产片特级美女逼逼视频| av播播在线观看一区| 伊人久久国产一区二区| 一级a做视频免费观看| 亚洲精华国产精华液的使用体验| 最近中文字幕高清免费大全6| 精品熟女少妇av免费看| 热re99久久精品国产66热6| 国产精品一国产av| tube8黄色片| 国产男人的电影天堂91| 亚洲,欧美,日韩| 亚洲综合精品二区| 18在线观看网站| 高清在线视频一区二区三区| 丰满乱子伦码专区| 国产在线免费精品| 99久久精品国产国产毛片| 欧美精品人与动牲交sv欧美| 丝袜在线中文字幕| 女人精品久久久久毛片| 宅男免费午夜| 美国免费a级毛片| 国产黄色免费在线视频| 亚洲图色成人| 精品一区在线观看国产| 国产精品一区二区在线观看99| 亚洲人与动物交配视频| 免费播放大片免费观看视频在线观看|