• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structures and topological properties of TeSe2 monolayers*

    2021-11-23 07:30:50ZhengyangWan萬正陽HaoHuan郇昊HairuiBao鮑海瑞XiaojuanLiu劉曉娟andZhongqinYang楊中芹
    Chinese Physics B 2021年11期
    關(guān)鍵詞:正陽海瑞

    Zhengyang Wan(萬正陽) Hao Huan(郇昊) Hairui Bao(鮑海瑞)Xiaojuan Liu(劉曉娟) and Zhongqin Yang(楊中芹)

    1State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE)&Department of Physics,Fudan University,Shanghai 200433,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    Keywords: two-dimensional material,monolayer TeSe2,quantum spin Hall effect,topological insulator

    1. Introduction

    Since the discovery and successful fabrication of graphene,[1]two-dimensional(2D)materials have attached intensive attention because of their many novel physical properties, such as the quantum spin Hall (QSH) effect,[2]quantum anomalous Hall (QAH) effect,[3]valley Hall effect,[4]etc,making them be promising candidate materials for future high performance electronic, spintronic, and optoelectronic devices.[4-7]Currently,besides graphene,[8,9]various types of 2D materials have also been synthesized in experiments, including elemental 2D films from group III to group V, such as boronene,[10-12]silicene,[13-15]stanine,[16]black phosphorus films,[17-19]antimonene,[20,21]and bismuthine.[22]Some binary 2D compounds such as MoS2[23-26]and CrI3[27]and so on were also fabricated successfully. Although plenty of 2D materials were reported owning QSH or QAH effects,[2,28,29]only few systems having the QSH(such as the HgTe/CdTe[30]quantum well and bismuthine[22])or QAH(such as Cr doped(Bi,Sb)2Te3film[31])effects were confirmed in experiments.

    Based on previous developments, researchers have extended the 2D materials to group-VI monolayers.In 2017,Zhuet al.[32]studied the structures and stability of tellurene (2D Te monolayers)using the particle-swarm optimization method in combination with density functional theory. And bilayer tellurene films have been observed in their experiments.[32]Different from two atomic layers in silicene and black phosphorus monolayers, tellurene contains trilayers,[32]with the central-layer Te behaving metal-like and the two outer layers semiconductor-like. They found that this unique multivalent behavior of Te guarantees the structural stability of the material.[32]Yanet al.found two ultra-stable novel allotropes for Te few-layers from first-principles calculations.[33]These studies promoted the researches on the group-VI monolayer materials. It is meaningful to explore the electronic structures and the interesting topological effects in group-VI monolayer materials.

    In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely,α-TeSe2,β-TeSe2,andγ-TeSe2,are proposed and studied,all of which are semiconductors with indirect band gaps. Theγ-TeSe2monolayer is found being a QSH insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The topology of the material is identified by the calculations ofZ2topological invariants and the edge state. The opening mechanism of the global nontrivial band gap is analyzed.

    2. Computational models and methods

    For the 2D trilayered tellurene, the multiple valences of Te atoms promote the formation of a stable monolayer tellurene structure. Based on the studied structures of tellurene[32]and tellurium few-layers,[33]we build and consider three typical structures for the TeSe2monolayers. To obtain the TeSe2, the Te atoms in the two outer layers of tellurene are all replaced by Se atoms. Since Se electronegativity is larger than that of Te,the TeSe2structures are expected to be also very stable. The built three type structures for the TeSe2monolayers, namedα,β, andγphases, are illustrated in Figs. 1(a)-1(c), respectively. Theα-TeSe2has a similar structure to that of 1T-MoS2.[34]Both the Se1 and Se2,corresponding to the S atoms in the 1T-MoS2,are in the outer layers of the materials, with the coordination number of 3. The central-layer Te atoms correspond to the Mo atoms in the 1TMoS2,with the coordination number of 6. For theβ-TeSe2,it presents a corrugated structure. In the top view, the structure is composed of hexagons and rhombuses. The coordination number of each Te atom in theβ-TeSe2is 4,different from that in theα-TeSe2. Theγ-TeSe2has a similar geometric structure to that of 2H-MoS2,[34]with an in-plane mirror symmetry.Exotic properties may be dug out from these various structures of the TeSe2monolayers.

    The electronic states of the TeSe2monolayers with the three type structures are calculated within the framework of density functional theory (DFT), as implemented in the Viennaab initiosimulation package (VASP).[35]The projected augmented wave(PAW)potentials are adopted to deal with the electron-ion interactions.[36,37]The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) is used for the exchange-correlation functional.[38]A vacuum layer of 20 ?A is applied between the neighboring TeSe2layers to minimize the image interactions from the periodic boundary condition. The plane wave cutoff energy is set to be 500 eV.TheΓcenteredk-point sampling of 15×15×1 is adopted in the first Brillouin zone. The structures are optimized until the force on each atom is less than 0.01 eV/?A.To investigate the dynamic stability of the proposed TeSe2ML,phonon dispersion is calculated by using the DFT perturbation theory as implemented in the PHONOPY code. TheZ2topological invariant is calculated with the maximally localized Wannier functions[39]by using the Wannier 90 package. To obtain the edge states, we construct a TB Hamiltonian with a basis of maximally localized Wannier functions by using the Wannier Tools[40]package.

    3. Results and discussion

    3.1. Structures and electronic states of the TeSe2 monolayers

    We now study the geometric structures and the electronic states of the TeSe2monolayers with the three type structures(Figs.1(a)-1(c)). The optimized structural parameters and the calculated cohesive energies of the three materials are listed in Table 1. The bond lengths of the neighboring Te and Se atoms(2.82-2.87 ?A) are close to each other for the three structures studied. Due to the largest area of the 2D unit cell inβ-TeSe2,the layer thickness(dz)inβ-TeSe2is the smallest,corresponding to the smallest angle(θ)between the Te-Se bond and the horizontal direction (Table 1). Inγ-TeSe2, the Se1 is exactly localized on the top of the Se2.The strong repulsive forces between the two type anions (Se1 and Se2) result in the largest layer thickness in the structure,as seen from Table 1. Among the three structures,α-TeSe2has the largest cohesive energy whileγ-TeSe2has the smallest one.Thus,α-TeSe2is the most stable structure and the other two structures are metastable.The first Brillouin zones ofα-TeSe2(γ-TeSe2) andβ-TeSe2are hexagon and rectangle,respectively(Fig.1(d)).

    Fig.1. Top and side views of the optimized structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c). (d)The first Brillouin zones of α-TeSe2 or γ-TeSe2 (left)and β-TeSe2 (right).

    The calculated band structures ofα-TeSe2,β-TeSe2,andγ-TeSe2are displayed in Figs. 2(a)-2(c), respectively. The Fermi level(EF)is set at energy zero. The red dotted and the black solid curves present the bands for the materials without and with spin-orbit coupling(SOC)interactions,respectively.The SOC interactions do not change much the bands on the whole but can split the energy degeneracy at some positions in the momentum space, such as the places marked by the green ovals in Figs.2(a)and 2(c). The three materials are all semiconductors with indirect band gaps.The SOC interactions slightly reduce the band gaps due to the energy splitting. The energy bands ofα-TeSe2andβ-TeSe2with SOC are both doubly degenerate, while the bands ofγ-TeSe2are not. The reason is that both time-reversal and space-inversion symmetries are owned by theα-TeSe2andβ-TeSe2monolayers, while there is no space-inversion symmetry in theγ-TeSe2monolayer(Fig.1). In Figs.2(a)-2(c),three group bands are clearly observed in the band structures ofα-TeSe2andγ-TeSe2. This similarity can be ascribed to the relatively similar structures of the two materials(Figs.1(a)and 1(c)).

    Table 1. The results for the monolayer TeSe2 with different structures. The properties listed contain the lattice constants a and b,distance between the upper and lower Se atomic layers(dz),Te-Se bond length,angle between the Te-Se bonding direction and the horizontal direction(θ,marked in Fig.1),and the cohesive energy(Ec).

    Fig.2. Band structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c)without(red dotted curves)and with(black solid curves)the consideration of SOC.

    The similar structures ofα-TeSe2andγ-TeSe2also give rise to the close band gaps of the two materials (Fig. 3(a)).When the SOC is turned on,the band gaps ofα-TeSe2andγ-TeSe2are 0.38 eV and 0.65 eV, respectively. The obtained energy bands ofβ-TeSe2are given in Fig. 2(b), which are consistent with the results reported in Ref. [41]. The largest band gaps achieved inβ-TeSe2(Fig.3(a))can be ascribed to the relatively flat bands localized at the valence-band top and conduction-band bottom in the material(Fig.2(b)). The analysis of the orbital-resolved bands(not shown)shows that these flat bands are primarily composed of the pzorbitals of the Se1 and Se2 atoms. Thus,the dangling bonds of the Se pzorbitals in the uniqueβ-TeSe2structure cause the relatively large band gaps in the materials.

    Forα-TeSe2(γ-TeSe2), before the SOC is taken into account, doubly degenerate bands around 1.3 eV (1.0 eV)marked by green ovals occur, composed mainly by pxand pyorbitals of the Te and Se atoms (to be discussed), due to theC3vsymmetry in the monolayers. This degeneracy is lifted after the SOC is turned on. A pretty large direct band gap of 0.4/0.7 eV is opened there by the SOC in theα-TeSe2/γ-TeSe2monolayer due to the stronger intrinsic SOC coming from the pxand pyorbitals,compared to that from the pzorbitals.[42,43]The gaps opened in such kind of parabolic bands are generally topologically nontrivial, leading to the appearing of the QSH[44]or QAH[45,46]insulators with a non-Dirac-type bandgap opening mechanism. Since the concerned band gaps inαTeSe2andγ-TeSe2are nonglobal,the materials are in topological semimetal states. As displayed in Fig. 2(a), the dispersion of the bands around 1.3 eV ofα-TeSe2is very large.Expectably,it is difficult to tune the bands to produce a global topologically nontrivial band gap in theα-TeSe2monolayer.Therefore,theγ-TeSe2monolayer is focused in the following.

    Fig.3. (a)The band gaps of the three materials studied. The rectangles without and with the grids give the band gaps without and with the consideration of SOC.(b)The phonon spectrum of the γ-TeSe2 monolayer.

    Fig. 4. The energy band projection of the Se1 (a) and Te (b) atoms in the γ-TeSe2 monolayer without the consideration of SOC. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    In terms of the stability of theγ-TeSe2structure, the phonon spectrum is calculated and shown in Fig. 3(b). No negative frequency is found in Fig. 3(b), indicating the dynamic stability of theγ-TeSe2despite its lowest cohesive energy among the three structures. To deeply understand the electronic structure ofγ-TeSe2, the projected band structures of the Se1 and Te atoms are plotted in Fig.4 without considering SOC. Due to the in-plane mirror symmetry owned byγ-TeSe2(withD3hspace group), the upper layer Se1 and the lower layer Se2 atoms are equivalent.Therefore,only the band projection of the Se1 atom is analyzed. As shown in Figs.4(a)and 4(b),the valence-band top and conduction-band bottom at theΓpoint, with double degeneracy, are mainly contributed by the pxand pyorbitals of the Te or Se atoms. The degeneracy is lifted after the SOC is turned on. From the orbital distribution of the Se1 and Te atoms (Fig. 4), we can clearly find the bonding,nonbonding,and antibonding characteristics between the Se and Te atoms. The bonding states are formed between?6 eV and?2 eV.The nonbonding states are formed between?2 eV and 0 eV and antibonding states are formed between 0.5 eV and 2.8 eV.

    3.2. Strain effects in γ-TeSe2

    As an effective means to tune electronic structures,strain has been applied in multiple material systems.[47-50]We here apply in-plane biaxial strain to theγ-TeSe2monolayer,which is defined asε=(a?a0)/a0,wherea(a0)is the strained(unstrained) in-plane lattice constant. The positive and negative values ofεcorrespond to the tensile and compressive biaxial strains,respectively. The band evolution ofγ-TeSe2under different biaxial strain is shown in Fig.5. The bands we concern are located near 1.0 eV above theEFaround theΓpoint,indicated by a yellow rectangle in Fig.5(d).

    Fig.5. (a)-(e)The band structures of the γ-TeSe2 monolayer under strain of different strengths. The red dotted and black solid curves give the bands without and with SOC,respectively. (f)The global band gap as a function of the strain for the γ-TeSe2 monolayer. Obvious topological phase transition occurs with compressive strain applied.

    As shown in Fig.5,with the increase of the compressive strain(from Fig.5(d)to Fig.5(a)),the relative position of the characteristic doubly degenerate bands at theΓpoint moves to high energy region (from 1.0 eV in Fig. 5(d) to 1.4 eV in Fig.5(a)). Clearly,the dispersion of the local bands along theK-Γpath in this energy region decreases in the process,which is beneficial to the opening of the global band gap.In the same process,the minimum band gap along theK-Γpath,however,decreases,hampering the opening of the global band gap. The competition of these two respects gives rise to the global band gap increasing first and then decreasing as the increase of the compressive strain,as displayed in Fig.5(f). The global band gap of the system reaches the maximum of 0.14 eV with the strain ofε=?3.5%. In the absence of strain or under tensile strain,theγ-TeSe2monolayer owns a semimetallic state with a higher electronic conduction performance than the semiconductors because of its‘quasi’metallic band structures.

    The movement of the doubly degenerate bands at theΓpoint (marked by the yellow rectangle in Fig. 5(d)) under the compressive strain can be comprehended by the orbitalresolved densities of states (DOSs) of the Se1 and Te atoms shown in Fig. 6. Note that due to theC3vsymmetry owned by theγ-TeSe2monolayer, the DOSs of pxand pyorbitals of the Se1 (also Te) atoms are completely overlapped in Fig. 6.The unoccupied states of the Te atom are much more than that of the Se atoms,hinting the charge transfer from the Te to Se atoms, consistent with the above analysis. These multivalent states,similar to the cases of the tellurene and MoS2systems,ensure the structural stability of theγ-TeSe2monolayer. In Fig. 6(a), the Se1 p orbitals are mainly distributed between?2 eV and?0.5 eV together with a few distributions between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.The Te p orbitals are mainly distributed between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.Unlike the Se1 atom,the Te p orbitals are not distributed between?2 eV and?0.5 eV,corresponding to the nonbonding state between Te and Se as discussed in Fig.4. With the increase of the compressive strain,the Te-Se bond length decreases (Table 2). Thus, the Te-Se bonds become strong,leading to the bonding and antibonding states moving to the lower and higher energy regions, respectively.This trend can be seen obviously from Figs. 6(a)-6(d). For example,the antibonding states of the Te and Se atoms move from the energy region of 0.5-1.5 eV in Fig.6(a)to the energy region of 0.8-3.0 eV in Fig. 6(c). This behavior rationalizes well the movement to a high energy of the doubly degenerate bands at theΓpoint marked in Fig.5(d)with the increase of the compressive strain.

    Table 2. The structural parameters of the γ-TeSe2 monolayer under strain, including the layer thickness dz in the z direction, bond lengths of Te-Se and Te-Te,and angle θ between the Te-Se bonding direction and the horizontal direction(shown in Fig.1).

    We now understand the variation of the local band gap,marked by the red circle in Fig. 7(a), forγ-TeSe2under the compressive strain. As displayed in Fig. 7, this local band gap is opened due to the direct interactions between the px,py(also few pz) orbitals of Se and the px, pyorbitals of Te.With the increase of the compressive strain, the band gap decreases. The reason can be due to the decrease of the interactions between the px,pyorbitals of Se and the px,pyorbitals of Te. With the increase of the compressive strain, the layer thickness(dz)increases(Table 2), causing the increase of the distance between Se and Te along thezdirection. Thus,the direct interactions between the px,pyorbitals of Se and the px,pyorbitals of Te decrease.This trend is not beneficial for opening the global band gap after the SOC is taken into consideration.The combination of the variation of the band gap(marked by the red circle in Fig.7(a))and the movement to a high energy of the doubly degenerate bands(marked by the red triangle in Fig.7(a))under strain produces the global band gap increasing first and then decreasing with the increase of the compressive strain,as shown in Fig.5(f).The movement to a high energy of the doubly degenerate bands around 1.0 eV in Fig. 7(a) with the increase of the strain reflects the dispersion decrease of the local bands along theK-Γpath in the process. Thus, the opening of the global band gap in theγ-TeSe2monolayer can be understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px,pyorbitals and Te px,pyorbitals during the process.

    Fig. 6. (a)-(d) The orbital-resolved densities of states of Se1 and Te atom in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively. The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px, py, and pz orbitals of the corresponding atom,respectively.

    Fig.7.(a)-(d)The energy band projection of the Se1 and Te atoms in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively.The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    3.3. Topological properties of γ-TeSe2

    Since the concerned global band gap is located around 1.2 eV above theEF, it should be shifted down to theEFfor the transport measurement or applications, which can be achieved by adding two additional electrons per unit cell to theγ-TeSe2monolayer. Figure 8(a) shows the energy bands of the?4% strainedγ-TeSe2monolayer with two electrons added per unit cell.The electron doping concentration is about 1.5×1015cm?2,which can be experimentally realized via the current gating technologies.[51]In Fig. 8(a), theEFnow lies exactly within the band gap. The topological behavior of the band gap can be explored based on Fig.8(a). Before calculating the topological invariants of theγ-TeSe2monolayer, the energy bands obtained from the DFT are fit with the Wannier function interpolation method. The results are shown in Fig. 8(b), indicating high consistency between the two methods. TheZ2topological invariant is then obtained by calculating the evolution of the Wannier function center,[52]and the result is given in Fig.8(c). The number of intersections between any horizontal reference line and the Wannier function center evolution line in half of the Brillouin zone is odd. Thus, the energy band gap concerned hasZ2=1 and a QSH insulator is obtained for theγ-TeSe2monolayer. The edge states are also investigated for the system. Figure 8(d) displays the energy bands of a semi-infiniteγ-TeSe2monolayer.In the characteristic energy gap,besides a series of trivial edge states caused by the dangling bonds of the open boundary,a pair of edge states(marked by two small black arrows)appears, which connects the bottom of the conduction band and the top of the valence band. They are,thus,protected by the bulk topology. The appearance of the edge states as well as the obtainedZ2=1 in the monolayer shows that the global energy gap obtained in theγ-TeSe2monolayer is topologically nontrivial. The system remains a topologically nontrivial semimetal if tensile strain is applied as indicated in Fig.5(f).

    Fig.8. (a)Energy bands of the ?4%strained γ-TeSe2 monolayer after doping two electrons into the unit cell. The EF is now within the global topologically nontrivial band gap. (b)Comparison of the energy bands obtained by using the Wannier function interpolation method and the DFT.(c)The Wannier charge center evolution diagram of the material. (d)The energy bands of a semi-infinite monolayer γ-TeSe2 with ?4%strain. The topologically nontrivial edge states of the material are marked by arrows.

    4. Conclusions

    Based on the density functional theory and Wannier function method, we studied the electronic states and topological properties of the TeSe2monolayer. Numerical results show that the stableα-TeSe2,β-TeSe2, andγ-TeSe2are semiconductor materials with indirect gaps. Theα-TeSe2is the most stable and a double degeneracy phenomenon is found in the bands ofα-TeSe2andβ-TeSe2. When the compressive strain increases from 0% to 6%, the global topologically nontrivial band gap ofγ-TeSe2is opened and increases first and then decreases. The trend is comprehended based on a competition mechanism. When the compressive strain of 3.5%is applied,theγ-TeSe2monolayer has the maximum global topologically nontrivial band gap of 0.14 eV. The topologically nontrivial feature of the material is characterized by the calculatedZ2topological invariant and the edge state. Theγ-TeSe2remains a topological semimetal with tensile strain up to 4%.Our work shows that group-VI binary 2D compounds can be new type topological materials and have potential applications in the future electronics and spintronics.

    Acknowledgement

    The calculations were performed at the High Performance Computational Center (HPCC) of the Department of Physics at Fudan University.

    猜你喜歡
    正陽海瑞
    夏日正陽
    “海瑞定理Ⅰ”的歷史性反思
    法律史評論(2020年1期)2020-09-11 06:25:02
    徐正陽 油畫作品
    讓媽媽干活
    中華家教(2018年9期)2018-10-19 09:53:46
    蛋白質(zhì)計算問題歸納
    秋風(fēng)
    天下錢糧減三分
    凈月之下·長春之璀
    參花(下)(2014年1期)2014-12-12 19:10:55
    論海瑞的“廉名”傳播及歷史啟示
    Corpus—based Study on Complementizer Usage of Shuo in Written
    一本色道久久久久久精品综合| 法律面前人人平等表现在哪些方面| 操出白浆在线播放| 极品人妻少妇av视频| 久久久久久亚洲精品国产蜜桃av| 成年女人毛片免费观看观看9 | 性色av乱码一区二区三区2| 日本一区二区免费在线视频| 精品一区二区三区av网在线观看 | 极品教师在线免费播放| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 亚洲精品国产精品久久久不卡| 国产精品偷伦视频观看了| 久久久精品94久久精品| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 亚洲国产av影院在线观看| 啦啦啦中文免费视频观看日本| 亚洲成人免费电影在线观看| 精品乱码久久久久久99久播| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 老汉色∧v一级毛片| 国产91精品成人一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 欧美变态另类bdsm刘玥| 黑人巨大精品欧美一区二区蜜桃| 国产黄频视频在线观看| 露出奶头的视频| 亚洲国产欧美日韩在线播放| 久久精品亚洲精品国产色婷小说| 欧美精品啪啪一区二区三区| 欧美激情久久久久久爽电影 | 18禁黄网站禁片午夜丰满| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色 | 国产主播在线观看一区二区| 久久av网站| 90打野战视频偷拍视频| 在线看a的网站| 久久精品成人免费网站| 首页视频小说图片口味搜索| a在线观看视频网站| 正在播放国产对白刺激| 亚洲国产av新网站| 日本vs欧美在线观看视频| 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 精品少妇久久久久久888优播| 丝袜美足系列| 在线十欧美十亚洲十日本专区| 国产日韩欧美视频二区| 亚洲全国av大片| 日韩视频在线欧美| 亚洲成人国产一区在线观看| 最黄视频免费看| 看免费av毛片| 亚洲少妇的诱惑av| 国产成人精品久久二区二区91| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 国产成人系列免费观看| 一夜夜www| 日韩中文字幕视频在线看片| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美精品av麻豆av| 飞空精品影院首页| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 久久久久网色| 成年动漫av网址| 国产精品 国内视频| www.精华液| 女性被躁到高潮视频| 久久国产精品男人的天堂亚洲| 日本a在线网址| 色综合欧美亚洲国产小说| 国产精品国产高清国产av | 久久久久久久精品吃奶| 免费久久久久久久精品成人欧美视频| 亚洲精品成人av观看孕妇| 国产精品久久久人人做人人爽| 中国美女看黄片| 制服人妻中文乱码| 大型黄色视频在线免费观看| 91成年电影在线观看| av片东京热男人的天堂| 手机成人av网站| 另类亚洲欧美激情| 最黄视频免费看| 大片免费播放器 马上看| 午夜免费成人在线视频| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 精品少妇一区二区三区视频日本电影| 大香蕉久久网| 成人国语在线视频| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 国产精品秋霞免费鲁丝片| 美国免费a级毛片| 午夜精品国产一区二区电影| 国产精品麻豆人妻色哟哟久久| 十八禁人妻一区二区| 老鸭窝网址在线观看| av片东京热男人的天堂| 久久国产亚洲av麻豆专区| 欧美+亚洲+日韩+国产| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产 | 欧美中文综合在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本wwww免费看| 老司机福利观看| 久久99热这里只频精品6学生| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 啦啦啦中文免费视频观看日本| 中文字幕高清在线视频| 国产成+人综合+亚洲专区| 久久久精品区二区三区| 亚洲精品中文字幕在线视频| 麻豆成人av在线观看| 国产亚洲精品一区二区www | 亚洲精品国产区一区二| 久久婷婷成人综合色麻豆| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区四区第35| 19禁男女啪啪无遮挡网站| 成在线人永久免费视频| 亚洲成av片中文字幕在线观看| 老汉色av国产亚洲站长工具| 午夜福利免费观看在线| 日韩欧美三级三区| 午夜福利一区二区在线看| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| 亚洲成国产人片在线观看| 精品熟女少妇八av免费久了| 在线播放国产精品三级| 欧美精品av麻豆av| 大片免费播放器 马上看| 91字幕亚洲| 成人亚洲精品一区在线观看| 满18在线观看网站| 欧美成狂野欧美在线观看| svipshipincom国产片| 国精品久久久久久国模美| 一级黄色大片毛片| 91字幕亚洲| 深夜精品福利| 国产有黄有色有爽视频| e午夜精品久久久久久久| xxxhd国产人妻xxx| 丝袜在线中文字幕| 亚洲视频免费观看视频| 电影成人av| 两个人看的免费小视频| 一本综合久久免费| 精品亚洲成国产av| 51午夜福利影视在线观看| 国产国语露脸激情在线看| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 丰满迷人的少妇在线观看| 我要看黄色一级片免费的| 国产淫语在线视频| 51午夜福利影视在线观看| 色综合欧美亚洲国产小说| 亚洲va日本ⅴa欧美va伊人久久| 精品少妇一区二区三区视频日本电影| 老熟妇仑乱视频hdxx| 18禁国产床啪视频网站| 久久人妻熟女aⅴ| 99热国产这里只有精品6| 成人18禁高潮啪啪吃奶动态图| 建设人人有责人人尽责人人享有的| 一本一本久久a久久精品综合妖精| 午夜福利在线观看吧| 777米奇影视久久| 亚洲va日本ⅴa欧美va伊人久久| 巨乳人妻的诱惑在线观看| 香蕉丝袜av| 国产色视频综合| 一级毛片电影观看| 亚洲av成人一区二区三| 又紧又爽又黄一区二区| 成年人午夜在线观看视频| 精品视频人人做人人爽| 99riav亚洲国产免费| 欧美大码av| 国产精品98久久久久久宅男小说| 国产亚洲精品第一综合不卡| 精品少妇黑人巨大在线播放| 亚洲一区二区三区欧美精品| 嫁个100分男人电影在线观看| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区mp4| 国产精品麻豆人妻色哟哟久久| videosex国产| 极品人妻少妇av视频| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美| 十八禁网站网址无遮挡| 国产熟女午夜一区二区三区| xxxhd国产人妻xxx| 18禁观看日本| 免费高清在线观看日韩| 亚洲成a人片在线一区二区| 我要看黄色一级片免费的| 在线观看一区二区三区激情| 成人免费观看视频高清| 欧美亚洲 丝袜 人妻 在线| 国产片内射在线| 黄色成人免费大全| 国产av一区二区精品久久| 99riav亚洲国产免费| 免费在线观看日本一区| 日韩免费av在线播放| 一个人免费在线观看的高清视频| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 免费看a级黄色片| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| av电影中文网址| 精品国产一区二区三区四区第35| 国产极品粉嫩免费观看在线| 亚洲成人免费电影在线观看| 性色av乱码一区二区三区2| 一级毛片女人18水好多| 18禁国产床啪视频网站| 欧美中文综合在线视频| 老熟女久久久| 99精品久久久久人妻精品| av免费在线观看网站| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频 | 国产片内射在线| 丁香六月天网| 成人黄色视频免费在线看| 国产精品国产高清国产av | 国产一区二区在线观看av| 亚洲欧美精品综合一区二区三区| 久久99一区二区三区| 国产免费视频播放在线视频| 国产在线视频一区二区| 久久午夜综合久久蜜桃| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 一边摸一边抽搐一进一小说 | 啦啦啦免费观看视频1| 精品国产乱码久久久久久小说| 侵犯人妻中文字幕一二三四区| 少妇裸体淫交视频免费看高清 | 免费观看a级毛片全部| 777久久人妻少妇嫩草av网站| 国产成人精品在线电影| 一级毛片电影观看| 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 欧美精品啪啪一区二区三区| 日韩视频一区二区在线观看| 久久人妻av系列| 国产高清视频在线播放一区| 午夜福利视频精品| 久久国产精品影院| av视频免费观看在线观看| 最近最新中文字幕大全免费视频| svipshipincom国产片| 手机成人av网站| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲 | 精品国产乱码久久久久久小说| 王馨瑶露胸无遮挡在线观看| tube8黄色片| 久久天躁狠狠躁夜夜2o2o| av一本久久久久| 每晚都被弄得嗷嗷叫到高潮| 天天添夜夜摸| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情 高清一区二区三区| 69精品国产乱码久久久| av国产精品久久久久影院| av线在线观看网站| 日韩欧美免费精品| av又黄又爽大尺度在线免费看| 美国免费a级毛片| avwww免费| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 久久久久久久精品吃奶| 两个人看的免费小视频| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 亚洲色图综合在线观看| 国产高清激情床上av| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网| 久久久精品国产亚洲av高清涩受| 丝瓜视频免费看黄片| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 久久性视频一级片| 久久久久久免费高清国产稀缺| 一级,二级,三级黄色视频| 久久久久网色| 亚洲av欧美aⅴ国产| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 一区二区三区国产精品乱码| 美女高潮到喷水免费观看| 怎么达到女性高潮| 黄色视频不卡| 一区二区三区国产精品乱码| 精品一区二区三卡| 中文欧美无线码| 50天的宝宝边吃奶边哭怎么回事| 国产精品亚洲一级av第二区| kizo精华| 日本av免费视频播放| 9191精品国产免费久久| 精品视频人人做人人爽| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 国产伦理片在线播放av一区| 午夜老司机福利片| 欧美日韩av久久| 欧美激情极品国产一区二区三区| av又黄又爽大尺度在线免费看| 不卡一级毛片| 一夜夜www| 亚洲欧洲精品一区二区精品久久久| 悠悠久久av| 免费女性裸体啪啪无遮挡网站| 黄片播放在线免费| 国产精品免费一区二区三区在线 | 18禁裸乳无遮挡动漫免费视频| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 午夜老司机福利片| 亚洲 国产 在线| 99热国产这里只有精品6| 蜜桃国产av成人99| 操出白浆在线播放| 乱人伦中国视频| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 在线观看免费日韩欧美大片| 美女视频免费永久观看网站| 在线观看免费午夜福利视频| 国产在线一区二区三区精| 黄色片一级片一级黄色片| 国产欧美日韩一区二区三区在线| bbb黄色大片| 国产精品久久久久久精品古装| 黄片大片在线免费观看| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 老司机靠b影院| 美女主播在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆69| av天堂在线播放| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| 国产成人一区二区三区免费视频网站| 91成人精品电影| 首页视频小说图片口味搜索| 国产又色又爽无遮挡免费看| 黄色丝袜av网址大全| 国产不卡av网站在线观看| 最近最新中文字幕大全电影3 | 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 天天操日日干夜夜撸| 国产精品1区2区在线观看. | 亚洲免费av在线视频| 国产男靠女视频免费网站| 亚洲伊人久久精品综合| 欧美精品高潮呻吟av久久| 欧美成人免费av一区二区三区 | 欧美日本中文国产一区发布| 热re99久久国产66热| 极品教师在线免费播放| 国产精品国产高清国产av | 色尼玛亚洲综合影院| 久久精品国产亚洲av香蕉五月 | 亚洲欧美激情在线| 午夜精品久久久久久毛片777| 三上悠亚av全集在线观看| 日本wwww免费看| videos熟女内射| 可以免费在线观看a视频的电影网站| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 久久av网站| 我的亚洲天堂| 国产欧美亚洲国产| 一区二区三区乱码不卡18| 亚洲av第一区精品v没综合| 激情在线观看视频在线高清 | √禁漫天堂资源中文www| 欧美午夜高清在线| 脱女人内裤的视频| 国产av精品麻豆| 欧美国产精品va在线观看不卡| 欧美在线一区亚洲| 成人特级黄色片久久久久久久 | 国产亚洲av高清不卡| a在线观看视频网站| 欧美亚洲日本最大视频资源| 国产男女内射视频| 三上悠亚av全集在线观看| 亚洲色图 男人天堂 中文字幕| 久久久久久久国产电影| 国产成人欧美在线观看 | 亚洲av日韩在线播放| 老熟妇乱子伦视频在线观看| 首页视频小说图片口味搜索| 国产成人系列免费观看| 久久久精品94久久精品| 久久久水蜜桃国产精品网| 大片免费播放器 马上看| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 国产伦人伦偷精品视频| 亚洲五月色婷婷综合| 国产av又大| 嫩草影视91久久| 成人国产av品久久久| 老司机午夜福利在线观看视频 | 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| 正在播放国产对白刺激| 久久久久精品人妻al黑| 亚洲av片天天在线观看| 亚洲黑人精品在线| 欧美亚洲日本最大视频资源| 两人在一起打扑克的视频| 在线观看一区二区三区激情| 国产aⅴ精品一区二区三区波| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 久久精品国产亚洲av香蕉五月 | 下体分泌物呈黄色| 69av精品久久久久久 | 日韩有码中文字幕| 在线观看一区二区三区激情| 丰满迷人的少妇在线观看| 女人久久www免费人成看片| 夜夜骑夜夜射夜夜干| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费 | 新久久久久国产一级毛片| 美女扒开内裤让男人捅视频| 亚洲成av片中文字幕在线观看| 我的亚洲天堂| 香蕉丝袜av| 久热爱精品视频在线9| 亚洲天堂av无毛| av线在线观看网站| 欧美中文综合在线视频| 国产欧美亚洲国产| 五月天丁香电影| 嫁个100分男人电影在线观看| 亚洲专区中文字幕在线| 久久久国产一区二区| 国产91精品成人一区二区三区 | 国产精品久久久久久人妻精品电影 | 国产伦人伦偷精品视频| 午夜两性在线视频| 亚洲伊人久久精品综合| 欧美变态另类bdsm刘玥| 美女福利国产在线| 俄罗斯特黄特色一大片| 一二三四在线观看免费中文在| 欧美精品一区二区免费开放| 91成人精品电影| 正在播放国产对白刺激| 亚洲av电影在线进入| 成年版毛片免费区| 免费观看a级毛片全部| 少妇精品久久久久久久| 最新美女视频免费是黄的| 久久久国产精品麻豆| 曰老女人黄片| 久久香蕉激情| 日韩 欧美 亚洲 中文字幕| 久久国产精品人妻蜜桃| 国产在线视频一区二区| 黑人操中国人逼视频| 一级,二级,三级黄色视频| 狠狠精品人妻久久久久久综合| 成人三级做爰电影| 成年人免费黄色播放视频| 国产精品久久久久成人av| 欧美日韩成人在线一区二区| 新久久久久国产一级毛片| 亚洲欧洲精品一区二区精品久久久| 性高湖久久久久久久久免费观看| 国产精品国产高清国产av | 国产精品欧美亚洲77777| 啦啦啦 在线观看视频| 欧美人与性动交α欧美软件| 91国产中文字幕| 在线观看人妻少妇| 人人澡人人妻人| 久久中文字幕一级| 精品一区二区三区视频在线观看免费 | 午夜福利一区二区在线看| 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 少妇 在线观看| 麻豆国产av国片精品| 国产xxxxx性猛交| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区黑人| 老司机靠b影院| 午夜激情久久久久久久| 国产精品九九99| 亚洲色图av天堂| 视频区图区小说| 国产免费av片在线观看野外av| 亚洲成人手机| 中国美女看黄片| 人人妻,人人澡人人爽秒播| 正在播放国产对白刺激| 久久中文字幕人妻熟女| 欧美日韩av久久| 香蕉国产在线看| tube8黄色片| 亚洲欧美日韩高清在线视频 | 蜜桃国产av成人99| av网站在线播放免费| 国产在线视频一区二区| 亚洲色图av天堂| 国产成人一区二区三区免费视频网站| 久久久欧美国产精品| 亚洲国产欧美网| 十八禁人妻一区二区| 日韩成人在线观看一区二区三区| 黑人欧美特级aaaaaa片| 男女免费视频国产| 男人舔女人的私密视频| 伦理电影免费视频| 欧美激情高清一区二区三区| 蜜桃国产av成人99| 亚洲精品国产一区二区精华液| 男女床上黄色一级片免费看| www日本在线高清视频| 别揉我奶头~嗯~啊~动态视频| 国产淫语在线视频| 国产成人免费无遮挡视频| 电影成人av| 精品人妻1区二区| 国产精品一区二区免费欧美| 高清黄色对白视频在线免费看| 欧美日韩亚洲高清精品| 一级毛片电影观看| 国内毛片毛片毛片毛片毛片| 老司机靠b影院| 多毛熟女@视频| 国产av精品麻豆| 婷婷成人精品国产| 国产激情久久老熟女| 精品久久久久久久毛片微露脸| 天堂俺去俺来也www色官网| 亚洲成国产人片在线观看| 啦啦啦 在线观看视频| 黄色成人免费大全| 成人国语在线视频| 国产欧美亚洲国产| 亚洲五月色婷婷综合| 久久精品国产99精品国产亚洲性色 | 99riav亚洲国产免费| 欧美av亚洲av综合av国产av| 日日爽夜夜爽网站| av超薄肉色丝袜交足视频| 日韩欧美国产一区二区入口| 欧美久久黑人一区二区| 满18在线观看网站| 99久久人妻综合| 精品第一国产精品| 亚洲七黄色美女视频| 韩国精品一区二区三区| 国产在线精品亚洲第一网站| 欧美精品一区二区大全| 男女午夜视频在线观看| 一级毛片女人18水好多| 久久精品91无色码中文字幕| 国产亚洲精品第一综合不卡| 国产精品电影一区二区三区 | 天堂8中文在线网| 欧美精品人与动牲交sv欧美| 精品亚洲成a人片在线观看| 啦啦啦中文免费视频观看日本| 1024视频免费在线观看| 国产一区有黄有色的免费视频| 黄片播放在线免费| 国产精品 国内视频| 欧美av亚洲av综合av国产av| 少妇猛男粗大的猛烈进出视频|