• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structures and topological properties of TeSe2 monolayers*

    2021-11-23 07:30:50ZhengyangWan萬正陽HaoHuan郇昊HairuiBao鮑海瑞XiaojuanLiu劉曉娟andZhongqinYang楊中芹
    Chinese Physics B 2021年11期
    關(guān)鍵詞:正陽海瑞

    Zhengyang Wan(萬正陽) Hao Huan(郇昊) Hairui Bao(鮑海瑞)Xiaojuan Liu(劉曉娟) and Zhongqin Yang(楊中芹)

    1State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE)&Department of Physics,Fudan University,Shanghai 200433,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    Keywords: two-dimensional material,monolayer TeSe2,quantum spin Hall effect,topological insulator

    1. Introduction

    Since the discovery and successful fabrication of graphene,[1]two-dimensional(2D)materials have attached intensive attention because of their many novel physical properties, such as the quantum spin Hall (QSH) effect,[2]quantum anomalous Hall (QAH) effect,[3]valley Hall effect,[4]etc,making them be promising candidate materials for future high performance electronic, spintronic, and optoelectronic devices.[4-7]Currently,besides graphene,[8,9]various types of 2D materials have also been synthesized in experiments, including elemental 2D films from group III to group V, such as boronene,[10-12]silicene,[13-15]stanine,[16]black phosphorus films,[17-19]antimonene,[20,21]and bismuthine.[22]Some binary 2D compounds such as MoS2[23-26]and CrI3[27]and so on were also fabricated successfully. Although plenty of 2D materials were reported owning QSH or QAH effects,[2,28,29]only few systems having the QSH(such as the HgTe/CdTe[30]quantum well and bismuthine[22])or QAH(such as Cr doped(Bi,Sb)2Te3film[31])effects were confirmed in experiments.

    Based on previous developments, researchers have extended the 2D materials to group-VI monolayers.In 2017,Zhuet al.[32]studied the structures and stability of tellurene (2D Te monolayers)using the particle-swarm optimization method in combination with density functional theory. And bilayer tellurene films have been observed in their experiments.[32]Different from two atomic layers in silicene and black phosphorus monolayers, tellurene contains trilayers,[32]with the central-layer Te behaving metal-like and the two outer layers semiconductor-like. They found that this unique multivalent behavior of Te guarantees the structural stability of the material.[32]Yanet al.found two ultra-stable novel allotropes for Te few-layers from first-principles calculations.[33]These studies promoted the researches on the group-VI monolayer materials. It is meaningful to explore the electronic structures and the interesting topological effects in group-VI monolayer materials.

    In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely,α-TeSe2,β-TeSe2,andγ-TeSe2,are proposed and studied,all of which are semiconductors with indirect band gaps. Theγ-TeSe2monolayer is found being a QSH insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The topology of the material is identified by the calculations ofZ2topological invariants and the edge state. The opening mechanism of the global nontrivial band gap is analyzed.

    2. Computational models and methods

    For the 2D trilayered tellurene, the multiple valences of Te atoms promote the formation of a stable monolayer tellurene structure. Based on the studied structures of tellurene[32]and tellurium few-layers,[33]we build and consider three typical structures for the TeSe2monolayers. To obtain the TeSe2, the Te atoms in the two outer layers of tellurene are all replaced by Se atoms. Since Se electronegativity is larger than that of Te,the TeSe2structures are expected to be also very stable. The built three type structures for the TeSe2monolayers, namedα,β, andγphases, are illustrated in Figs. 1(a)-1(c), respectively. Theα-TeSe2has a similar structure to that of 1T-MoS2.[34]Both the Se1 and Se2,corresponding to the S atoms in the 1T-MoS2,are in the outer layers of the materials, with the coordination number of 3. The central-layer Te atoms correspond to the Mo atoms in the 1TMoS2,with the coordination number of 6. For theβ-TeSe2,it presents a corrugated structure. In the top view, the structure is composed of hexagons and rhombuses. The coordination number of each Te atom in theβ-TeSe2is 4,different from that in theα-TeSe2. Theγ-TeSe2has a similar geometric structure to that of 2H-MoS2,[34]with an in-plane mirror symmetry.Exotic properties may be dug out from these various structures of the TeSe2monolayers.

    The electronic states of the TeSe2monolayers with the three type structures are calculated within the framework of density functional theory (DFT), as implemented in the Viennaab initiosimulation package (VASP).[35]The projected augmented wave(PAW)potentials are adopted to deal with the electron-ion interactions.[36,37]The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) is used for the exchange-correlation functional.[38]A vacuum layer of 20 ?A is applied between the neighboring TeSe2layers to minimize the image interactions from the periodic boundary condition. The plane wave cutoff energy is set to be 500 eV.TheΓcenteredk-point sampling of 15×15×1 is adopted in the first Brillouin zone. The structures are optimized until the force on each atom is less than 0.01 eV/?A.To investigate the dynamic stability of the proposed TeSe2ML,phonon dispersion is calculated by using the DFT perturbation theory as implemented in the PHONOPY code. TheZ2topological invariant is calculated with the maximally localized Wannier functions[39]by using the Wannier 90 package. To obtain the edge states, we construct a TB Hamiltonian with a basis of maximally localized Wannier functions by using the Wannier Tools[40]package.

    3. Results and discussion

    3.1. Structures and electronic states of the TeSe2 monolayers

    We now study the geometric structures and the electronic states of the TeSe2monolayers with the three type structures(Figs.1(a)-1(c)). The optimized structural parameters and the calculated cohesive energies of the three materials are listed in Table 1. The bond lengths of the neighboring Te and Se atoms(2.82-2.87 ?A) are close to each other for the three structures studied. Due to the largest area of the 2D unit cell inβ-TeSe2,the layer thickness(dz)inβ-TeSe2is the smallest,corresponding to the smallest angle(θ)between the Te-Se bond and the horizontal direction (Table 1). Inγ-TeSe2, the Se1 is exactly localized on the top of the Se2.The strong repulsive forces between the two type anions (Se1 and Se2) result in the largest layer thickness in the structure,as seen from Table 1. Among the three structures,α-TeSe2has the largest cohesive energy whileγ-TeSe2has the smallest one.Thus,α-TeSe2is the most stable structure and the other two structures are metastable.The first Brillouin zones ofα-TeSe2(γ-TeSe2) andβ-TeSe2are hexagon and rectangle,respectively(Fig.1(d)).

    Fig.1. Top and side views of the optimized structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c). (d)The first Brillouin zones of α-TeSe2 or γ-TeSe2 (left)and β-TeSe2 (right).

    The calculated band structures ofα-TeSe2,β-TeSe2,andγ-TeSe2are displayed in Figs. 2(a)-2(c), respectively. The Fermi level(EF)is set at energy zero. The red dotted and the black solid curves present the bands for the materials without and with spin-orbit coupling(SOC)interactions,respectively.The SOC interactions do not change much the bands on the whole but can split the energy degeneracy at some positions in the momentum space, such as the places marked by the green ovals in Figs.2(a)and 2(c). The three materials are all semiconductors with indirect band gaps.The SOC interactions slightly reduce the band gaps due to the energy splitting. The energy bands ofα-TeSe2andβ-TeSe2with SOC are both doubly degenerate, while the bands ofγ-TeSe2are not. The reason is that both time-reversal and space-inversion symmetries are owned by theα-TeSe2andβ-TeSe2monolayers, while there is no space-inversion symmetry in theγ-TeSe2monolayer(Fig.1). In Figs.2(a)-2(c),three group bands are clearly observed in the band structures ofα-TeSe2andγ-TeSe2. This similarity can be ascribed to the relatively similar structures of the two materials(Figs.1(a)and 1(c)).

    Table 1. The results for the monolayer TeSe2 with different structures. The properties listed contain the lattice constants a and b,distance between the upper and lower Se atomic layers(dz),Te-Se bond length,angle between the Te-Se bonding direction and the horizontal direction(θ,marked in Fig.1),and the cohesive energy(Ec).

    Fig.2. Band structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c)without(red dotted curves)and with(black solid curves)the consideration of SOC.

    The similar structures ofα-TeSe2andγ-TeSe2also give rise to the close band gaps of the two materials (Fig. 3(a)).When the SOC is turned on,the band gaps ofα-TeSe2andγ-TeSe2are 0.38 eV and 0.65 eV, respectively. The obtained energy bands ofβ-TeSe2are given in Fig. 2(b), which are consistent with the results reported in Ref. [41]. The largest band gaps achieved inβ-TeSe2(Fig.3(a))can be ascribed to the relatively flat bands localized at the valence-band top and conduction-band bottom in the material(Fig.2(b)). The analysis of the orbital-resolved bands(not shown)shows that these flat bands are primarily composed of the pzorbitals of the Se1 and Se2 atoms. Thus,the dangling bonds of the Se pzorbitals in the uniqueβ-TeSe2structure cause the relatively large band gaps in the materials.

    Forα-TeSe2(γ-TeSe2), before the SOC is taken into account, doubly degenerate bands around 1.3 eV (1.0 eV)marked by green ovals occur, composed mainly by pxand pyorbitals of the Te and Se atoms (to be discussed), due to theC3vsymmetry in the monolayers. This degeneracy is lifted after the SOC is turned on. A pretty large direct band gap of 0.4/0.7 eV is opened there by the SOC in theα-TeSe2/γ-TeSe2monolayer due to the stronger intrinsic SOC coming from the pxand pyorbitals,compared to that from the pzorbitals.[42,43]The gaps opened in such kind of parabolic bands are generally topologically nontrivial, leading to the appearing of the QSH[44]or QAH[45,46]insulators with a non-Dirac-type bandgap opening mechanism. Since the concerned band gaps inαTeSe2andγ-TeSe2are nonglobal,the materials are in topological semimetal states. As displayed in Fig. 2(a), the dispersion of the bands around 1.3 eV ofα-TeSe2is very large.Expectably,it is difficult to tune the bands to produce a global topologically nontrivial band gap in theα-TeSe2monolayer.Therefore,theγ-TeSe2monolayer is focused in the following.

    Fig.3. (a)The band gaps of the three materials studied. The rectangles without and with the grids give the band gaps without and with the consideration of SOC.(b)The phonon spectrum of the γ-TeSe2 monolayer.

    Fig. 4. The energy band projection of the Se1 (a) and Te (b) atoms in the γ-TeSe2 monolayer without the consideration of SOC. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    In terms of the stability of theγ-TeSe2structure, the phonon spectrum is calculated and shown in Fig. 3(b). No negative frequency is found in Fig. 3(b), indicating the dynamic stability of theγ-TeSe2despite its lowest cohesive energy among the three structures. To deeply understand the electronic structure ofγ-TeSe2, the projected band structures of the Se1 and Te atoms are plotted in Fig.4 without considering SOC. Due to the in-plane mirror symmetry owned byγ-TeSe2(withD3hspace group), the upper layer Se1 and the lower layer Se2 atoms are equivalent.Therefore,only the band projection of the Se1 atom is analyzed. As shown in Figs.4(a)and 4(b),the valence-band top and conduction-band bottom at theΓpoint, with double degeneracy, are mainly contributed by the pxand pyorbitals of the Te or Se atoms. The degeneracy is lifted after the SOC is turned on. From the orbital distribution of the Se1 and Te atoms (Fig. 4), we can clearly find the bonding,nonbonding,and antibonding characteristics between the Se and Te atoms. The bonding states are formed between?6 eV and?2 eV.The nonbonding states are formed between?2 eV and 0 eV and antibonding states are formed between 0.5 eV and 2.8 eV.

    3.2. Strain effects in γ-TeSe2

    As an effective means to tune electronic structures,strain has been applied in multiple material systems.[47-50]We here apply in-plane biaxial strain to theγ-TeSe2monolayer,which is defined asε=(a?a0)/a0,wherea(a0)is the strained(unstrained) in-plane lattice constant. The positive and negative values ofεcorrespond to the tensile and compressive biaxial strains,respectively. The band evolution ofγ-TeSe2under different biaxial strain is shown in Fig.5. The bands we concern are located near 1.0 eV above theEFaround theΓpoint,indicated by a yellow rectangle in Fig.5(d).

    Fig.5. (a)-(e)The band structures of the γ-TeSe2 monolayer under strain of different strengths. The red dotted and black solid curves give the bands without and with SOC,respectively. (f)The global band gap as a function of the strain for the γ-TeSe2 monolayer. Obvious topological phase transition occurs with compressive strain applied.

    As shown in Fig.5,with the increase of the compressive strain(from Fig.5(d)to Fig.5(a)),the relative position of the characteristic doubly degenerate bands at theΓpoint moves to high energy region (from 1.0 eV in Fig. 5(d) to 1.4 eV in Fig.5(a)). Clearly,the dispersion of the local bands along theK-Γpath in this energy region decreases in the process,which is beneficial to the opening of the global band gap.In the same process,the minimum band gap along theK-Γpath,however,decreases,hampering the opening of the global band gap. The competition of these two respects gives rise to the global band gap increasing first and then decreasing as the increase of the compressive strain,as displayed in Fig.5(f). The global band gap of the system reaches the maximum of 0.14 eV with the strain ofε=?3.5%. In the absence of strain or under tensile strain,theγ-TeSe2monolayer owns a semimetallic state with a higher electronic conduction performance than the semiconductors because of its‘quasi’metallic band structures.

    The movement of the doubly degenerate bands at theΓpoint (marked by the yellow rectangle in Fig. 5(d)) under the compressive strain can be comprehended by the orbitalresolved densities of states (DOSs) of the Se1 and Te atoms shown in Fig. 6. Note that due to theC3vsymmetry owned by theγ-TeSe2monolayer, the DOSs of pxand pyorbitals of the Se1 (also Te) atoms are completely overlapped in Fig. 6.The unoccupied states of the Te atom are much more than that of the Se atoms,hinting the charge transfer from the Te to Se atoms, consistent with the above analysis. These multivalent states,similar to the cases of the tellurene and MoS2systems,ensure the structural stability of theγ-TeSe2monolayer. In Fig. 6(a), the Se1 p orbitals are mainly distributed between?2 eV and?0.5 eV together with a few distributions between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.The Te p orbitals are mainly distributed between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.Unlike the Se1 atom,the Te p orbitals are not distributed between?2 eV and?0.5 eV,corresponding to the nonbonding state between Te and Se as discussed in Fig.4. With the increase of the compressive strain,the Te-Se bond length decreases (Table 2). Thus, the Te-Se bonds become strong,leading to the bonding and antibonding states moving to the lower and higher energy regions, respectively.This trend can be seen obviously from Figs. 6(a)-6(d). For example,the antibonding states of the Te and Se atoms move from the energy region of 0.5-1.5 eV in Fig.6(a)to the energy region of 0.8-3.0 eV in Fig. 6(c). This behavior rationalizes well the movement to a high energy of the doubly degenerate bands at theΓpoint marked in Fig.5(d)with the increase of the compressive strain.

    Table 2. The structural parameters of the γ-TeSe2 monolayer under strain, including the layer thickness dz in the z direction, bond lengths of Te-Se and Te-Te,and angle θ between the Te-Se bonding direction and the horizontal direction(shown in Fig.1).

    We now understand the variation of the local band gap,marked by the red circle in Fig. 7(a), forγ-TeSe2under the compressive strain. As displayed in Fig. 7, this local band gap is opened due to the direct interactions between the px,py(also few pz) orbitals of Se and the px, pyorbitals of Te.With the increase of the compressive strain, the band gap decreases. The reason can be due to the decrease of the interactions between the px,pyorbitals of Se and the px,pyorbitals of Te. With the increase of the compressive strain, the layer thickness(dz)increases(Table 2), causing the increase of the distance between Se and Te along thezdirection. Thus,the direct interactions between the px,pyorbitals of Se and the px,pyorbitals of Te decrease.This trend is not beneficial for opening the global band gap after the SOC is taken into consideration.The combination of the variation of the band gap(marked by the red circle in Fig.7(a))and the movement to a high energy of the doubly degenerate bands(marked by the red triangle in Fig.7(a))under strain produces the global band gap increasing first and then decreasing with the increase of the compressive strain,as shown in Fig.5(f).The movement to a high energy of the doubly degenerate bands around 1.0 eV in Fig. 7(a) with the increase of the strain reflects the dispersion decrease of the local bands along theK-Γpath in the process. Thus, the opening of the global band gap in theγ-TeSe2monolayer can be understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px,pyorbitals and Te px,pyorbitals during the process.

    Fig. 6. (a)-(d) The orbital-resolved densities of states of Se1 and Te atom in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively. The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px, py, and pz orbitals of the corresponding atom,respectively.

    Fig.7.(a)-(d)The energy band projection of the Se1 and Te atoms in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively.The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    3.3. Topological properties of γ-TeSe2

    Since the concerned global band gap is located around 1.2 eV above theEF, it should be shifted down to theEFfor the transport measurement or applications, which can be achieved by adding two additional electrons per unit cell to theγ-TeSe2monolayer. Figure 8(a) shows the energy bands of the?4% strainedγ-TeSe2monolayer with two electrons added per unit cell.The electron doping concentration is about 1.5×1015cm?2,which can be experimentally realized via the current gating technologies.[51]In Fig. 8(a), theEFnow lies exactly within the band gap. The topological behavior of the band gap can be explored based on Fig.8(a). Before calculating the topological invariants of theγ-TeSe2monolayer, the energy bands obtained from the DFT are fit with the Wannier function interpolation method. The results are shown in Fig. 8(b), indicating high consistency between the two methods. TheZ2topological invariant is then obtained by calculating the evolution of the Wannier function center,[52]and the result is given in Fig.8(c). The number of intersections between any horizontal reference line and the Wannier function center evolution line in half of the Brillouin zone is odd. Thus, the energy band gap concerned hasZ2=1 and a QSH insulator is obtained for theγ-TeSe2monolayer. The edge states are also investigated for the system. Figure 8(d) displays the energy bands of a semi-infiniteγ-TeSe2monolayer.In the characteristic energy gap,besides a series of trivial edge states caused by the dangling bonds of the open boundary,a pair of edge states(marked by two small black arrows)appears, which connects the bottom of the conduction band and the top of the valence band. They are,thus,protected by the bulk topology. The appearance of the edge states as well as the obtainedZ2=1 in the monolayer shows that the global energy gap obtained in theγ-TeSe2monolayer is topologically nontrivial. The system remains a topologically nontrivial semimetal if tensile strain is applied as indicated in Fig.5(f).

    Fig.8. (a)Energy bands of the ?4%strained γ-TeSe2 monolayer after doping two electrons into the unit cell. The EF is now within the global topologically nontrivial band gap. (b)Comparison of the energy bands obtained by using the Wannier function interpolation method and the DFT.(c)The Wannier charge center evolution diagram of the material. (d)The energy bands of a semi-infinite monolayer γ-TeSe2 with ?4%strain. The topologically nontrivial edge states of the material are marked by arrows.

    4. Conclusions

    Based on the density functional theory and Wannier function method, we studied the electronic states and topological properties of the TeSe2monolayer. Numerical results show that the stableα-TeSe2,β-TeSe2, andγ-TeSe2are semiconductor materials with indirect gaps. Theα-TeSe2is the most stable and a double degeneracy phenomenon is found in the bands ofα-TeSe2andβ-TeSe2. When the compressive strain increases from 0% to 6%, the global topologically nontrivial band gap ofγ-TeSe2is opened and increases first and then decreases. The trend is comprehended based on a competition mechanism. When the compressive strain of 3.5%is applied,theγ-TeSe2monolayer has the maximum global topologically nontrivial band gap of 0.14 eV. The topologically nontrivial feature of the material is characterized by the calculatedZ2topological invariant and the edge state. Theγ-TeSe2remains a topological semimetal with tensile strain up to 4%.Our work shows that group-VI binary 2D compounds can be new type topological materials and have potential applications in the future electronics and spintronics.

    Acknowledgement

    The calculations were performed at the High Performance Computational Center (HPCC) of the Department of Physics at Fudan University.

    猜你喜歡
    正陽海瑞
    夏日正陽
    “海瑞定理Ⅰ”的歷史性反思
    法律史評論(2020年1期)2020-09-11 06:25:02
    徐正陽 油畫作品
    讓媽媽干活
    中華家教(2018年9期)2018-10-19 09:53:46
    蛋白質(zhì)計算問題歸納
    秋風(fēng)
    天下錢糧減三分
    凈月之下·長春之璀
    參花(下)(2014年1期)2014-12-12 19:10:55
    論海瑞的“廉名”傳播及歷史啟示
    Corpus—based Study on Complementizer Usage of Shuo in Written
    亚洲,一卡二卡三卡| 国产精品麻豆人妻色哟哟久久| 国模一区二区三区四区视频| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 国产中年淑女户外野战色| 国产精品av视频在线免费观看| av视频免费观看在线观看| 国产综合精华液| 91久久精品电影网| 久久精品国产a三级三级三级| 最新中文字幕久久久久| 在线播放无遮挡| 亚洲成人一二三区av| 一级a做视频免费观看| 女人久久www免费人成看片| 最近的中文字幕免费完整| 亚洲怡红院男人天堂| 国产成人freesex在线| 久久久久国产精品人妻一区二区| 久久久成人免费电影| 国产午夜精品一二区理论片| 亚洲综合精品二区| 国产精品人妻久久久影院| 国产欧美亚洲国产| a级毛色黄片| 欧美日韩一区二区视频在线观看视频在线| 天堂8中文在线网| 男女边摸边吃奶| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 中文天堂在线官网| 久久久a久久爽久久v久久| 亚洲欧美日韩卡通动漫| 成人国产麻豆网| 色综合色国产| 成年av动漫网址| 久久6这里有精品| 久久国产乱子免费精品| 国产大屁股一区二区在线视频| 视频中文字幕在线观看| 少妇精品久久久久久久| 亚洲欧美中文字幕日韩二区| www.色视频.com| 寂寞人妻少妇视频99o| 中文在线观看免费www的网站| av国产免费在线观看| 欧美日本视频| 国产视频首页在线观看| 久久亚洲国产成人精品v| 亚洲va在线va天堂va国产| 成人黄色视频免费在线看| 久久这里有精品视频免费| 亚洲精品成人av观看孕妇| 国产综合精华液| 少妇人妻一区二区三区视频| 亚洲中文av在线| 伊人久久国产一区二区| 少妇猛男粗大的猛烈进出视频| 99热国产这里只有精品6| 日本黄色日本黄色录像| 国产中年淑女户外野战色| 啦啦啦中文免费视频观看日本| 亚洲精品自拍成人| 色5月婷婷丁香| 欧美3d第一页| 久久精品久久精品一区二区三区| av网站免费在线观看视频| 18+在线观看网站| 看十八女毛片水多多多| 蜜桃在线观看..| av女优亚洲男人天堂| 色婷婷av一区二区三区视频| 亚洲av二区三区四区| 女的被弄到高潮叫床怎么办| 午夜福利视频精品| 黑人猛操日本美女一级片| av网站免费在线观看视频| 成人午夜精彩视频在线观看| 国产精品蜜桃在线观看| 嫩草影院新地址| 少妇丰满av| 永久网站在线| 啦啦啦啦在线视频资源| 一区二区三区四区激情视频| 国产亚洲5aaaaa淫片| 蜜桃在线观看..| 亚洲不卡免费看| 97热精品久久久久久| 大片电影免费在线观看免费| 精品人妻偷拍中文字幕| 日日摸夜夜添夜夜添av毛片| 婷婷色av中文字幕| 人人妻人人添人人爽欧美一区卜 | 国产淫语在线视频| 中文字幕精品免费在线观看视频 | 哪个播放器可以免费观看大片| 亚洲国产毛片av蜜桃av| 亚洲精品第二区| 视频中文字幕在线观看| 婷婷色综合大香蕉| 插逼视频在线观看| 一级毛片aaaaaa免费看小| 秋霞在线观看毛片| 免费观看无遮挡的男女| 丰满人妻一区二区三区视频av| 制服丝袜香蕉在线| 九草在线视频观看| 精品国产一区二区三区久久久樱花 | 亚洲一级一片aⅴ在线观看| 精品国产乱码久久久久久小说| 插逼视频在线观看| 乱码一卡2卡4卡精品| 嘟嘟电影网在线观看| 一级黄片播放器| 男人爽女人下面视频在线观看| 男男h啪啪无遮挡| 久久人人爽av亚洲精品天堂 | 国产一级毛片在线| 亚洲欧美日韩另类电影网站 | 伊人久久国产一区二区| 老师上课跳d突然被开到最大视频| 欧美高清性xxxxhd video| 免费黄网站久久成人精品| 免费黄色在线免费观看| 99热全是精品| 国产精品伦人一区二区| 在线亚洲精品国产二区图片欧美 | 免费高清在线观看视频在线观看| 日韩人妻高清精品专区| 免费人妻精品一区二区三区视频| 国产亚洲5aaaaa淫片| 亚洲精品久久久久久婷婷小说| 欧美亚洲 丝袜 人妻 在线| 国产女主播在线喷水免费视频网站| 成年美女黄网站色视频大全免费 | 亚洲成人手机| 热99国产精品久久久久久7| 日韩亚洲欧美综合| 国产老妇伦熟女老妇高清| 午夜激情福利司机影院| 国产精品国产三级国产专区5o| 国产69精品久久久久777片| 久久国产亚洲av麻豆专区| av在线播放精品| 成人特级av手机在线观看| 久久99热这里只有精品18| av免费在线看不卡| 高清视频免费观看一区二区| 国产片特级美女逼逼视频| 国产成人免费无遮挡视频| 亚洲av电影在线观看一区二区三区| 大片电影免费在线观看免费| 看非洲黑人一级黄片| 波野结衣二区三区在线| 国产又色又爽无遮挡免| 又爽又黄a免费视频| 韩国av在线不卡| 色婷婷久久久亚洲欧美| 午夜福利视频精品| 91久久精品国产一区二区成人| 国产高清国产精品国产三级 | 一级二级三级毛片免费看| 国产成人91sexporn| 成人毛片a级毛片在线播放| 内射极品少妇av片p| 啦啦啦啦在线视频资源| 国产精品一区www在线观看| 在线观看美女被高潮喷水网站| 五月玫瑰六月丁香| 日韩精品有码人妻一区| 只有这里有精品99| 高清黄色对白视频在线免费看 | 免费不卡的大黄色大毛片视频在线观看| 久久99蜜桃精品久久| 日韩欧美 国产精品| 成人亚洲欧美一区二区av| 国产在线免费精品| 黄片wwwwww| 亚洲精品自拍成人| 国产探花极品一区二区| 亚洲av中文字字幕乱码综合| 一个人免费看片子| 久久久久久久久久久丰满| 国产中年淑女户外野战色| 色婷婷久久久亚洲欧美| 六月丁香七月| 国产成人精品婷婷| 欧美日韩在线观看h| 22中文网久久字幕| 国产成人精品久久久久久| 精品酒店卫生间| 在线精品无人区一区二区三 | 国产又色又爽无遮挡免| 纯流量卡能插随身wifi吗| 日韩强制内射视频| 99久久中文字幕三级久久日本| 欧美日韩在线观看h| 国产免费福利视频在线观看| 精品少妇黑人巨大在线播放| 亚洲av中文字字幕乱码综合| 国产在线一区二区三区精| 日本黄色片子视频| 熟女人妻精品中文字幕| 在现免费观看毛片| 久久久色成人| 高清欧美精品videossex| 久久午夜福利片| 综合色丁香网| 欧美性感艳星| 欧美一区二区亚洲| 久久国产亚洲av麻豆专区| 麻豆成人午夜福利视频| 妹子高潮喷水视频| 亚洲人成网站高清观看| 久久av网站| .国产精品久久| 九草在线视频观看| 亚洲欧美日韩东京热| 男人添女人高潮全过程视频| tube8黄色片| 九九爱精品视频在线观看| 精品一区二区三区视频在线| av国产久精品久网站免费入址| 一级毛片 在线播放| 亚洲精品亚洲一区二区| 欧美性感艳星| 久久影院123| 亚洲精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 国产精品99久久久久久久久| 亚洲人成网站在线观看播放| 欧美97在线视频| 小蜜桃在线观看免费完整版高清| 99久久精品一区二区三区| 久久毛片免费看一区二区三区| 免费看不卡的av| av视频免费观看在线观看| av视频免费观看在线观看| 亚洲人成网站在线观看播放| 久热这里只有精品99| 男女无遮挡免费网站观看| 国产日韩欧美亚洲二区| 亚洲人成网站在线播| av线在线观看网站| 国产爽快片一区二区三区| 久久久久精品性色| 国产精品欧美亚洲77777| 18禁在线播放成人免费| 久久99热这里只频精品6学生| av在线播放精品| 99久久综合免费| 国产精品爽爽va在线观看网站| 美女xxoo啪啪120秒动态图| 日本爱情动作片www.在线观看| 天堂8中文在线网| 亚洲精品国产成人久久av| 成人漫画全彩无遮挡| 日韩制服骚丝袜av| 又大又黄又爽视频免费| 一区二区三区精品91| 永久网站在线| 一级毛片黄色毛片免费观看视频| 色网站视频免费| 亚洲国产高清在线一区二区三| 成人亚洲欧美一区二区av| .国产精品久久| 人人妻人人看人人澡| kizo精华| 国产精品不卡视频一区二区| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久大av| 十分钟在线观看高清视频www | 22中文网久久字幕| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 身体一侧抽搐| 欧美日韩一区二区视频在线观看视频在线| 亚洲经典国产精华液单| 国产精品99久久久久久久久| 亚洲欧美日韩东京热| 人人妻人人澡人人爽人人夜夜| 亚洲国产高清在线一区二区三| 亚洲av日韩在线播放| 亚洲精品日韩在线中文字幕| 街头女战士在线观看网站| 亚洲精品日韩av片在线观看| 国产乱来视频区| 日本黄色片子视频| 国产精品久久久久久精品古装| a 毛片基地| 建设人人有责人人尽责人人享有的 | 国产在线视频一区二区| 亚洲最大成人中文| 免费观看在线日韩| 国产极品天堂在线| 精品久久久久久久久av| 日韩成人av中文字幕在线观看| 国产免费视频播放在线视频| 亚洲国产最新在线播放| 国产精品99久久99久久久不卡 | 亚洲av国产av综合av卡| 亚洲一区二区三区欧美精品| 汤姆久久久久久久影院中文字幕| 国产精品国产三级专区第一集| 哪个播放器可以免费观看大片| 成人漫画全彩无遮挡| 欧美xxxx性猛交bbbb| av专区在线播放| 在线观看av片永久免费下载| 久久久久视频综合| 国产亚洲精品久久久com| 丝袜喷水一区| 插逼视频在线观看| 最近最新中文字幕免费大全7| 国产免费一区二区三区四区乱码| av国产久精品久网站免费入址| 欧美xxxx性猛交bbbb| 干丝袜人妻中文字幕| 久久99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 成人美女网站在线观看视频| 蜜桃在线观看..| 一个人看的www免费观看视频| 制服丝袜香蕉在线| 2022亚洲国产成人精品| 五月玫瑰六月丁香| 成人漫画全彩无遮挡| 综合色丁香网| 丰满迷人的少妇在线观看| 九九久久精品国产亚洲av麻豆| 久久久久精品久久久久真实原创| 亚洲av成人精品一二三区| 亚洲美女视频黄频| 亚洲精品色激情综合| 91在线精品国自产拍蜜月| 少妇猛男粗大的猛烈进出视频| 一区二区三区乱码不卡18| 麻豆精品久久久久久蜜桃| 韩国高清视频一区二区三区| 亚洲精品456在线播放app| 亚洲精品乱码久久久v下载方式| 男女无遮挡免费网站观看| 日韩,欧美,国产一区二区三区| av福利片在线观看| 22中文网久久字幕| 草草在线视频免费看| 男女国产视频网站| 一本—道久久a久久精品蜜桃钙片| 亚洲内射少妇av| 色吧在线观看| 一边亲一边摸免费视频| 亚洲一级一片aⅴ在线观看| 中国三级夫妇交换| 男女国产视频网站| 亚洲高清免费不卡视频| 一区二区三区乱码不卡18| 下体分泌物呈黄色| 久久99热6这里只有精品| 天堂俺去俺来也www色官网| 视频区图区小说| av在线观看视频网站免费| 亚洲欧洲国产日韩| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 成人一区二区视频在线观看| 国产69精品久久久久777片| 一二三四中文在线观看免费高清| 国产精品免费大片| 黑人猛操日本美女一级片| 3wmmmm亚洲av在线观看| 国产高潮美女av| 国产 一区精品| 久久99热这里只频精品6学生| 日本欧美视频一区| 最近最新中文字幕大全电影3| 国产免费一区二区三区四区乱码| 51国产日韩欧美| 熟妇人妻不卡中文字幕| 99re6热这里在线精品视频| 国产黄色视频一区二区在线观看| 精品一区二区三卡| 欧美日韩一区二区视频在线观看视频在线| 日本av免费视频播放| 综合色丁香网| 少妇熟女欧美另类| 色5月婷婷丁香| 自拍偷自拍亚洲精品老妇| 国产精品精品国产色婷婷| 成年免费大片在线观看| 人妻 亚洲 视频| 婷婷色麻豆天堂久久| 噜噜噜噜噜久久久久久91| 蜜桃亚洲精品一区二区三区| 久久久久久久久久人人人人人人| 欧美日韩国产mv在线观看视频 | 一区二区三区精品91| 欧美精品国产亚洲| 毛片女人毛片| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 国产男女内射视频| 少妇人妻精品综合一区二区| 国产精品不卡视频一区二区| 国产精品成人在线| 嫩草影院入口| 国产成人a区在线观看| av在线观看视频网站免费| 久久97久久精品| 高清毛片免费看| 插逼视频在线观看| 夫妻午夜视频| 国产v大片淫在线免费观看| 黄色日韩在线| 精华霜和精华液先用哪个| 日韩强制内射视频| 日韩 亚洲 欧美在线| 精品亚洲成国产av| 99国产精品免费福利视频| 久久女婷五月综合色啪小说| 欧美精品人与动牲交sv欧美| 国产精品无大码| 国产成人免费观看mmmm| 成人特级av手机在线观看| 毛片一级片免费看久久久久| 丰满少妇做爰视频| 狂野欧美激情性bbbbbb| 国产爽快片一区二区三区| 午夜免费男女啪啪视频观看| 国产成人一区二区在线| 制服丝袜香蕉在线| 欧美日韩精品成人综合77777| av又黄又爽大尺度在线免费看| 亚洲aⅴ乱码一区二区在线播放| 国产中年淑女户外野战色| 99热这里只有是精品50| 欧美日韩综合久久久久久| 日韩av免费高清视频| 美女高潮的动态| 亚洲经典国产精华液单| 99国产精品免费福利视频| 国产精品国产av在线观看| 婷婷色综合大香蕉| 国产在视频线精品| 人人妻人人看人人澡| 日本vs欧美在线观看视频 | 欧美日韩国产mv在线观看视频 | 七月丁香在线播放| 欧美xxxx性猛交bbbb| 日本黄色日本黄色录像| 丰满人妻一区二区三区视频av| 国产成人aa在线观看| 亚洲最大成人中文| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 国产黄片美女视频| 多毛熟女@视频| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看 | 激情五月婷婷亚洲| 国产久久久一区二区三区| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品| 亚洲天堂av无毛| 夜夜骑夜夜射夜夜干| 不卡视频在线观看欧美| 18禁裸乳无遮挡动漫免费视频| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在| 在线观看国产h片| 精品亚洲成国产av| 哪个播放器可以免费观看大片| 成人无遮挡网站| 日韩在线高清观看一区二区三区| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 色网站视频免费| 日韩强制内射视频| 国产 一区 欧美 日韩| 久久99蜜桃精品久久| 日韩亚洲欧美综合| 九草在线视频观看| 精品一区在线观看国产| 18禁在线播放成人免费| videos熟女内射| 日本与韩国留学比较| 热99国产精品久久久久久7| 欧美激情极品国产一区二区三区 | 免费av中文字幕在线| 国产久久久一区二区三区| 国产黄色免费在线视频| 18禁裸乳无遮挡免费网站照片| 伦精品一区二区三区| xxx大片免费视频| 精品99又大又爽又粗少妇毛片| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 成人午夜精彩视频在线观看| 国产精品秋霞免费鲁丝片| 欧美3d第一页| 日韩欧美 国产精品| 精品久久久久久久末码| 国产精品人妻久久久久久| 黑人高潮一二区| 亚洲不卡免费看| 亚洲精品,欧美精品| 最近手机中文字幕大全| 成人高潮视频无遮挡免费网站| 黑人猛操日本美女一级片| 国产免费又黄又爽又色| 国内揄拍国产精品人妻在线| 99热全是精品| av.在线天堂| 18禁在线无遮挡免费观看视频| 伦精品一区二区三区| 97在线视频观看| 久久久久久久亚洲中文字幕| 日本wwww免费看| 日本黄色片子视频| 边亲边吃奶的免费视频| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 2018国产大陆天天弄谢| 直男gayav资源| 亚洲精品,欧美精品| 在线免费十八禁| 国产av码专区亚洲av| 嫩草影院新地址| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 国产成人精品一,二区| 最黄视频免费看| 国产乱来视频区| 久久久久久九九精品二区国产| 婷婷色综合www| 一个人看的www免费观看视频| 嫩草影院新地址| 国产成人freesex在线| 久久青草综合色| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 干丝袜人妻中文字幕| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 久久久久久久精品精品| 久久久欧美国产精品| 久久人人爽人人爽人人片va| 如何舔出高潮| 欧美日韩在线观看h| 国产精品一二三区在线看| 大话2 男鬼变身卡| 王馨瑶露胸无遮挡在线观看| 亚洲欧美日韩东京热| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 亚洲电影在线观看av| 精品久久久精品久久久| 亚洲最大成人中文| 综合色丁香网| 国产毛片在线视频| 丰满乱子伦码专区| 另类亚洲欧美激情| 在线观看国产h片| 国产伦在线观看视频一区| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 国产成人a∨麻豆精品| 亚洲成色77777| 天天躁日日操中文字幕| av天堂中文字幕网| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 51国产日韩欧美| 亚洲欧美精品专区久久| 久热久热在线精品观看| 欧美日韩在线观看h| 亚洲av综合色区一区| 成人黄色视频免费在线看| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 欧美日韩亚洲高清精品| 久久精品久久久久久噜噜老黄| 亚洲图色成人| 亚洲自偷自拍三级| 精品一品国产午夜福利视频| 久久ye,这里只有精品| 久久精品国产亚洲av涩爱| 亚洲婷婷狠狠爱综合网| 插逼视频在线观看| 国产精品一区www在线观看| 免费高清在线观看视频在线观看| 成人二区视频| 观看av在线不卡| 丝袜喷水一区| 久久ye,这里只有精品| 亚洲色图av天堂| 高清欧美精品videossex| 亚洲精品自拍成人| 国产一级毛片在线| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那| 欧美一区二区亚洲| 最黄视频免费看| 丝瓜视频免费看黄片| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 午夜福利视频精品|