• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structures and topological properties of TeSe2 monolayers*

    2021-11-23 07:30:50ZhengyangWan萬正陽HaoHuan郇昊HairuiBao鮑海瑞XiaojuanLiu劉曉娟andZhongqinYang楊中芹
    Chinese Physics B 2021年11期
    關(guān)鍵詞:正陽海瑞

    Zhengyang Wan(萬正陽) Hao Huan(郇昊) Hairui Bao(鮑海瑞)Xiaojuan Liu(劉曉娟) and Zhongqin Yang(楊中芹)

    1State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE)&Department of Physics,Fudan University,Shanghai 200433,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    Keywords: two-dimensional material,monolayer TeSe2,quantum spin Hall effect,topological insulator

    1. Introduction

    Since the discovery and successful fabrication of graphene,[1]two-dimensional(2D)materials have attached intensive attention because of their many novel physical properties, such as the quantum spin Hall (QSH) effect,[2]quantum anomalous Hall (QAH) effect,[3]valley Hall effect,[4]etc,making them be promising candidate materials for future high performance electronic, spintronic, and optoelectronic devices.[4-7]Currently,besides graphene,[8,9]various types of 2D materials have also been synthesized in experiments, including elemental 2D films from group III to group V, such as boronene,[10-12]silicene,[13-15]stanine,[16]black phosphorus films,[17-19]antimonene,[20,21]and bismuthine.[22]Some binary 2D compounds such as MoS2[23-26]and CrI3[27]and so on were also fabricated successfully. Although plenty of 2D materials were reported owning QSH or QAH effects,[2,28,29]only few systems having the QSH(such as the HgTe/CdTe[30]quantum well and bismuthine[22])or QAH(such as Cr doped(Bi,Sb)2Te3film[31])effects were confirmed in experiments.

    Based on previous developments, researchers have extended the 2D materials to group-VI monolayers.In 2017,Zhuet al.[32]studied the structures and stability of tellurene (2D Te monolayers)using the particle-swarm optimization method in combination with density functional theory. And bilayer tellurene films have been observed in their experiments.[32]Different from two atomic layers in silicene and black phosphorus monolayers, tellurene contains trilayers,[32]with the central-layer Te behaving metal-like and the two outer layers semiconductor-like. They found that this unique multivalent behavior of Te guarantees the structural stability of the material.[32]Yanet al.found two ultra-stable novel allotropes for Te few-layers from first-principles calculations.[33]These studies promoted the researches on the group-VI monolayer materials. It is meaningful to explore the electronic structures and the interesting topological effects in group-VI monolayer materials.

    In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely,α-TeSe2,β-TeSe2,andγ-TeSe2,are proposed and studied,all of which are semiconductors with indirect band gaps. Theγ-TeSe2monolayer is found being a QSH insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The topology of the material is identified by the calculations ofZ2topological invariants and the edge state. The opening mechanism of the global nontrivial band gap is analyzed.

    2. Computational models and methods

    For the 2D trilayered tellurene, the multiple valences of Te atoms promote the formation of a stable monolayer tellurene structure. Based on the studied structures of tellurene[32]and tellurium few-layers,[33]we build and consider three typical structures for the TeSe2monolayers. To obtain the TeSe2, the Te atoms in the two outer layers of tellurene are all replaced by Se atoms. Since Se electronegativity is larger than that of Te,the TeSe2structures are expected to be also very stable. The built three type structures for the TeSe2monolayers, namedα,β, andγphases, are illustrated in Figs. 1(a)-1(c), respectively. Theα-TeSe2has a similar structure to that of 1T-MoS2.[34]Both the Se1 and Se2,corresponding to the S atoms in the 1T-MoS2,are in the outer layers of the materials, with the coordination number of 3. The central-layer Te atoms correspond to the Mo atoms in the 1TMoS2,with the coordination number of 6. For theβ-TeSe2,it presents a corrugated structure. In the top view, the structure is composed of hexagons and rhombuses. The coordination number of each Te atom in theβ-TeSe2is 4,different from that in theα-TeSe2. Theγ-TeSe2has a similar geometric structure to that of 2H-MoS2,[34]with an in-plane mirror symmetry.Exotic properties may be dug out from these various structures of the TeSe2monolayers.

    The electronic states of the TeSe2monolayers with the three type structures are calculated within the framework of density functional theory (DFT), as implemented in the Viennaab initiosimulation package (VASP).[35]The projected augmented wave(PAW)potentials are adopted to deal with the electron-ion interactions.[36,37]The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) is used for the exchange-correlation functional.[38]A vacuum layer of 20 ?A is applied between the neighboring TeSe2layers to minimize the image interactions from the periodic boundary condition. The plane wave cutoff energy is set to be 500 eV.TheΓcenteredk-point sampling of 15×15×1 is adopted in the first Brillouin zone. The structures are optimized until the force on each atom is less than 0.01 eV/?A.To investigate the dynamic stability of the proposed TeSe2ML,phonon dispersion is calculated by using the DFT perturbation theory as implemented in the PHONOPY code. TheZ2topological invariant is calculated with the maximally localized Wannier functions[39]by using the Wannier 90 package. To obtain the edge states, we construct a TB Hamiltonian with a basis of maximally localized Wannier functions by using the Wannier Tools[40]package.

    3. Results and discussion

    3.1. Structures and electronic states of the TeSe2 monolayers

    We now study the geometric structures and the electronic states of the TeSe2monolayers with the three type structures(Figs.1(a)-1(c)). The optimized structural parameters and the calculated cohesive energies of the three materials are listed in Table 1. The bond lengths of the neighboring Te and Se atoms(2.82-2.87 ?A) are close to each other for the three structures studied. Due to the largest area of the 2D unit cell inβ-TeSe2,the layer thickness(dz)inβ-TeSe2is the smallest,corresponding to the smallest angle(θ)between the Te-Se bond and the horizontal direction (Table 1). Inγ-TeSe2, the Se1 is exactly localized on the top of the Se2.The strong repulsive forces between the two type anions (Se1 and Se2) result in the largest layer thickness in the structure,as seen from Table 1. Among the three structures,α-TeSe2has the largest cohesive energy whileγ-TeSe2has the smallest one.Thus,α-TeSe2is the most stable structure and the other two structures are metastable.The first Brillouin zones ofα-TeSe2(γ-TeSe2) andβ-TeSe2are hexagon and rectangle,respectively(Fig.1(d)).

    Fig.1. Top and side views of the optimized structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c). (d)The first Brillouin zones of α-TeSe2 or γ-TeSe2 (left)and β-TeSe2 (right).

    The calculated band structures ofα-TeSe2,β-TeSe2,andγ-TeSe2are displayed in Figs. 2(a)-2(c), respectively. The Fermi level(EF)is set at energy zero. The red dotted and the black solid curves present the bands for the materials without and with spin-orbit coupling(SOC)interactions,respectively.The SOC interactions do not change much the bands on the whole but can split the energy degeneracy at some positions in the momentum space, such as the places marked by the green ovals in Figs.2(a)and 2(c). The three materials are all semiconductors with indirect band gaps.The SOC interactions slightly reduce the band gaps due to the energy splitting. The energy bands ofα-TeSe2andβ-TeSe2with SOC are both doubly degenerate, while the bands ofγ-TeSe2are not. The reason is that both time-reversal and space-inversion symmetries are owned by theα-TeSe2andβ-TeSe2monolayers, while there is no space-inversion symmetry in theγ-TeSe2monolayer(Fig.1). In Figs.2(a)-2(c),three group bands are clearly observed in the band structures ofα-TeSe2andγ-TeSe2. This similarity can be ascribed to the relatively similar structures of the two materials(Figs.1(a)and 1(c)).

    Table 1. The results for the monolayer TeSe2 with different structures. The properties listed contain the lattice constants a and b,distance between the upper and lower Se atomic layers(dz),Te-Se bond length,angle between the Te-Se bonding direction and the horizontal direction(θ,marked in Fig.1),and the cohesive energy(Ec).

    Fig.2. Band structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c)without(red dotted curves)and with(black solid curves)the consideration of SOC.

    The similar structures ofα-TeSe2andγ-TeSe2also give rise to the close band gaps of the two materials (Fig. 3(a)).When the SOC is turned on,the band gaps ofα-TeSe2andγ-TeSe2are 0.38 eV and 0.65 eV, respectively. The obtained energy bands ofβ-TeSe2are given in Fig. 2(b), which are consistent with the results reported in Ref. [41]. The largest band gaps achieved inβ-TeSe2(Fig.3(a))can be ascribed to the relatively flat bands localized at the valence-band top and conduction-band bottom in the material(Fig.2(b)). The analysis of the orbital-resolved bands(not shown)shows that these flat bands are primarily composed of the pzorbitals of the Se1 and Se2 atoms. Thus,the dangling bonds of the Se pzorbitals in the uniqueβ-TeSe2structure cause the relatively large band gaps in the materials.

    Forα-TeSe2(γ-TeSe2), before the SOC is taken into account, doubly degenerate bands around 1.3 eV (1.0 eV)marked by green ovals occur, composed mainly by pxand pyorbitals of the Te and Se atoms (to be discussed), due to theC3vsymmetry in the monolayers. This degeneracy is lifted after the SOC is turned on. A pretty large direct band gap of 0.4/0.7 eV is opened there by the SOC in theα-TeSe2/γ-TeSe2monolayer due to the stronger intrinsic SOC coming from the pxand pyorbitals,compared to that from the pzorbitals.[42,43]The gaps opened in such kind of parabolic bands are generally topologically nontrivial, leading to the appearing of the QSH[44]or QAH[45,46]insulators with a non-Dirac-type bandgap opening mechanism. Since the concerned band gaps inαTeSe2andγ-TeSe2are nonglobal,the materials are in topological semimetal states. As displayed in Fig. 2(a), the dispersion of the bands around 1.3 eV ofα-TeSe2is very large.Expectably,it is difficult to tune the bands to produce a global topologically nontrivial band gap in theα-TeSe2monolayer.Therefore,theγ-TeSe2monolayer is focused in the following.

    Fig.3. (a)The band gaps of the three materials studied. The rectangles without and with the grids give the band gaps without and with the consideration of SOC.(b)The phonon spectrum of the γ-TeSe2 monolayer.

    Fig. 4. The energy band projection of the Se1 (a) and Te (b) atoms in the γ-TeSe2 monolayer without the consideration of SOC. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    In terms of the stability of theγ-TeSe2structure, the phonon spectrum is calculated and shown in Fig. 3(b). No negative frequency is found in Fig. 3(b), indicating the dynamic stability of theγ-TeSe2despite its lowest cohesive energy among the three structures. To deeply understand the electronic structure ofγ-TeSe2, the projected band structures of the Se1 and Te atoms are plotted in Fig.4 without considering SOC. Due to the in-plane mirror symmetry owned byγ-TeSe2(withD3hspace group), the upper layer Se1 and the lower layer Se2 atoms are equivalent.Therefore,only the band projection of the Se1 atom is analyzed. As shown in Figs.4(a)and 4(b),the valence-band top and conduction-band bottom at theΓpoint, with double degeneracy, are mainly contributed by the pxand pyorbitals of the Te or Se atoms. The degeneracy is lifted after the SOC is turned on. From the orbital distribution of the Se1 and Te atoms (Fig. 4), we can clearly find the bonding,nonbonding,and antibonding characteristics between the Se and Te atoms. The bonding states are formed between?6 eV and?2 eV.The nonbonding states are formed between?2 eV and 0 eV and antibonding states are formed between 0.5 eV and 2.8 eV.

    3.2. Strain effects in γ-TeSe2

    As an effective means to tune electronic structures,strain has been applied in multiple material systems.[47-50]We here apply in-plane biaxial strain to theγ-TeSe2monolayer,which is defined asε=(a?a0)/a0,wherea(a0)is the strained(unstrained) in-plane lattice constant. The positive and negative values ofεcorrespond to the tensile and compressive biaxial strains,respectively. The band evolution ofγ-TeSe2under different biaxial strain is shown in Fig.5. The bands we concern are located near 1.0 eV above theEFaround theΓpoint,indicated by a yellow rectangle in Fig.5(d).

    Fig.5. (a)-(e)The band structures of the γ-TeSe2 monolayer under strain of different strengths. The red dotted and black solid curves give the bands without and with SOC,respectively. (f)The global band gap as a function of the strain for the γ-TeSe2 monolayer. Obvious topological phase transition occurs with compressive strain applied.

    As shown in Fig.5,with the increase of the compressive strain(from Fig.5(d)to Fig.5(a)),the relative position of the characteristic doubly degenerate bands at theΓpoint moves to high energy region (from 1.0 eV in Fig. 5(d) to 1.4 eV in Fig.5(a)). Clearly,the dispersion of the local bands along theK-Γpath in this energy region decreases in the process,which is beneficial to the opening of the global band gap.In the same process,the minimum band gap along theK-Γpath,however,decreases,hampering the opening of the global band gap. The competition of these two respects gives rise to the global band gap increasing first and then decreasing as the increase of the compressive strain,as displayed in Fig.5(f). The global band gap of the system reaches the maximum of 0.14 eV with the strain ofε=?3.5%. In the absence of strain or under tensile strain,theγ-TeSe2monolayer owns a semimetallic state with a higher electronic conduction performance than the semiconductors because of its‘quasi’metallic band structures.

    The movement of the doubly degenerate bands at theΓpoint (marked by the yellow rectangle in Fig. 5(d)) under the compressive strain can be comprehended by the orbitalresolved densities of states (DOSs) of the Se1 and Te atoms shown in Fig. 6. Note that due to theC3vsymmetry owned by theγ-TeSe2monolayer, the DOSs of pxand pyorbitals of the Se1 (also Te) atoms are completely overlapped in Fig. 6.The unoccupied states of the Te atom are much more than that of the Se atoms,hinting the charge transfer from the Te to Se atoms, consistent with the above analysis. These multivalent states,similar to the cases of the tellurene and MoS2systems,ensure the structural stability of theγ-TeSe2monolayer. In Fig. 6(a), the Se1 p orbitals are mainly distributed between?2 eV and?0.5 eV together with a few distributions between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.The Te p orbitals are mainly distributed between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.Unlike the Se1 atom,the Te p orbitals are not distributed between?2 eV and?0.5 eV,corresponding to the nonbonding state between Te and Se as discussed in Fig.4. With the increase of the compressive strain,the Te-Se bond length decreases (Table 2). Thus, the Te-Se bonds become strong,leading to the bonding and antibonding states moving to the lower and higher energy regions, respectively.This trend can be seen obviously from Figs. 6(a)-6(d). For example,the antibonding states of the Te and Se atoms move from the energy region of 0.5-1.5 eV in Fig.6(a)to the energy region of 0.8-3.0 eV in Fig. 6(c). This behavior rationalizes well the movement to a high energy of the doubly degenerate bands at theΓpoint marked in Fig.5(d)with the increase of the compressive strain.

    Table 2. The structural parameters of the γ-TeSe2 monolayer under strain, including the layer thickness dz in the z direction, bond lengths of Te-Se and Te-Te,and angle θ between the Te-Se bonding direction and the horizontal direction(shown in Fig.1).

    We now understand the variation of the local band gap,marked by the red circle in Fig. 7(a), forγ-TeSe2under the compressive strain. As displayed in Fig. 7, this local band gap is opened due to the direct interactions between the px,py(also few pz) orbitals of Se and the px, pyorbitals of Te.With the increase of the compressive strain, the band gap decreases. The reason can be due to the decrease of the interactions between the px,pyorbitals of Se and the px,pyorbitals of Te. With the increase of the compressive strain, the layer thickness(dz)increases(Table 2), causing the increase of the distance between Se and Te along thezdirection. Thus,the direct interactions between the px,pyorbitals of Se and the px,pyorbitals of Te decrease.This trend is not beneficial for opening the global band gap after the SOC is taken into consideration.The combination of the variation of the band gap(marked by the red circle in Fig.7(a))and the movement to a high energy of the doubly degenerate bands(marked by the red triangle in Fig.7(a))under strain produces the global band gap increasing first and then decreasing with the increase of the compressive strain,as shown in Fig.5(f).The movement to a high energy of the doubly degenerate bands around 1.0 eV in Fig. 7(a) with the increase of the strain reflects the dispersion decrease of the local bands along theK-Γpath in the process. Thus, the opening of the global band gap in theγ-TeSe2monolayer can be understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px,pyorbitals and Te px,pyorbitals during the process.

    Fig. 6. (a)-(d) The orbital-resolved densities of states of Se1 and Te atom in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively. The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px, py, and pz orbitals of the corresponding atom,respectively.

    Fig.7.(a)-(d)The energy band projection of the Se1 and Te atoms in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively.The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    3.3. Topological properties of γ-TeSe2

    Since the concerned global band gap is located around 1.2 eV above theEF, it should be shifted down to theEFfor the transport measurement or applications, which can be achieved by adding two additional electrons per unit cell to theγ-TeSe2monolayer. Figure 8(a) shows the energy bands of the?4% strainedγ-TeSe2monolayer with two electrons added per unit cell.The electron doping concentration is about 1.5×1015cm?2,which can be experimentally realized via the current gating technologies.[51]In Fig. 8(a), theEFnow lies exactly within the band gap. The topological behavior of the band gap can be explored based on Fig.8(a). Before calculating the topological invariants of theγ-TeSe2monolayer, the energy bands obtained from the DFT are fit with the Wannier function interpolation method. The results are shown in Fig. 8(b), indicating high consistency between the two methods. TheZ2topological invariant is then obtained by calculating the evolution of the Wannier function center,[52]and the result is given in Fig.8(c). The number of intersections between any horizontal reference line and the Wannier function center evolution line in half of the Brillouin zone is odd. Thus, the energy band gap concerned hasZ2=1 and a QSH insulator is obtained for theγ-TeSe2monolayer. The edge states are also investigated for the system. Figure 8(d) displays the energy bands of a semi-infiniteγ-TeSe2monolayer.In the characteristic energy gap,besides a series of trivial edge states caused by the dangling bonds of the open boundary,a pair of edge states(marked by two small black arrows)appears, which connects the bottom of the conduction band and the top of the valence band. They are,thus,protected by the bulk topology. The appearance of the edge states as well as the obtainedZ2=1 in the monolayer shows that the global energy gap obtained in theγ-TeSe2monolayer is topologically nontrivial. The system remains a topologically nontrivial semimetal if tensile strain is applied as indicated in Fig.5(f).

    Fig.8. (a)Energy bands of the ?4%strained γ-TeSe2 monolayer after doping two electrons into the unit cell. The EF is now within the global topologically nontrivial band gap. (b)Comparison of the energy bands obtained by using the Wannier function interpolation method and the DFT.(c)The Wannier charge center evolution diagram of the material. (d)The energy bands of a semi-infinite monolayer γ-TeSe2 with ?4%strain. The topologically nontrivial edge states of the material are marked by arrows.

    4. Conclusions

    Based on the density functional theory and Wannier function method, we studied the electronic states and topological properties of the TeSe2monolayer. Numerical results show that the stableα-TeSe2,β-TeSe2, andγ-TeSe2are semiconductor materials with indirect gaps. Theα-TeSe2is the most stable and a double degeneracy phenomenon is found in the bands ofα-TeSe2andβ-TeSe2. When the compressive strain increases from 0% to 6%, the global topologically nontrivial band gap ofγ-TeSe2is opened and increases first and then decreases. The trend is comprehended based on a competition mechanism. When the compressive strain of 3.5%is applied,theγ-TeSe2monolayer has the maximum global topologically nontrivial band gap of 0.14 eV. The topologically nontrivial feature of the material is characterized by the calculatedZ2topological invariant and the edge state. Theγ-TeSe2remains a topological semimetal with tensile strain up to 4%.Our work shows that group-VI binary 2D compounds can be new type topological materials and have potential applications in the future electronics and spintronics.

    Acknowledgement

    The calculations were performed at the High Performance Computational Center (HPCC) of the Department of Physics at Fudan University.

    猜你喜歡
    正陽海瑞
    夏日正陽
    “海瑞定理Ⅰ”的歷史性反思
    法律史評論(2020年1期)2020-09-11 06:25:02
    徐正陽 油畫作品
    讓媽媽干活
    中華家教(2018年9期)2018-10-19 09:53:46
    蛋白質(zhì)計算問題歸納
    秋風(fēng)
    天下錢糧減三分
    凈月之下·長春之璀
    參花(下)(2014年1期)2014-12-12 19:10:55
    論海瑞的“廉名”傳播及歷史啟示
    Corpus—based Study on Complementizer Usage of Shuo in Written
    欧美激情在线99| 黄色视频,在线免费观看| 一本综合久久免费| 国产欧美日韩一区二区精品| 国产免费av片在线观看野外av| 国产精品乱码一区二三区的特点| 日本在线视频免费播放| 欧美成人a在线观看| 日本与韩国留学比较| 亚洲成av人片在线播放无| 亚洲人与动物交配视频| 午夜福利在线观看吧| 九九久久精品国产亚洲av麻豆| 亚洲精品在线美女| 人人妻人人看人人澡| 一级毛片女人18水好多| 亚洲久久久久久中文字幕| 久9热在线精品视频| 午夜福利在线观看吧| 成年女人永久免费观看视频| av中文乱码字幕在线| 亚洲专区中文字幕在线| 波野结衣二区三区在线 | 亚洲国产精品久久男人天堂| 亚洲av免费高清在线观看| 欧美性猛交黑人性爽| 国产精品久久久久久亚洲av鲁大| 手机成人av网站| 亚洲人成网站高清观看| 国内精品久久久久久久电影| 91久久精品国产一区二区成人 | 国产精品久久视频播放| 亚洲精品粉嫩美女一区| 精华霜和精华液先用哪个| 精品国产亚洲在线| 国产免费男女视频| 国产成人a区在线观看| 亚洲一区高清亚洲精品| 性色avwww在线观看| 亚洲性夜色夜夜综合| 99久久精品热视频| 精品不卡国产一区二区三区| 亚洲av中文字字幕乱码综合| 国产久久久一区二区三区| 少妇的丰满在线观看| 亚洲国产色片| 岛国在线免费视频观看| 综合色av麻豆| 精品乱码久久久久久99久播| 男女下面进入的视频免费午夜| 久久久久久九九精品二区国产| 日韩国内少妇激情av| 天堂网av新在线| 色av中文字幕| 欧美乱妇无乱码| 国产黄色小视频在线观看| tocl精华| 97超视频在线观看视频| 精品人妻1区二区| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av涩爱 | 天天躁日日操中文字幕| 我要搜黄色片| 国产精品一区二区三区四区久久| 最好的美女福利视频网| 久久香蕉精品热| xxx96com| 久久久久性生活片| 欧美成人a在线观看| 偷拍熟女少妇极品色| 成年女人永久免费观看视频| 90打野战视频偷拍视频| 欧美bdsm另类| 在线视频色国产色| 国产真人三级小视频在线观看| 草草在线视频免费看| 久久精品夜夜夜夜夜久久蜜豆| 婷婷亚洲欧美| 国产亚洲精品综合一区在线观看| 天堂影院成人在线观看| 老司机午夜福利在线观看视频| 午夜精品久久久久久毛片777| 一个人观看的视频www高清免费观看| 成年女人永久免费观看视频| 亚洲激情在线av| 美女大奶头视频| 嫩草影视91久久| 在线观看免费视频日本深夜| netflix在线观看网站| 九色国产91popny在线| 亚洲欧美精品综合久久99| 99精品久久久久人妻精品| 最近最新中文字幕大全免费视频| 90打野战视频偷拍视频| 黄片小视频在线播放| 国产不卡一卡二| 婷婷精品国产亚洲av在线| 欧美区成人在线视频| 亚洲精品一卡2卡三卡4卡5卡| 一个人看视频在线观看www免费 | 国产一区二区在线观看日韩 | 色噜噜av男人的天堂激情| 色在线成人网| 日韩免费av在线播放| 久久香蕉精品热| 在线观看免费视频日本深夜| 黄色日韩在线| 老熟妇乱子伦视频在线观看| www日本在线高清视频| 日本一本二区三区精品| www.熟女人妻精品国产| www.熟女人妻精品国产| 尤物成人国产欧美一区二区三区| 性欧美人与动物交配| 美女高潮的动态| 很黄的视频免费| 99精品久久久久人妻精品| 免费观看的影片在线观看| 久久亚洲真实| 91在线精品国自产拍蜜月 | 熟女少妇亚洲综合色aaa.| 午夜激情欧美在线| 午夜激情福利司机影院| xxxwww97欧美| 热99re8久久精品国产| 免费在线观看亚洲国产| www.www免费av| 久久久久国内视频| 一区二区三区免费毛片| 一边摸一边抽搐一进一小说| 最后的刺客免费高清国语| 久久6这里有精品| 中亚洲国语对白在线视频| 精品欧美国产一区二区三| 久久久国产成人免费| 精品欧美国产一区二区三| 亚洲精品影视一区二区三区av| 一个人免费在线观看电影| a级毛片a级免费在线| 国产精品三级大全| 亚洲内射少妇av| 天堂√8在线中文| 99热只有精品国产| 在线免费观看的www视频| 成人特级av手机在线观看| 国产精品久久久久久精品电影| 国产主播在线观看一区二区| 国产精品香港三级国产av潘金莲| 国产精品一及| 久久香蕉国产精品| 久久香蕉国产精品| 午夜亚洲福利在线播放| 久久6这里有精品| 十八禁人妻一区二区| 欧美色视频一区免费| 国产真实乱freesex| 精品欧美国产一区二区三| 成年人黄色毛片网站| 高清毛片免费观看视频网站| 嫁个100分男人电影在线观看| 欧美xxxx黑人xx丫x性爽| 欧美日韩福利视频一区二区| 麻豆成人午夜福利视频| 欧美丝袜亚洲另类 | 婷婷亚洲欧美| 国产毛片a区久久久久| 一个人看视频在线观看www免费 | 亚洲熟妇熟女久久| 久久久久久大精品| 天美传媒精品一区二区| 69av精品久久久久久| 午夜免费激情av| 在线观看免费午夜福利视频| 国产69精品久久久久777片| 91麻豆av在线| 婷婷丁香在线五月| 国产激情偷乱视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 小说图片视频综合网站| 99久久九九国产精品国产免费| 日本成人三级电影网站| 国产高潮美女av| 亚洲精品在线观看二区| 91av网一区二区| 久久精品国产亚洲av香蕉五月| 亚洲片人在线观看| 88av欧美| 露出奶头的视频| 精品免费久久久久久久清纯| 日日干狠狠操夜夜爽| 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区黑人| 日韩av在线大香蕉| 男插女下体视频免费在线播放| 别揉我奶头~嗯~啊~动态视频| 国产视频内射| 中文字幕人妻熟人妻熟丝袜美 | 丁香欧美五月| 男人舔女人下体高潮全视频| 精品国产美女av久久久久小说| 国产精品一及| 19禁男女啪啪无遮挡网站| 欧美性猛交╳xxx乱大交人| 亚洲av第一区精品v没综合| 99久久无色码亚洲精品果冻| 精品熟女少妇八av免费久了| 国产成人aa在线观看| 欧美一级毛片孕妇| 欧美一级a爱片免费观看看| 免费看光身美女| 精品国产亚洲在线| 中文字幕av成人在线电影| 在线视频色国产色| 搡女人真爽免费视频火全软件 | 精品国产亚洲在线| 日韩精品青青久久久久久| 亚洲国产精品999在线| av欧美777| 久久久久久国产a免费观看| 色播亚洲综合网| 天天躁日日操中文字幕| 两人在一起打扑克的视频| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 波多野结衣高清无吗| 丁香欧美五月| 美女高潮喷水抽搐中文字幕| 岛国在线免费视频观看| 美女cb高潮喷水在线观看| 久99久视频精品免费| 国产在视频线在精品| 看片在线看免费视频| 欧美最新免费一区二区三区 | 日本黄色片子视频| svipshipincom国产片| 久久国产精品人妻蜜桃| 免费看光身美女| 好男人电影高清在线观看| 久久久久亚洲av毛片大全| 在线观看一区二区三区| 琪琪午夜伦伦电影理论片6080| 岛国在线免费视频观看| 可以在线观看的亚洲视频| 最新美女视频免费是黄的| 成人高潮视频无遮挡免费网站| 亚洲精品亚洲一区二区| 国产真实伦视频高清在线观看 | 欧美日韩福利视频一区二区| 色视频www国产| 免费人成在线观看视频色| 欧美不卡视频在线免费观看| 波多野结衣高清无吗| 搡老岳熟女国产| 亚洲精品色激情综合| 国内毛片毛片毛片毛片毛片| 日本 欧美在线| 国产成人aa在线观看| 欧美中文综合在线视频| 午夜日韩欧美国产| av福利片在线观看| 久久久久亚洲av毛片大全| 国产精品久久久久久精品电影| 国产一区二区亚洲精品在线观看| 欧美在线一区亚洲| www国产在线视频色| 在线国产一区二区在线| 日本成人三级电影网站| 美女免费视频网站| 欧美性感艳星| 很黄的视频免费| 麻豆一二三区av精品| 亚洲精品在线美女| 热99在线观看视频| 90打野战视频偷拍视频| 日韩亚洲欧美综合| 熟女少妇亚洲综合色aaa.| 可以在线观看毛片的网站| 一个人看的www免费观看视频| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 丰满乱子伦码专区| a在线观看视频网站| 亚洲精品456在线播放app | 欧美bdsm另类| 国产三级黄色录像| 性色avwww在线观看| 狂野欧美激情性xxxx| 99热精品在线国产| 在线观看66精品国产| 午夜福利18| 天堂√8在线中文| 欧美xxxx黑人xx丫x性爽| 老司机午夜福利在线观看视频| 18+在线观看网站| 大型黄色视频在线免费观看| www.999成人在线观看| 久久九九热精品免费| 国产 一区 欧美 日韩| 91在线观看av| 国产极品精品免费视频能看的| 91av网一区二区| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 内地一区二区视频在线| 内射极品少妇av片p| 亚洲专区中文字幕在线| www.999成人在线观看| 日韩高清综合在线| 熟女少妇亚洲综合色aaa.| 国产免费男女视频| 亚洲精品在线观看二区| 麻豆国产97在线/欧美| 久久精品91无色码中文字幕| 特大巨黑吊av在线直播| 国内精品一区二区在线观看| 日韩欧美 国产精品| 国产成年人精品一区二区| 夜夜爽天天搞| 欧美成人免费av一区二区三区| 可以在线观看毛片的网站| 麻豆成人av在线观看| 久久婷婷人人爽人人干人人爱| 国产精品自产拍在线观看55亚洲| 欧美日韩福利视频一区二区| 国内精品久久久久精免费| 在线观看免费视频日本深夜| 色在线成人网| 最近最新中文字幕大全免费视频| aaaaa片日本免费| 免费人成在线观看视频色| 国产老妇女一区| 欧美bdsm另类| 亚洲av熟女| 精品久久久久久成人av| 99久久九九国产精品国产免费| 人人妻人人澡欧美一区二区| 成人特级av手机在线观看| 成人av在线播放网站| 啦啦啦观看免费观看视频高清| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| 成人无遮挡网站| 日本黄色片子视频| 在线播放无遮挡| 此物有八面人人有两片| 久久香蕉国产精品| 国产淫片久久久久久久久 | 偷拍熟女少妇极品色| 国产成人av教育| 亚洲av中文字字幕乱码综合| 欧美日韩黄片免| 国产成人福利小说| 一级作爱视频免费观看| 91在线观看av| eeuss影院久久| а√天堂www在线а√下载| 色视频www国产| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 婷婷精品国产亚洲av在线| 深爱激情五月婷婷| 成年免费大片在线观看| 欧美乱色亚洲激情| 亚洲精品成人久久久久久| 亚洲av熟女| 亚洲av成人精品一区久久| 午夜福利高清视频| 免费大片18禁| 精品无人区乱码1区二区| 欧美国产日韩亚洲一区| 亚洲人成网站在线播放欧美日韩| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 欧美最新免费一区二区三区 | 午夜视频国产福利| 91久久精品电影网| 一个人免费在线观看的高清视频| 成年免费大片在线观看| 无限看片的www在线观看| 美女大奶头视频| 免费看十八禁软件| 一本精品99久久精品77| 亚洲 欧美 日韩 在线 免费| 黄片小视频在线播放| 欧美色视频一区免费| 国产色婷婷99| 久久欧美精品欧美久久欧美| 噜噜噜噜噜久久久久久91| 亚洲av不卡在线观看| 手机成人av网站| 免费电影在线观看免费观看| 国产美女午夜福利| 日韩欧美在线乱码| 搡老岳熟女国产| 中国美女看黄片| 天堂av国产一区二区熟女人妻| 久久精品人妻少妇| 日本a在线网址| 国产高清videossex| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 亚洲avbb在线观看| 夜夜看夜夜爽夜夜摸| 免费高清视频大片| 午夜激情福利司机影院| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 午夜福利在线观看吧| 久久久精品大字幕| 男人舔奶头视频| 亚洲欧美一区二区三区黑人| 亚洲不卡免费看| 国产99白浆流出| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 国产探花极品一区二区| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 搞女人的毛片| 久久久久久久久大av| 国产真实乱freesex| 搡老熟女国产l中国老女人| 午夜福利在线在线| 日韩高清综合在线| 免费一级毛片在线播放高清视频| 国产男靠女视频免费网站| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 好男人在线观看高清免费视频| 久久久久久久久中文| 国产一区在线观看成人免费| 国产成人影院久久av| 亚洲av中文字字幕乱码综合| 97人妻精品一区二区三区麻豆| 成人无遮挡网站| 精品久久久久久久人妻蜜臀av| 午夜影院日韩av| 亚洲精品久久国产高清桃花| 脱女人内裤的视频| 精品久久久久久,| 男人的好看免费观看在线视频| 中文字幕高清在线视频| 搡老岳熟女国产| 美女cb高潮喷水在线观看| 18+在线观看网站| 久久精品国产亚洲av香蕉五月| 久久久国产成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 高清日韩中文字幕在线| 中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看 | 成人亚洲精品av一区二区| 国产高潮美女av| 色精品久久人妻99蜜桃| 国产午夜精品论理片| 国产成人福利小说| 精品熟女少妇八av免费久了| 欧美黄色淫秽网站| 精品国产超薄肉色丝袜足j| 午夜亚洲福利在线播放| 两个人看的免费小视频| 免费看a级黄色片| 久久久色成人| 欧美午夜高清在线| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧洲综合997久久,| 人妻久久中文字幕网| 亚洲成人久久性| 丝袜美腿在线中文| 99久久精品一区二区三区| avwww免费| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 亚洲av电影在线进入| 天堂影院成人在线观看| 男女午夜视频在线观看| 男插女下体视频免费在线播放| 香蕉久久夜色| 日本精品一区二区三区蜜桃| 久久草成人影院| 日韩欧美 国产精品| 色播亚洲综合网| 中文字幕av在线有码专区| 久久久久久久久大av| 国产97色在线日韩免费| 国产一级毛片七仙女欲春2| 亚洲七黄色美女视频| 波多野结衣巨乳人妻| 十八禁网站免费在线| 尤物成人国产欧美一区二区三区| 在线视频色国产色| 99精品久久久久人妻精品| 国产精品国产高清国产av| 久久久久久大精品| 精品一区二区三区av网在线观看| 国产不卡一卡二| 在线看三级毛片| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看| 99久久99久久久精品蜜桃| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 国产精华一区二区三区| 少妇高潮的动态图| 国内毛片毛片毛片毛片毛片| av专区在线播放| 亚洲av美国av| 亚洲第一电影网av| 国产一区在线观看成人免费| 国产日本99.免费观看| 91久久精品电影网| 日本一二三区视频观看| 国产毛片a区久久久久| a级毛片a级免费在线| 精品久久久久久久久久免费视频| 久久这里只有精品中国| 亚洲第一欧美日韩一区二区三区| 日韩欧美国产一区二区入口| tocl精华| 亚洲av二区三区四区| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| 美女免费视频网站| 亚洲人成伊人成综合网2020| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 亚洲熟妇熟女久久| 真实男女啪啪啪动态图| 免费av毛片视频| 亚洲不卡免费看| 在线视频色国产色| 日本撒尿小便嘘嘘汇集6| 老熟妇仑乱视频hdxx| 久久久色成人| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 香蕉久久夜色| 乱人视频在线观看| 午夜免费男女啪啪视频观看 | 久久国产乱子伦精品免费另类| 成人性生交大片免费视频hd| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 岛国在线观看网站| 国产高清有码在线观看视频| 亚洲国产日韩欧美精品在线观看 | 法律面前人人平等表现在哪些方面| 18禁黄网站禁片免费观看直播| 女人被狂操c到高潮| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 日本黄色视频三级网站网址| 十八禁人妻一区二区| 女同久久另类99精品国产91| 国产精品久久视频播放| av天堂中文字幕网| 久久精品91无色码中文字幕| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| 午夜视频国产福利| 亚洲av日韩精品久久久久久密| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久| 国产 一区 欧美 日韩| 亚洲激情在线av| 国产高清videossex| 精品国产美女av久久久久小说| 国产久久久一区二区三区| 亚洲美女视频黄频| 法律面前人人平等表现在哪些方面| 亚洲美女视频黄频| 精品99又大又爽又粗少妇毛片 | tocl精华| 1000部很黄的大片| 国产真实乱freesex| 大型黄色视频在线免费观看| 亚洲人与动物交配视频| 伊人久久大香线蕉亚洲五| 少妇人妻精品综合一区二区 | 成人国产综合亚洲| 亚洲av熟女| 白带黄色成豆腐渣| 天天躁日日操中文字幕| 波野结衣二区三区在线 | 蜜桃亚洲精品一区二区三区| 91av网一区二区| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 中出人妻视频一区二区| 亚洲av成人不卡在线观看播放网| 久久精品91无色码中文字幕| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| a级一级毛片免费在线观看| 国产欧美日韩一区二区三| 一本精品99久久精品77| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| 九色成人免费人妻av|