• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Retrieval of the effective constitutive parameters from metamaterial absorbers*

    2021-11-23 07:31:50ShaomeiShi石邵美XiaojingQiao喬小晶ShuoLiu劉朔andWeinanLiu劉衛(wèi)南
    Chinese Physics B 2021年11期

    Shaomei Shi(石邵美), Xiaojing Qiao(喬小晶), Shuo Liu(劉朔), and Weinan Liu(劉衛(wèi)南)

    School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China

    Keywords: effective constitutive parameters,metamaterial absorber,negative refraction

    1. Introduction

    Since Landyet al.[1]proposed the concept of the perfect metamaterial absorber in 2008, they have attracted wide attention, and a large number of articles have been published on their behavior. Their absorption spectrum covers microwave,terahertz,[2]infrared,[3]visible light,[4]and the ultraviolet band.[5]Three explanations have been proposed for their behavior:the effective medium theory,[1]the transmission line theory,[6]and the multi-reflection interference theory.[7]Although the transmission line theory and the multi-reflection interference theory can partially explain the absorbing mechanism,the magnetic response and the electromagnetic coupling effect is not considered. On the contrary,the effective medium theory indicates that if the metamaterial absorber’s effective permittivity is equal to its effective permeability, impedance matching to free space can be achieved. Simultaneously,if its loss factor is large enough, perfect absorption can be achieved.[8]This requires the effective constitutive parameters to reveal its magnetic response and the electromagnetic coupling effect.

    The retrieval of effective constitutive parameters for metamaterials, which are symmetric in the direction of electromagnetic wave propagation, was firstly proposed in 2002 by Smithet al.[9]Symmetric metamaterials conform to reciprocity,S11=S22, andS21=S12. TheS-parameters of the symmetric metamaterial are obtained through simulation or measurement, and then the relative impedance and refractive index are calculated through the transfer matrix

    wherek=ω/cis the wave number of the incident wave,anddis the effective thickness of the metamaterial. For passive materials, the real part of the relative impedance Re(z)>0,so the signs of the impedance can be determined.[9]The index has multiple branches. The proper branch can be determined by K-K relationship[10]or phase unwrapping.[11]Then,the effective permittivity and permeability can be obtained byε=n/zandμ=nz.

    In 2005, Smithet al.[12]proposed the retrieval of effective constitutive parameters for metamaterials that are asymmetric in the direction of electromagnetic wave propagation.Asymmetric metamaterials are non-reciprocal structures, that is,S11?=S22,andS21=S12. Similarly,theSparameters of the asymmetric metamaterial are obtained through the simulation or measurement. TheTmatrix can be expressed as

    The relative impedance is

    The same method can be used for passive materials to determine the impedance sign,select the proper index branch,and calculate their effective permittivity and permeability.

    In 2011, Hollowayet al.[13]proposed a method to retrieve the effective constitutive parameters of metasurfaces.The surface electrical susceptibility and magnetic susceptibility,which can be obtained from theSparameters,are defined by

    Compared with other metamaterials, metamaterial absorbers have three notable characteristics. One characteristic is their non-reciprocity.[14]Metamaterial absorbers have different responses to the electromagnetic waves depending on the incident direction. They show a strong absorption in one direction but a strong reflection in the opposite direction, that is,S11?=S22. Therefore,although there are some articles,[3,15-17]using the method of symmetric metamaterials to retrieve the effective constitutive parameters, this method is not suitable for metamaterial absorbers. It is worth mentioning that there is some confusion in determining the impedance in the two opposite direction near the absorption frequency when the asymmetric metamaterial method is adopted, which makes the retrieved constitutive parameters meaningless (details will be presented in Section 2). Therefore, this method requires approximate treatment of impedance,z=(1+S11)/(1?S11),[8]otherwise the symmetric metamaterial method is still the best choice.[18-26]

    The strong internal electromagnetic coupling produces the second characteristic of these materials. At the absorption frequency,the current generated in the bottom layer is opposite to that of the electric resonance layer. This phenomenon leads to the magnetic response.[27]In 2014,Bhattacharyyaet al.[28]proposed that the metamaterial absorber has only one unit cell in the wave propagation direction. The total thickness is very thin relative to the wavelength,so the metasurface method can be used to retrieve the constitutive parameters.[29-33]However, Chenet al.[34]verified that the constitutive parameters retrieved from a unit cell in the wave propagation direction can represent the properties of metamaterials. When the metasurface method is applied to the metamaterial absorber,the retrieved constitutive parameters are inconsistent with the electrical resonance and magnetic resonance because the electromagnetic coupling is not considered(details will also be presented in Section 2).

    The third characteristic of the metamaterial absorbers is that most of the metamaterial absorbers have a metallic bottom layer. In this case,their transmittance is equal to 0,making it impossible to retrieve the constitutive parameters.

    In this paper, a retrieval method is proposed based on these three characteristics. This new method is helpful to further understand the absorption mechanism of metamaterial absorbers.

    2. Retrieval of effective constitutive parameters for metamaterial absorbers with a cut-wire bottom layer

    The constitutive equation of a metamaterial absorber,considering both the non-reciprocity and electromagnetic coupling,can be expressed as

    whereξandζare the electromagnetic coupling coefficients.According to the retrieval method for a one-dimensional active metamaterial proposed by Popaet al.,[35]the model and its signal flow diagram are shown in Fig.1.

    Fig.1. Analysis model of one-dimensional metamaterial absorber and its signal flow.

    TheSparameters can be written according to the Mason’s formula as

    wheredis the thickness of the metamaterial absorber. The+and signs indicate the direction of propagation.The subscripts,iandj,suggest that the wave goes from mediumito mediumj, where medium 1 is air, and medium 2 is the metamaterial absorber.

    The wave number and relative impedances can be obtained according to Eqs.(15)-(18)as

    For passive metamaterial absorbers, the same method can be used to determine the signs of impedance and select the proper wave number branch.

    Because the electromagnetic properties of non-reciprocal metamaterials in the +xdirection and?xdirection are very different,we believe that the average effective constitutive parameters in the two directions cannot represent their electromagnetic properties in one direction. For a metamaterial absorber,we only care about its electromagnetic properties in the direction of wave absorption. Assuming that it absorbs electromagnetic waves in the +xdirection, then the permittivity and permeability can be written for this direction as

    Next, we use the metamaterial absorber proposed by Landyet al.[1]to verify this retrieval method. The dimensions of the absorber area1=4.2 mm,a2=12 mm,W=3.9 mm,G=0.606 mm,t=0.6 mm,L=0.7 mm,andH=11.8 mm.The two copper layers’thickness is 0.017 mm,while the FR4 middle layer’s permittivityεr=4.2×(1+0.025i).The Floqut port of HFSS is used for simulation,and the absorptance,the reflectance and the transmittance in the+xdirection are shown in Fig.2. The maximum absorptanceA(ω0)=99.7905%occurs at 10.076 GHz, and the minimum reflectanceR(ω0)=0.5693%occurs at 10.078 GHz.

    Fig.2. Absorbance,reflectance,and transmittance of the metamaterial absorber proposed by Landy et al.

    We now compare the electromagnetic parameters retrieved by the symmetric metamaterial method,the asymmetric metamaterial method, the metasurface method, and our method. The metasurface method does not involve the retrieval of relative impedance, thus the results from the other three methods are shown in Fig. 3. In the +xdirection, the relative impedance retrieved by the symmetric metamaterial method (Fig. 3(a)) and our method (Fig. 3(c)) is different in the non-absorbing frequency bands but agrees in the absorbing frequency band. At the minimum reflection frequencyω0=10.078 GHz,the symmetric method hasz=0.8611?0.0284i,and our approach hasz= 0.8610?0.0285i. It can be explained thatS22approaches 1 whileS21andS12approach 0 at the absorption frequency. Therefore, Eq. (19) can be simplified toz=(1+S11)/(1?S11),which coincides with Eq.(1).Clearly, our method is valid in the entire frequency range,while the symmetric metamaterial method is only approximate near the absorption frequency.The impedance retrieved by the asymmetric metamaterial method is shown in Fig.3(b). There is some ambiguity in the two opposite directions at 8.621 GHz,9.896 GHz, 11 GHz, and 12.67 GHz, which affects the retrieval of effective permittivity and permeability in the next step.

    Since the metasurface method also does not involve the retrieval of refractive index, the results retrieved by the other three methods are shown in Fig. 4. The index retrieved by the symmetric metamaterial method(Fig.4(a))is different in the +xand?xdirections, while the result retrieved by the asymmetric metamaterial method(Fig.4(b))is unique. In our method, the index can be obtained byn=k/k0. Figure 4(c)shows that the index is the same in the+xand?xdirections and is equal to the value retrieved by the asymmetric metamaterial method. In addition,the index retrieved by the symmetric metamaterial method has a significant deviation at low frequencies in the +xdirection, and a small peak appears at the maximum absorption frequency. The deviation and peak are caused by the assumption ofS11=S22.

    Fig.3. The relative impedance of the metamaterial absorber retrieved by(a)symmetric metamaterial method,(b)asymmetric metamaterial method and(c)our method along the+x and ?x directions.

    Fig. 4. The index of the metamaterial absorber along the +x and ?x directions retrieved by (a) symmetric metamaterial method, (b) asymmetric metamaterial method,and(c)our approach.

    Fig. 5. The effective permittivity of the metamaterial absorber retrieved by (a) the symmetric metamaterial method, (b) asymmetric metamaterial method,(c)metasurface method,and(d)our approach. The corresponding effective permeability is shown in(e)-(h).

    Next,the effective permittivity and permeability in the+xdirection retrieved by the four methods are shown in Fig. 5.The effective permittivity retrieved by our method(Fig.5(d))shows that the metamaterial absorber has two electrical resonances. One resonance is about 10 GHz, which corresponds to the top ERR’s electrical resonance(electric ring resonator)layer. The other resonance is about 12.7 GHz, which corresponds to the bottom cut-wire layer’s electrical resonance.The retrieved effective permeability (Fig. 5(h)) shows a magnetic resonance about 10 GHz, which is consistent with the ERR layer’s electrical resonance. At 10.078 GHz,ε=3.3818+15.9953i, andμ=3.2902+11.6794i, which means that the impedance is matched well to free space, so there is a minimum reflectance. It can be seen that the permittivity and permeability retrieved by our method are very consistent with the characteristics of the metamaterial absorber. The effective permittivity (Fig. 5(a)) and permeability (Fig. 5(e)) retrieved by the symmetric metamaterial method are similar to those of our approach, but the values are larger and the first electrical resonance has an apparent redshift. The effective permittivity retrieved by the asymmetric metamaterial method (Fig. 5(b))only shows one strong electrical resonance around 12.7 GHz,caused by the obfuscation of its impedance in the two opposite directions.Although the effective permittivity retrieved by the metasurface method(Fig.5(c))has two peaks,its trend is opposite to an electrical resonance. The negative permittivity at low frequencies is not consistent with the characteristics of the metamaterial absorbers. Similarly, the retrieved effective permeability(Fig.5(g))also does not agree with the traits.

    Fig. 6. The electromagnetic coupling coefficient of the metamaterial absorber from our method.

    The electromagnetic coupling coefficients obtained by our method are shown in Fig.6. Strong electromagnetic coupling appears at 9.4 GHz and 11.5 GHz. These two electromagnetic couplings correspond to the two electrical resonances of the metamaterial absorber. Besides, it can be seen from Fig.6 thatξ=?ζ. For passive media,ξandζare equal in size. Therefore,the retrieved coupling coefficients are consistent with the theory. It is also consistent with the derivation of the constitutive parameter matrix for magnetoelectric coupling metamaterial by Xuet al.[36]

    In summary,by considering the non-reciprocity and electromagnetic coupling,the effective constitutive parameters retrieved by our method are consistent with the characteristics of the metamaterial absorber.

    3. Retrieval of effective constitutive parameters for metamaterial absorbers with a metallic bottom layer

    When the metamaterial absorber has a metallic bottom layer,S21=S12= 0, the denominators of symmetric metamaterial method, asymmetric metamaterial method, and our method are 0. That value makes it impossible to retrieve the constitutive parameters. Yeet al.[15]proposed that since the electrical resonance structure of the metamaterial absorber is located in the center of the unit cell, creating openings in the four corners of the metallic bottom layer in the unit cell will not significantly change its absorption performance and result inS21=S12?=0.Therefore,we can use this method to retrieve its constitutive parameters.

    When a cut-wire bottom layer is changed to metallic,the maximum absorbance and corresponding frequency of the metamaterial absorber becomes significantly altered. In order to rematch the impedance to free space, the dimensions are adjusted toa1=a2=4.9 mm,w=3.9 mm,g=0.606 mm,andt=0.6 mm. The results are shown in Fig.7. Whenf=8.194 GHz, the maximum absorbanceA(ω0) = 99.9945%,and the minimum reflectanceR(ω0)=0.0055%. The maximum absorbance and minimum reflectance are at the same frequency.

    Fig.7. The metamaterial absorber with four square openings around the metallic bottom layer in the unit cell: (a)top view,(b)side view,(c)bottom view,and(d)absorbance,reflectance,and transmittance when b=0.

    Next,we investigate the maximum absorbance,minimum reflectance, transmittance, and the corresponding frequencies when four square openings with a side length ofbare created in the metallic bottom layer(Fig.7(c)). As shown in Table 1,whenb ≤1 mm, the frequencies of the maximum absorption and minimum reflection are the same. However, whenbbecomes larger, the maximum absorption frequency blue shifts,and the maximum absorbance decreases while the minimum reflectance increases. Whenbdecreases to 0.01 mm,the maximum absorption and minimum reflection frequencies are consistent with the metallic bottom layer metamaterial absorber. The maximum absorbance is only decreased by 0.0004%, while the minimum reflectance is increased by 0.0004%, and the transmittance is zero. It is worth noting that the side lengthbof the opening is about 1/4000 of the wavelength at the maximum absorption. These tiny openings not only ensure the successful retrieval of effective constructive parameters,but also make the transmittance equal to 0 at the accuracy of 0.000001. Thus, the metamaterial absorber properties in this condition are almost the same as the metallic bottom layer metamaterial absorber.

    Next, the constitutive parameters are retrieved whenbis set to 0.01 mm. The results in the +xdirection are shown in Fig. 8. Figure 8(c) shows that the metamaterial absorber has an electrical resonance at 8.2 GHz. Both below and above this frequency, its effective permittivity is negative. This value is consistent with the characteristics of a metamaterial absorber with a metallic bottom layer. Besides,Fig.8(d)shows that the absorber has a magnetic resonance at 8.2 GHz. Both below and above that frequency, the effective permeability is much greater than 1, indicating a strong magnetic response. Surprisingly, Fig. 8(b) shows a region where the index is negative above 8.2 GHz. This behavior shows that half of the absorption is taking place in a double negative region. At the maximum absorption frequency of 8.194 GHz,the relative impedance isz=1.0155?0.0003i, the indexn=0.6876+194.3234i, the permittivityε=0.6196+191.3522i, and the permeabilityμ=0.7575+197.3407i. It can be seen that this enormous imaginary part of index is the reason for the absorption of the metamaterial absorber.This result is consistent with the analysis of Landyet al.[8]

    Table 1. The maximum absorbance, minimum reflectance, transmittance,and corresponding frequencies of the metamaterial absorber as a function of b.

    Fig.8. The constitutive parameters of the metamaterial absorber with a metallic bottom layer retrieved by our method: (a)relative impedance,(b) index, (c) permittivity, and (d) permeability. The constitutive parameters retrieved by the metasurface method for the same absorber: (e)permittivity and(f)permeability.

    The effective permittivity and permeability retrieved by the metasurface method are shown in Figs.8(e)and 8(f). The trend of effective permittivity and permeability is the opposite of the electrical and magnetic resonance at the maximum absorption frequency. Meanwhile, the permittivity is positive,while the permeability is negative above and below the maximum absorption frequency. This status is inconsistent with the characteristics of the metamaterial absorber. Although the metasurface method is not affected by zero transmittance,which is very convenient to retrieve the effective constitutive parameters, it is inconsistent with the characteristics of the metamaterial absorber.

    4. Conclusion and perspectives

    The effective constitutive parameters of the metamaterial absorber are fundamental to understand its absorbing mechanism. Compared to these three retrieval methods, the constitutive parameters retrieved by our method are more successful in describing the characteristics due to the consideration of its non-reciprocity and electromagnetic coupling. For a metamaterial absorber with a metallic bottom layer, the effective constitutive parameters are successfully retrieved by creating openings in the metallic bottom layer. Besides, the influence of a side length in the opening is analyzed. It is found that this small opening allows one to obtain the constitutive parameters successfully and that no frequency shift occurs at the maximum absorption frequency. From the retrieved constitutive parameters, it is also found that the electromagnetic coupling is very strong at the absorption frequency and that the sizeable imaginary part of the index produces the wave absorption.Furthermore, there is a double negative absorption region above the maximum absorption frequency,which is of great significance to the understanding of the absorption mechanism.

    老师上课跳d突然被开到最大视频| 少妇人妻一区二区三区视频| 日韩不卡一区二区三区视频在线| 校园人妻丝袜中文字幕| 99热6这里只有精品| 少妇精品久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 色吧在线观看| videossex国产| 国产欧美日韩一区二区三区在线 | 久久久久精品性色| 欧美一级a爱片免费观看看| 国产精品一区二区在线观看99| 午夜福利在线在线| 男女边吃奶边做爰视频| 亚洲欧美日韩另类电影网站 | 日韩精品有码人妻一区| 国产精品久久久久久av不卡| 99久久人妻综合| 久久av网站| 91午夜精品亚洲一区二区三区| 午夜激情久久久久久久| 精品人妻熟女av久视频| 菩萨蛮人人尽说江南好唐韦庄| av又黄又爽大尺度在线免费看| 欧美一区二区亚洲| 国产在视频线精品| videos熟女内射| h日本视频在线播放| 亚洲成人中文字幕在线播放| 国产成人a∨麻豆精品| 中文字幕制服av| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| 最新中文字幕久久久久| 亚洲图色成人| 男女无遮挡免费网站观看| 小蜜桃在线观看免费完整版高清| 久久久精品免费免费高清| 看十八女毛片水多多多| 大话2 男鬼变身卡| 国产精品成人在线| 丰满人妻一区二区三区视频av| 亚洲国产精品一区三区| 好男人视频免费观看在线| 少妇熟女欧美另类| 日日啪夜夜爽| 亚洲在久久综合| av福利片在线观看| 亚洲第一区二区三区不卡| 精华霜和精华液先用哪个| 99久久精品热视频| 国产亚洲欧美精品永久| 免费大片18禁| av国产久精品久网站免费入址| 日韩欧美精品免费久久| 国产精品一二三区在线看| 亚洲精品一区蜜桃| 精品一品国产午夜福利视频| 午夜免费观看性视频| 日韩成人伦理影院| 色综合色国产| 高清午夜精品一区二区三区| 日韩av不卡免费在线播放| 国产精品国产三级专区第一集| 日本wwww免费看| 汤姆久久久久久久影院中文字幕| 欧美日韩精品成人综合77777| 色婷婷av一区二区三区视频| 色哟哟·www| av国产精品久久久久影院| 视频中文字幕在线观看| 久久久久人妻精品一区果冻| av在线播放精品| 日本欧美国产在线视频| 国产亚洲一区二区精品| 老女人水多毛片| 国产一区二区三区综合在线观看 | 肉色欧美久久久久久久蜜桃| 国产免费福利视频在线观看| 国产白丝娇喘喷水9色精品| 夜夜看夜夜爽夜夜摸| 免费高清在线观看视频在线观看| 久久国产乱子免费精品| 日本-黄色视频高清免费观看| 国产极品天堂在线| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼好多水| 视频中文字幕在线观看| 色婷婷久久久亚洲欧美| 久久久久久久大尺度免费视频| 亚洲国产毛片av蜜桃av| 亚洲性久久影院| 在线天堂最新版资源| 国产精品成人在线| 大片电影免费在线观看免费| 亚洲aⅴ乱码一区二区在线播放| 麻豆乱淫一区二区| 国产成人freesex在线| 国产 一区精品| 91在线精品国自产拍蜜月| 中文字幕制服av| h日本视频在线播放| 日韩制服骚丝袜av| 最近手机中文字幕大全| 欧美日本视频| 男女下面进入的视频免费午夜| 高清不卡的av网站| 精品亚洲成a人片在线观看 | 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| 汤姆久久久久久久影院中文字幕| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 99国产精品免费福利视频| 3wmmmm亚洲av在线观看| 欧美xxxx黑人xx丫x性爽| 一个人免费看片子| 亚洲精品亚洲一区二区| 亚洲成人手机| 成人美女网站在线观看视频| 亚洲成人av在线免费| av免费观看日本| 国模一区二区三区四区视频| 亚洲人与动物交配视频| 久久久a久久爽久久v久久| 精品酒店卫生间| av播播在线观看一区| 久久人人爽人人爽人人片va| 嫩草影院入口| 国产人妻一区二区三区在| 纯流量卡能插随身wifi吗| 国产淫语在线视频| 精品少妇黑人巨大在线播放| 国产伦精品一区二区三区四那| 久久女婷五月综合色啪小说| 伦精品一区二区三区| 国产有黄有色有爽视频| 亚洲精品乱码久久久久久按摩| 大片电影免费在线观看免费| 天堂俺去俺来也www色官网| 亚洲欧美日韩东京热| 国内揄拍国产精品人妻在线| 狂野欧美激情性bbbbbb| 色5月婷婷丁香| 一区在线观看完整版| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 欧美区成人在线视频| 午夜激情久久久久久久| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品自产自拍| 亚洲国产欧美人成| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 国产精品爽爽va在线观看网站| 亚洲精品中文字幕在线视频 | 精品酒店卫生间| 十分钟在线观看高清视频www | 久久精品久久久久久久性| 国产欧美亚洲国产| 欧美精品国产亚洲| 亚洲精品中文字幕在线视频 | 22中文网久久字幕| 一二三四中文在线观看免费高清| av专区在线播放| 91aial.com中文字幕在线观看| 亚洲成人手机| 男人添女人高潮全过程视频| 亚洲熟女精品中文字幕| 老司机影院成人| 日韩成人伦理影院| 亚州av有码| 亚洲人与动物交配视频| 黄色一级大片看看| 精品久久久久久久久av| 在线亚洲精品国产二区图片欧美 | 亚洲欧美日韩东京热| 99热网站在线观看| 国产亚洲一区二区精品| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满| 永久免费av网站大全| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 国产成人a∨麻豆精品| 精品久久久噜噜| 久久久午夜欧美精品| 大片免费播放器 马上看| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 免费黄色在线免费观看| 欧美三级亚洲精品| 一区二区三区四区激情视频| 成人一区二区视频在线观看| av播播在线观看一区| 久久人人爽av亚洲精品天堂 | 欧美区成人在线视频| 国产极品天堂在线| 国产国拍精品亚洲av在线观看| videossex国产| 女的被弄到高潮叫床怎么办| 欧美激情国产日韩精品一区| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 毛片女人毛片| 久久久久久久久久久丰满| 色综合色国产| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 免费看av在线观看网站| 日日摸夜夜添夜夜添av毛片| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 青春草视频在线免费观看| 深夜a级毛片| 中文字幕精品免费在线观看视频 | 最近中文字幕高清免费大全6| 最近最新中文字幕大全电影3| 久久热精品热| 成人无遮挡网站| 国产伦精品一区二区三区四那| 视频区图区小说| 女性被躁到高潮视频| 一个人看视频在线观看www免费| 在线观看三级黄色| 亚洲图色成人| 日韩中字成人| 亚洲精品成人av观看孕妇| 免费av不卡在线播放| 精品久久久久久久久av| 精品人妻一区二区三区麻豆| 看非洲黑人一级黄片| av女优亚洲男人天堂| 九草在线视频观看| 欧美性感艳星| 中文字幕久久专区| 国产精品一及| 性色av一级| 在线天堂最新版资源| 午夜免费鲁丝| 欧美97在线视频| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 国产av精品麻豆| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 亚洲精品,欧美精品| 夜夜骑夜夜射夜夜干| 国产成人一区二区在线| 十分钟在线观看高清视频www | 尤物成人国产欧美一区二区三区| 深夜a级毛片| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 午夜免费鲁丝| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 如何舔出高潮| 国产爱豆传媒在线观看| 好男人视频免费观看在线| 麻豆成人av视频| 免费不卡的大黄色大毛片视频在线观看| 欧美3d第一页| 一区二区三区精品91| 日本欧美国产在线视频| 全区人妻精品视频| 91精品伊人久久大香线蕉| a级一级毛片免费在线观看| 亚洲伊人久久精品综合| 亚洲精品456在线播放app| 欧美精品人与动牲交sv欧美| 国内精品宾馆在线| 精品国产露脸久久av麻豆| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 亚洲伊人久久精品综合| 九九爱精品视频在线观看| 久久精品夜色国产| 身体一侧抽搐| av不卡在线播放| 亚洲欧美日韩东京热| 91久久精品国产一区二区三区| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 老司机影院成人| 黑丝袜美女国产一区| 欧美性感艳星| 久久亚洲国产成人精品v| 亚州av有码| 久久久久久久国产电影| 少妇人妻一区二区三区视频| 国产美女午夜福利| 国产爱豆传媒在线观看| 女性被躁到高潮视频| 国产高清不卡午夜福利| 91精品伊人久久大香线蕉| 中文资源天堂在线| 国产精品一区二区在线不卡| 亚洲丝袜综合中文字幕| 高清av免费在线| 伊人久久国产一区二区| 精品一区二区免费观看| 中文字幕亚洲精品专区| 看非洲黑人一级黄片| 国产乱来视频区| 午夜福利网站1000一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲国产日韩一区二区| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看 | 婷婷色综合www| 亚洲国产日韩一区二区| 一区二区三区四区激情视频| 国产伦在线观看视频一区| 夫妻午夜视频| 免费少妇av软件| 七月丁香在线播放| 日日啪夜夜爽| 精品一区二区免费观看| 久久精品国产亚洲av天美| av播播在线观看一区| 少妇人妻精品综合一区二区| 天天躁夜夜躁狠狠久久av| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| 视频中文字幕在线观看| 国产成人一区二区在线| 少妇裸体淫交视频免费看高清| av视频免费观看在线观看| 啦啦啦在线观看免费高清www| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 国产乱来视频区| 欧美精品人与动牲交sv欧美| 熟女人妻精品中文字幕| 午夜福利高清视频| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 国产 精品1| 亚洲电影在线观看av| 卡戴珊不雅视频在线播放| 一个人看视频在线观看www免费| 久久ye,这里只有精品| av视频免费观看在线观看| 久久久国产一区二区| 免费少妇av软件| 丰满人妻一区二区三区视频av| 国产乱人偷精品视频| 黄片wwwwww| 久久久久久久大尺度免费视频| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 最后的刺客免费高清国语| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 女性被躁到高潮视频| 欧美日韩一区二区视频在线观看视频在线| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 在线天堂最新版资源| 亚洲va在线va天堂va国产| 成人亚洲精品一区在线观看 | 日韩成人伦理影院| 久久人人爽av亚洲精品天堂 | 性色avwww在线观看| 精品酒店卫生间| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 天美传媒精品一区二区| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 亚洲国产日韩一区二区| av卡一久久| 精品酒店卫生间| 91久久精品国产一区二区成人| 三级经典国产精品| av卡一久久| av福利片在线观看| 亚洲精品国产av成人精品| 99视频精品全部免费 在线| 欧美成人a在线观看| 国产精品.久久久| 六月丁香七月| 精品国产露脸久久av麻豆| 高清欧美精品videossex| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 九九在线视频观看精品| 麻豆成人午夜福利视频| av网站免费在线观看视频| 久久久久国产精品人妻一区二区| 亚洲av日韩在线播放| 简卡轻食公司| 汤姆久久久久久久影院中文字幕| 91精品国产九色| 国产真实伦视频高清在线观看| 欧美日韩亚洲高清精品| 又大又黄又爽视频免费| 老熟女久久久| 18禁裸乳无遮挡动漫免费视频| 夜夜爽夜夜爽视频| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 亚洲中文av在线| 美女内射精品一级片tv| 在线天堂最新版资源| 毛片女人毛片| 91午夜精品亚洲一区二区三区| 亚洲精品成人av观看孕妇| 街头女战士在线观看网站| 欧美3d第一页| 日韩制服骚丝袜av| 亚洲第一av免费看| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 综合色丁香网| 成人亚洲精品一区在线观看 | 亚洲最大成人中文| 18禁在线无遮挡免费观看视频| 99视频精品全部免费 在线| 99久久精品国产国产毛片| av网站免费在线观看视频| 97精品久久久久久久久久精品| 亚洲欧美精品专区久久| 99热这里只有精品一区| 各种免费的搞黄视频| 男女无遮挡免费网站观看| 伦理电影免费视频| 日韩国内少妇激情av| 国产免费视频播放在线视频| 你懂的网址亚洲精品在线观看| 丝袜脚勾引网站| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线 | 国产精品无大码| 午夜精品国产一区二区电影| 亚州av有码| 在线观看免费视频网站a站| 亚洲国产精品一区三区| 不卡视频在线观看欧美| 亚洲,一卡二卡三卡| 亚洲精品一二三| 少妇的逼好多水| 精品一品国产午夜福利视频| 国产精品爽爽va在线观看网站| 精品少妇黑人巨大在线播放| 日韩欧美精品免费久久| 在线观看av片永久免费下载| 免费看av在线观看网站| 久久久久久伊人网av| 国产成人a区在线观看| 丰满乱子伦码专区| 国产成人精品福利久久| 高清欧美精品videossex| 久久精品人妻少妇| 亚洲精品中文字幕在线视频 | 有码 亚洲区| 亚洲精品一二三| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 国产精品99久久99久久久不卡 | 两个人的视频大全免费| 秋霞在线观看毛片| 草草在线视频免费看| 国产 一区 欧美 日韩| 亚洲国产欧美人成| 国产探花极品一区二区| 一级毛片我不卡| 亚洲av欧美aⅴ国产| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 99热这里只有是精品50| 国产精品爽爽va在线观看网站| 欧美激情极品国产一区二区三区 | 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 日本vs欧美在线观看视频 | 日韩一本色道免费dvd| 亚洲成人一二三区av| 日韩制服骚丝袜av| h视频一区二区三区| 在线观看美女被高潮喷水网站| h日本视频在线播放| 亚洲国产色片| 成人黄色视频免费在线看| 最近最新中文字幕大全电影3| 色吧在线观看| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 如何舔出高潮| 国产真实伦视频高清在线观看| 男人狂女人下面高潮的视频| 2022亚洲国产成人精品| 国产亚洲一区二区精品| 日产精品乱码卡一卡2卡三| 99热6这里只有精品| 边亲边吃奶的免费视频| 国产精品久久久久成人av| 高清午夜精品一区二区三区| 好男人视频免费观看在线| 三级经典国产精品| av国产精品久久久久影院| 99re6热这里在线精品视频| 国产综合精华液| 免费看不卡的av| 多毛熟女@视频| 国产av一区二区精品久久 | 国产美女午夜福利| 纵有疾风起免费观看全集完整版| 大香蕉97超碰在线| 精品熟女少妇av免费看| 婷婷色综合www| 全区人妻精品视频| 精品久久久精品久久久| 一级毛片黄色毛片免费观看视频| 下体分泌物呈黄色| 少妇丰满av| 欧美97在线视频| 久久精品久久精品一区二区三区| 国产精品一区二区性色av| 热re99久久精品国产66热6| 丰满人妻一区二区三区视频av| 18+在线观看网站| 国产免费一区二区三区四区乱码| 91午夜精品亚洲一区二区三区| 亚洲不卡免费看| 色哟哟·www| 网址你懂的国产日韩在线| 最近2019中文字幕mv第一页| 精品国产三级普通话版| h视频一区二区三区| 一区二区三区四区激情视频| 91久久精品电影网| 国产欧美日韩一区二区三区在线 | av免费在线看不卡| 久久亚洲国产成人精品v| 亚洲精品国产av成人精品| 国产亚洲5aaaaa淫片| 中文在线观看免费www的网站| 国产高清国产精品国产三级 | 熟女人妻精品中文字幕| 男女下面进入的视频免费午夜| 男女无遮挡免费网站观看| 一二三四中文在线观看免费高清| 男的添女的下面高潮视频| 九九爱精品视频在线观看| 亚洲精品国产成人久久av| 亚洲av二区三区四区| 99热全是精品| 亚洲综合色惰| 久久久久久久久久成人| 亚洲欧美清纯卡通| 亚洲天堂av无毛| 亚洲第一av免费看| 久久 成人 亚洲| 久久热精品热| 新久久久久国产一级毛片| 国产综合精华液| 亚洲欧美一区二区三区黑人 | 亚洲中文av在线| 国产精品99久久99久久久不卡 | 日本av免费视频播放| 一个人免费看片子| 日本av手机在线免费观看| 国产高潮美女av| 中文字幕亚洲精品专区| av一本久久久久| 欧美区成人在线视频| 男人狂女人下面高潮的视频| 免费久久久久久久精品成人欧美视频 | 午夜免费男女啪啪视频观看| 日日撸夜夜添| 午夜福利视频精品| 免费av不卡在线播放| 日韩欧美精品免费久久| 国产成人精品久久久久久| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 特大巨黑吊av在线直播| 99热网站在线观看| 18+在线观看网站| 久久韩国三级中文字幕| 男女免费视频国产| a级毛色黄片| 亚洲怡红院男人天堂| av在线app专区| 精品一区二区免费观看| 免费少妇av软件| 亚洲欧洲日产国产| 国产毛片在线视频| 欧美xxxx黑人xx丫x性爽| 制服丝袜香蕉在线| 99热6这里只有精品| 观看av在线不卡| 又黄又爽又刺激的免费视频.| 国产成人精品婷婷| 亚洲,欧美,日韩| 嫩草影院入口| av网站免费在线观看视频|