• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structures and topological properties of TeSe2 monolayers*

    2021-11-23 07:30:50ZhengyangWan萬正陽HaoHuan郇昊HairuiBao鮑海瑞XiaojuanLiu劉曉娟andZhongqinYang楊中芹
    Chinese Physics B 2021年11期
    關(guān)鍵詞:正陽海瑞

    Zhengyang Wan(萬正陽) Hao Huan(郇昊) Hairui Bao(鮑海瑞)Xiaojuan Liu(劉曉娟) and Zhongqin Yang(楊中芹)

    1State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE)&Department of Physics,Fudan University,Shanghai 200433,China

    2Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    Keywords: two-dimensional material,monolayer TeSe2,quantum spin Hall effect,topological insulator

    1. Introduction

    Since the discovery and successful fabrication of graphene,[1]two-dimensional(2D)materials have attached intensive attention because of their many novel physical properties, such as the quantum spin Hall (QSH) effect,[2]quantum anomalous Hall (QAH) effect,[3]valley Hall effect,[4]etc,making them be promising candidate materials for future high performance electronic, spintronic, and optoelectronic devices.[4-7]Currently,besides graphene,[8,9]various types of 2D materials have also been synthesized in experiments, including elemental 2D films from group III to group V, such as boronene,[10-12]silicene,[13-15]stanine,[16]black phosphorus films,[17-19]antimonene,[20,21]and bismuthine.[22]Some binary 2D compounds such as MoS2[23-26]and CrI3[27]and so on were also fabricated successfully. Although plenty of 2D materials were reported owning QSH or QAH effects,[2,28,29]only few systems having the QSH(such as the HgTe/CdTe[30]quantum well and bismuthine[22])or QAH(such as Cr doped(Bi,Sb)2Te3film[31])effects were confirmed in experiments.

    Based on previous developments, researchers have extended the 2D materials to group-VI monolayers.In 2017,Zhuet al.[32]studied the structures and stability of tellurene (2D Te monolayers)using the particle-swarm optimization method in combination with density functional theory. And bilayer tellurene films have been observed in their experiments.[32]Different from two atomic layers in silicene and black phosphorus monolayers, tellurene contains trilayers,[32]with the central-layer Te behaving metal-like and the two outer layers semiconductor-like. They found that this unique multivalent behavior of Te guarantees the structural stability of the material.[32]Yanet al.found two ultra-stable novel allotropes for Te few-layers from first-principles calculations.[33]These studies promoted the researches on the group-VI monolayer materials. It is meaningful to explore the electronic structures and the interesting topological effects in group-VI monolayer materials.

    In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely,α-TeSe2,β-TeSe2,andγ-TeSe2,are proposed and studied,all of which are semiconductors with indirect band gaps. Theγ-TeSe2monolayer is found being a QSH insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The topology of the material is identified by the calculations ofZ2topological invariants and the edge state. The opening mechanism of the global nontrivial band gap is analyzed.

    2. Computational models and methods

    For the 2D trilayered tellurene, the multiple valences of Te atoms promote the formation of a stable monolayer tellurene structure. Based on the studied structures of tellurene[32]and tellurium few-layers,[33]we build and consider three typical structures for the TeSe2monolayers. To obtain the TeSe2, the Te atoms in the two outer layers of tellurene are all replaced by Se atoms. Since Se electronegativity is larger than that of Te,the TeSe2structures are expected to be also very stable. The built three type structures for the TeSe2monolayers, namedα,β, andγphases, are illustrated in Figs. 1(a)-1(c), respectively. Theα-TeSe2has a similar structure to that of 1T-MoS2.[34]Both the Se1 and Se2,corresponding to the S atoms in the 1T-MoS2,are in the outer layers of the materials, with the coordination number of 3. The central-layer Te atoms correspond to the Mo atoms in the 1TMoS2,with the coordination number of 6. For theβ-TeSe2,it presents a corrugated structure. In the top view, the structure is composed of hexagons and rhombuses. The coordination number of each Te atom in theβ-TeSe2is 4,different from that in theα-TeSe2. Theγ-TeSe2has a similar geometric structure to that of 2H-MoS2,[34]with an in-plane mirror symmetry.Exotic properties may be dug out from these various structures of the TeSe2monolayers.

    The electronic states of the TeSe2monolayers with the three type structures are calculated within the framework of density functional theory (DFT), as implemented in the Viennaab initiosimulation package (VASP).[35]The projected augmented wave(PAW)potentials are adopted to deal with the electron-ion interactions.[36,37]The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) is used for the exchange-correlation functional.[38]A vacuum layer of 20 ?A is applied between the neighboring TeSe2layers to minimize the image interactions from the periodic boundary condition. The plane wave cutoff energy is set to be 500 eV.TheΓcenteredk-point sampling of 15×15×1 is adopted in the first Brillouin zone. The structures are optimized until the force on each atom is less than 0.01 eV/?A.To investigate the dynamic stability of the proposed TeSe2ML,phonon dispersion is calculated by using the DFT perturbation theory as implemented in the PHONOPY code. TheZ2topological invariant is calculated with the maximally localized Wannier functions[39]by using the Wannier 90 package. To obtain the edge states, we construct a TB Hamiltonian with a basis of maximally localized Wannier functions by using the Wannier Tools[40]package.

    3. Results and discussion

    3.1. Structures and electronic states of the TeSe2 monolayers

    We now study the geometric structures and the electronic states of the TeSe2monolayers with the three type structures(Figs.1(a)-1(c)). The optimized structural parameters and the calculated cohesive energies of the three materials are listed in Table 1. The bond lengths of the neighboring Te and Se atoms(2.82-2.87 ?A) are close to each other for the three structures studied. Due to the largest area of the 2D unit cell inβ-TeSe2,the layer thickness(dz)inβ-TeSe2is the smallest,corresponding to the smallest angle(θ)between the Te-Se bond and the horizontal direction (Table 1). Inγ-TeSe2, the Se1 is exactly localized on the top of the Se2.The strong repulsive forces between the two type anions (Se1 and Se2) result in the largest layer thickness in the structure,as seen from Table 1. Among the three structures,α-TeSe2has the largest cohesive energy whileγ-TeSe2has the smallest one.Thus,α-TeSe2is the most stable structure and the other two structures are metastable.The first Brillouin zones ofα-TeSe2(γ-TeSe2) andβ-TeSe2are hexagon and rectangle,respectively(Fig.1(d)).

    Fig.1. Top and side views of the optimized structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c). (d)The first Brillouin zones of α-TeSe2 or γ-TeSe2 (left)and β-TeSe2 (right).

    The calculated band structures ofα-TeSe2,β-TeSe2,andγ-TeSe2are displayed in Figs. 2(a)-2(c), respectively. The Fermi level(EF)is set at energy zero. The red dotted and the black solid curves present the bands for the materials without and with spin-orbit coupling(SOC)interactions,respectively.The SOC interactions do not change much the bands on the whole but can split the energy degeneracy at some positions in the momentum space, such as the places marked by the green ovals in Figs.2(a)and 2(c). The three materials are all semiconductors with indirect band gaps.The SOC interactions slightly reduce the band gaps due to the energy splitting. The energy bands ofα-TeSe2andβ-TeSe2with SOC are both doubly degenerate, while the bands ofγ-TeSe2are not. The reason is that both time-reversal and space-inversion symmetries are owned by theα-TeSe2andβ-TeSe2monolayers, while there is no space-inversion symmetry in theγ-TeSe2monolayer(Fig.1). In Figs.2(a)-2(c),three group bands are clearly observed in the band structures ofα-TeSe2andγ-TeSe2. This similarity can be ascribed to the relatively similar structures of the two materials(Figs.1(a)and 1(c)).

    Table 1. The results for the monolayer TeSe2 with different structures. The properties listed contain the lattice constants a and b,distance between the upper and lower Se atomic layers(dz),Te-Se bond length,angle between the Te-Se bonding direction and the horizontal direction(θ,marked in Fig.1),and the cohesive energy(Ec).

    Fig.2. Band structures of α-TeSe2 (a),β-TeSe2 (b),and γ-TeSe2 (c)without(red dotted curves)and with(black solid curves)the consideration of SOC.

    The similar structures ofα-TeSe2andγ-TeSe2also give rise to the close band gaps of the two materials (Fig. 3(a)).When the SOC is turned on,the band gaps ofα-TeSe2andγ-TeSe2are 0.38 eV and 0.65 eV, respectively. The obtained energy bands ofβ-TeSe2are given in Fig. 2(b), which are consistent with the results reported in Ref. [41]. The largest band gaps achieved inβ-TeSe2(Fig.3(a))can be ascribed to the relatively flat bands localized at the valence-band top and conduction-band bottom in the material(Fig.2(b)). The analysis of the orbital-resolved bands(not shown)shows that these flat bands are primarily composed of the pzorbitals of the Se1 and Se2 atoms. Thus,the dangling bonds of the Se pzorbitals in the uniqueβ-TeSe2structure cause the relatively large band gaps in the materials.

    Forα-TeSe2(γ-TeSe2), before the SOC is taken into account, doubly degenerate bands around 1.3 eV (1.0 eV)marked by green ovals occur, composed mainly by pxand pyorbitals of the Te and Se atoms (to be discussed), due to theC3vsymmetry in the monolayers. This degeneracy is lifted after the SOC is turned on. A pretty large direct band gap of 0.4/0.7 eV is opened there by the SOC in theα-TeSe2/γ-TeSe2monolayer due to the stronger intrinsic SOC coming from the pxand pyorbitals,compared to that from the pzorbitals.[42,43]The gaps opened in such kind of parabolic bands are generally topologically nontrivial, leading to the appearing of the QSH[44]or QAH[45,46]insulators with a non-Dirac-type bandgap opening mechanism. Since the concerned band gaps inαTeSe2andγ-TeSe2are nonglobal,the materials are in topological semimetal states. As displayed in Fig. 2(a), the dispersion of the bands around 1.3 eV ofα-TeSe2is very large.Expectably,it is difficult to tune the bands to produce a global topologically nontrivial band gap in theα-TeSe2monolayer.Therefore,theγ-TeSe2monolayer is focused in the following.

    Fig.3. (a)The band gaps of the three materials studied. The rectangles without and with the grids give the band gaps without and with the consideration of SOC.(b)The phonon spectrum of the γ-TeSe2 monolayer.

    Fig. 4. The energy band projection of the Se1 (a) and Te (b) atoms in the γ-TeSe2 monolayer without the consideration of SOC. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    In terms of the stability of theγ-TeSe2structure, the phonon spectrum is calculated and shown in Fig. 3(b). No negative frequency is found in Fig. 3(b), indicating the dynamic stability of theγ-TeSe2despite its lowest cohesive energy among the three structures. To deeply understand the electronic structure ofγ-TeSe2, the projected band structures of the Se1 and Te atoms are plotted in Fig.4 without considering SOC. Due to the in-plane mirror symmetry owned byγ-TeSe2(withD3hspace group), the upper layer Se1 and the lower layer Se2 atoms are equivalent.Therefore,only the band projection of the Se1 atom is analyzed. As shown in Figs.4(a)and 4(b),the valence-band top and conduction-band bottom at theΓpoint, with double degeneracy, are mainly contributed by the pxand pyorbitals of the Te or Se atoms. The degeneracy is lifted after the SOC is turned on. From the orbital distribution of the Se1 and Te atoms (Fig. 4), we can clearly find the bonding,nonbonding,and antibonding characteristics between the Se and Te atoms. The bonding states are formed between?6 eV and?2 eV.The nonbonding states are formed between?2 eV and 0 eV and antibonding states are formed between 0.5 eV and 2.8 eV.

    3.2. Strain effects in γ-TeSe2

    As an effective means to tune electronic structures,strain has been applied in multiple material systems.[47-50]We here apply in-plane biaxial strain to theγ-TeSe2monolayer,which is defined asε=(a?a0)/a0,wherea(a0)is the strained(unstrained) in-plane lattice constant. The positive and negative values ofεcorrespond to the tensile and compressive biaxial strains,respectively. The band evolution ofγ-TeSe2under different biaxial strain is shown in Fig.5. The bands we concern are located near 1.0 eV above theEFaround theΓpoint,indicated by a yellow rectangle in Fig.5(d).

    Fig.5. (a)-(e)The band structures of the γ-TeSe2 monolayer under strain of different strengths. The red dotted and black solid curves give the bands without and with SOC,respectively. (f)The global band gap as a function of the strain for the γ-TeSe2 monolayer. Obvious topological phase transition occurs with compressive strain applied.

    As shown in Fig.5,with the increase of the compressive strain(from Fig.5(d)to Fig.5(a)),the relative position of the characteristic doubly degenerate bands at theΓpoint moves to high energy region (from 1.0 eV in Fig. 5(d) to 1.4 eV in Fig.5(a)). Clearly,the dispersion of the local bands along theK-Γpath in this energy region decreases in the process,which is beneficial to the opening of the global band gap.In the same process,the minimum band gap along theK-Γpath,however,decreases,hampering the opening of the global band gap. The competition of these two respects gives rise to the global band gap increasing first and then decreasing as the increase of the compressive strain,as displayed in Fig.5(f). The global band gap of the system reaches the maximum of 0.14 eV with the strain ofε=?3.5%. In the absence of strain or under tensile strain,theγ-TeSe2monolayer owns a semimetallic state with a higher electronic conduction performance than the semiconductors because of its‘quasi’metallic band structures.

    The movement of the doubly degenerate bands at theΓpoint (marked by the yellow rectangle in Fig. 5(d)) under the compressive strain can be comprehended by the orbitalresolved densities of states (DOSs) of the Se1 and Te atoms shown in Fig. 6. Note that due to theC3vsymmetry owned by theγ-TeSe2monolayer, the DOSs of pxand pyorbitals of the Se1 (also Te) atoms are completely overlapped in Fig. 6.The unoccupied states of the Te atom are much more than that of the Se atoms,hinting the charge transfer from the Te to Se atoms, consistent with the above analysis. These multivalent states,similar to the cases of the tellurene and MoS2systems,ensure the structural stability of theγ-TeSe2monolayer. In Fig. 6(a), the Se1 p orbitals are mainly distributed between?2 eV and?0.5 eV together with a few distributions between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.The Te p orbitals are mainly distributed between?6 eV and?2 eV or between 0.5 eV and 2.8 eV.Unlike the Se1 atom,the Te p orbitals are not distributed between?2 eV and?0.5 eV,corresponding to the nonbonding state between Te and Se as discussed in Fig.4. With the increase of the compressive strain,the Te-Se bond length decreases (Table 2). Thus, the Te-Se bonds become strong,leading to the bonding and antibonding states moving to the lower and higher energy regions, respectively.This trend can be seen obviously from Figs. 6(a)-6(d). For example,the antibonding states of the Te and Se atoms move from the energy region of 0.5-1.5 eV in Fig.6(a)to the energy region of 0.8-3.0 eV in Fig. 6(c). This behavior rationalizes well the movement to a high energy of the doubly degenerate bands at theΓpoint marked in Fig.5(d)with the increase of the compressive strain.

    Table 2. The structural parameters of the γ-TeSe2 monolayer under strain, including the layer thickness dz in the z direction, bond lengths of Te-Se and Te-Te,and angle θ between the Te-Se bonding direction and the horizontal direction(shown in Fig.1).

    We now understand the variation of the local band gap,marked by the red circle in Fig. 7(a), forγ-TeSe2under the compressive strain. As displayed in Fig. 7, this local band gap is opened due to the direct interactions between the px,py(also few pz) orbitals of Se and the px, pyorbitals of Te.With the increase of the compressive strain, the band gap decreases. The reason can be due to the decrease of the interactions between the px,pyorbitals of Se and the px,pyorbitals of Te. With the increase of the compressive strain, the layer thickness(dz)increases(Table 2), causing the increase of the distance between Se and Te along thezdirection. Thus,the direct interactions between the px,pyorbitals of Se and the px,pyorbitals of Te decrease.This trend is not beneficial for opening the global band gap after the SOC is taken into consideration.The combination of the variation of the band gap(marked by the red circle in Fig.7(a))and the movement to a high energy of the doubly degenerate bands(marked by the red triangle in Fig.7(a))under strain produces the global band gap increasing first and then decreasing with the increase of the compressive strain,as shown in Fig.5(f).The movement to a high energy of the doubly degenerate bands around 1.0 eV in Fig. 7(a) with the increase of the strain reflects the dispersion decrease of the local bands along theK-Γpath in the process. Thus, the opening of the global band gap in theγ-TeSe2monolayer can be understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px,pyorbitals and Te px,pyorbitals during the process.

    Fig. 6. (a)-(d) The orbital-resolved densities of states of Se1 and Te atom in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively. The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px, py, and pz orbitals of the corresponding atom,respectively.

    Fig.7.(a)-(d)The energy band projection of the Se1 and Te atoms in the γ-TeSe2 monolayer without and with ?2%,?4%,and ?6%strain,respectively.The SOC is not considered. The green,yellow,and blue colors represent the contributions from the px,py,and pz orbitals of the corresponding atom,respectively.

    3.3. Topological properties of γ-TeSe2

    Since the concerned global band gap is located around 1.2 eV above theEF, it should be shifted down to theEFfor the transport measurement or applications, which can be achieved by adding two additional electrons per unit cell to theγ-TeSe2monolayer. Figure 8(a) shows the energy bands of the?4% strainedγ-TeSe2monolayer with two electrons added per unit cell.The electron doping concentration is about 1.5×1015cm?2,which can be experimentally realized via the current gating technologies.[51]In Fig. 8(a), theEFnow lies exactly within the band gap. The topological behavior of the band gap can be explored based on Fig.8(a). Before calculating the topological invariants of theγ-TeSe2monolayer, the energy bands obtained from the DFT are fit with the Wannier function interpolation method. The results are shown in Fig. 8(b), indicating high consistency between the two methods. TheZ2topological invariant is then obtained by calculating the evolution of the Wannier function center,[52]and the result is given in Fig.8(c). The number of intersections between any horizontal reference line and the Wannier function center evolution line in half of the Brillouin zone is odd. Thus, the energy band gap concerned hasZ2=1 and a QSH insulator is obtained for theγ-TeSe2monolayer. The edge states are also investigated for the system. Figure 8(d) displays the energy bands of a semi-infiniteγ-TeSe2monolayer.In the characteristic energy gap,besides a series of trivial edge states caused by the dangling bonds of the open boundary,a pair of edge states(marked by two small black arrows)appears, which connects the bottom of the conduction band and the top of the valence band. They are,thus,protected by the bulk topology. The appearance of the edge states as well as the obtainedZ2=1 in the monolayer shows that the global energy gap obtained in theγ-TeSe2monolayer is topologically nontrivial. The system remains a topologically nontrivial semimetal if tensile strain is applied as indicated in Fig.5(f).

    Fig.8. (a)Energy bands of the ?4%strained γ-TeSe2 monolayer after doping two electrons into the unit cell. The EF is now within the global topologically nontrivial band gap. (b)Comparison of the energy bands obtained by using the Wannier function interpolation method and the DFT.(c)The Wannier charge center evolution diagram of the material. (d)The energy bands of a semi-infinite monolayer γ-TeSe2 with ?4%strain. The topologically nontrivial edge states of the material are marked by arrows.

    4. Conclusions

    Based on the density functional theory and Wannier function method, we studied the electronic states and topological properties of the TeSe2monolayer. Numerical results show that the stableα-TeSe2,β-TeSe2, andγ-TeSe2are semiconductor materials with indirect gaps. Theα-TeSe2is the most stable and a double degeneracy phenomenon is found in the bands ofα-TeSe2andβ-TeSe2. When the compressive strain increases from 0% to 6%, the global topologically nontrivial band gap ofγ-TeSe2is opened and increases first and then decreases. The trend is comprehended based on a competition mechanism. When the compressive strain of 3.5%is applied,theγ-TeSe2monolayer has the maximum global topologically nontrivial band gap of 0.14 eV. The topologically nontrivial feature of the material is characterized by the calculatedZ2topological invariant and the edge state. Theγ-TeSe2remains a topological semimetal with tensile strain up to 4%.Our work shows that group-VI binary 2D compounds can be new type topological materials and have potential applications in the future electronics and spintronics.

    Acknowledgement

    The calculations were performed at the High Performance Computational Center (HPCC) of the Department of Physics at Fudan University.

    猜你喜歡
    正陽海瑞
    夏日正陽
    “海瑞定理Ⅰ”的歷史性反思
    法律史評論(2020年1期)2020-09-11 06:25:02
    徐正陽 油畫作品
    讓媽媽干活
    中華家教(2018年9期)2018-10-19 09:53:46
    蛋白質(zhì)計算問題歸納
    秋風(fēng)
    天下錢糧減三分
    凈月之下·長春之璀
    參花(下)(2014年1期)2014-12-12 19:10:55
    論海瑞的“廉名”傳播及歷史啟示
    Corpus—based Study on Complementizer Usage of Shuo in Written
    757午夜福利合集在线观看| 人人妻人人澡欧美一区二区| 波多野结衣巨乳人妻| 黑人欧美特级aaaaaa片| 免费看日本二区| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清专用| av超薄肉色丝袜交足视频| 在线观看美女被高潮喷水网站 | 国内精品一区二区在线观看| 国产亚洲精品av在线| 久久香蕉国产精品| 日韩成人在线观看一区二区三区| 最好的美女福利视频网| 日韩精品青青久久久久久| 国产一区二区三区视频了| 999久久久精品免费观看国产| 黄色 视频免费看| 97碰自拍视频| 曰老女人黄片| 午夜久久久久精精品| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 日本一本二区三区精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲一区二区三区不卡视频| 精品福利观看| 久久久久国产精品人妻aⅴ院| 国内少妇人妻偷人精品xxx网站 | 亚洲精品一区av在线观看| 五月玫瑰六月丁香| 老汉色av国产亚洲站长工具| 夜夜爽天天搞| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲国产精品合色在线| 欧美日韩黄片免| www日本黄色视频网| 国产一区二区激情短视频| 一边摸一边抽搐一进一小说| 国产精品美女特级片免费视频播放器 | 婷婷六月久久综合丁香| 琪琪午夜伦伦电影理论片6080| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| netflix在线观看网站| 国产精品1区2区在线观看.| 又粗又爽又猛毛片免费看| 国产av一区二区精品久久| 亚洲精品粉嫩美女一区| 99久久无色码亚洲精品果冻| 欧美色欧美亚洲另类二区| 国产人伦9x9x在线观看| 免费无遮挡裸体视频| 亚洲乱码一区二区免费版| 欧美黑人欧美精品刺激| 又粗又爽又猛毛片免费看| 91麻豆精品激情在线观看国产| 欧美性猛交黑人性爽| 黄频高清免费视频| 午夜福利视频1000在线观看| or卡值多少钱| 成人午夜高清在线视频| 日本免费a在线| 亚洲av日韩精品久久久久久密| 俺也久久电影网| 校园春色视频在线观看| 亚洲天堂国产精品一区在线| 人人妻人人看人人澡| 在线a可以看的网站| 99国产极品粉嫩在线观看| 久久久久久九九精品二区国产 | 美女黄网站色视频| 欧美在线黄色| 91麻豆精品激情在线观看国产| 变态另类丝袜制服| 色综合站精品国产| 午夜福利免费观看在线| 欧美性猛交╳xxx乱大交人| 免费观看人在逋| 日日干狠狠操夜夜爽| 久久亚洲真实| 真人一进一出gif抽搐免费| 99久久综合精品五月天人人| 黄色a级毛片大全视频| 中文资源天堂在线| 中文字幕高清在线视频| 亚洲第一电影网av| 亚洲国产中文字幕在线视频| 在线播放国产精品三级| 制服人妻中文乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久99久久久精品蜜桃| 久久精品国产综合久久久| 91九色精品人成在线观看| 国产精品1区2区在线观看.| 久久精品国产99精品国产亚洲性色| 免费在线观看黄色视频的| 欧美色视频一区免费| 亚洲色图 男人天堂 中文字幕| av福利片在线| 国产成人影院久久av| 日本一二三区视频观看| 真人一进一出gif抽搐免费| 国产日本99.免费观看| 熟女少妇亚洲综合色aaa.| 国产精品一区二区免费欧美| 免费一级毛片在线播放高清视频| 欧美不卡视频在线免费观看 | 免费搜索国产男女视频| 两个人视频免费观看高清| 亚洲中文av在线| 精品久久久久久久毛片微露脸| 欧美在线一区亚洲| 免费搜索国产男女视频| 欧美乱妇无乱码| 成人av在线播放网站| bbb黄色大片| 久久草成人影院| 中文字幕高清在线视频| 婷婷精品国产亚洲av| 国产亚洲精品久久久久久毛片| 不卡av一区二区三区| 国产精品99久久99久久久不卡| 国产视频一区二区在线看| av国产免费在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 嫩草影院精品99| 男女视频在线观看网站免费 | 久久久久久人人人人人| 久久国产乱子伦精品免费另类| 丰满人妻一区二区三区视频av | 制服丝袜大香蕉在线| 久久久久久国产a免费观看| 国产黄a三级三级三级人| 国产成人精品久久二区二区91| 欧美成狂野欧美在线观看| 成年免费大片在线观看| 亚洲第一电影网av| 一级毛片精品| 国产精品一区二区三区四区免费观看 | 中文在线观看免费www的网站 | 麻豆久久精品国产亚洲av| 伊人久久大香线蕉亚洲五| 日韩欧美精品v在线| 日韩欧美三级三区| 一个人免费在线观看电影 | 免费观看人在逋| 成人午夜高清在线视频| 国产成人欧美在线观看| 色综合婷婷激情| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品久久二区二区免费| 国产成+人综合+亚洲专区| 老司机深夜福利视频在线观看| 小说图片视频综合网站| av中文乱码字幕在线| 国产精品av视频在线免费观看| 1024香蕉在线观看| 一个人免费在线观看的高清视频| 人成视频在线观看免费观看| 久9热在线精品视频| 久久午夜综合久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 天天一区二区日本电影三级| 国产av麻豆久久久久久久| 亚洲第一电影网av| 日日夜夜操网爽| 国产精品国产高清国产av| 悠悠久久av| 亚洲乱码一区二区免费版| 国产主播在线观看一区二区| 亚洲精品美女久久久久99蜜臀| av视频在线观看入口| 久久久久性生活片| 一本精品99久久精品77| 日韩欧美在线乱码| 日本熟妇午夜| av福利片在线观看| 国产男靠女视频免费网站| 国产一区在线观看成人免费| 国产一区二区在线av高清观看| 色精品久久人妻99蜜桃| 成年免费大片在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美绝顶高潮抽搐喷水| 在线观看66精品国产| 神马国产精品三级电影在线观看 | 最新在线观看一区二区三区| 怎么达到女性高潮| 欧美日韩国产亚洲二区| 亚洲色图av天堂| 成人特级黄色片久久久久久久| 国产三级在线视频| 五月伊人婷婷丁香| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 99久久无色码亚洲精品果冻| 在线看三级毛片| 欧美最黄视频在线播放免费| 又黄又粗又硬又大视频| 国产精品蜜桃在线观看 | 国产精品永久免费网站| av专区在线播放| 国产一级毛片七仙女欲春2| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 免费人成视频x8x8入口观看| 在线免费观看不下载黄p国产| 亚洲人成网站高清观看| 少妇高潮的动态图| 免费观看a级毛片全部| 色综合站精品国产| 亚洲精品国产av成人精品| 日本撒尿小便嘘嘘汇集6| 九九爱精品视频在线观看| 亚洲在线自拍视频| 色综合色国产| 午夜福利在线在线| 国产精品人妻久久久影院| 日日摸夜夜添夜夜爱| 干丝袜人妻中文字幕| 看片在线看免费视频| 国产熟女欧美一区二区| 国产精品久久久久久精品电影| 中国美女看黄片| 极品教师在线视频| 精品久久久久久久久久免费视频| 91精品一卡2卡3卡4卡| 日本熟妇午夜| 黄片无遮挡物在线观看| 午夜亚洲福利在线播放| 久99久视频精品免费| 久久精品国产鲁丝片午夜精品| 欧美人与善性xxx| 自拍偷自拍亚洲精品老妇| 色综合站精品国产| 国产真实乱freesex| 亚洲丝袜综合中文字幕| 国产女主播在线喷水免费视频网站 | 精品熟女少妇av免费看| 2022亚洲国产成人精品| 久久久久久久久久黄片| videossex国产| 亚洲av不卡在线观看| 久久久久久久久中文| 女同久久另类99精品国产91| 午夜a级毛片| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 一级黄色大片毛片| 亚洲一级一片aⅴ在线观看| av在线天堂中文字幕| 毛片女人毛片| 尤物成人国产欧美一区二区三区| 国产精品乱码一区二三区的特点| 蜜臀久久99精品久久宅男| 成人特级av手机在线观看| 亚洲欧美清纯卡通| 亚洲久久久久久中文字幕| 亚洲av二区三区四区| 哪里可以看免费的av片| 久久久久网色| 国产日韩欧美在线精品| 网址你懂的国产日韩在线| 国产老妇女一区| av在线观看视频网站免费| АⅤ资源中文在线天堂| 久久国内精品自在自线图片| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 亚洲欧美精品专区久久| 欧美zozozo另类| 成人综合一区亚洲| 男女啪啪激烈高潮av片| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 99热6这里只有精品| 国产高清三级在线| 国产精品久久久久久久电影| 亚洲av.av天堂| 男插女下体视频免费在线播放| av黄色大香蕉| 伊人久久精品亚洲午夜| 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 久久亚洲国产成人精品v| 久久99精品国语久久久| 99九九线精品视频在线观看视频| 久久精品久久久久久久性| 97超碰精品成人国产| 国产精品一区二区性色av| 在线免费观看的www视频| 国产黄色小视频在线观看| 最近的中文字幕免费完整| 精品国内亚洲2022精品成人| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利成人在线免费观看| 在线观看av片永久免费下载| 久久久精品94久久精品| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 一个人看的www免费观看视频| www日本黄色视频网| 久久综合国产亚洲精品| 美女高潮的动态| 九草在线视频观看| 最好的美女福利视频网| 99九九线精品视频在线观看视频| 99热这里只有精品一区| av在线观看视频网站免费| 国产人妻一区二区三区在| 国产高清不卡午夜福利| 深夜精品福利| 国产精品99久久久久久久久| 高清午夜精品一区二区三区 | 一本久久中文字幕| 亚洲天堂国产精品一区在线| 欧美激情国产日韩精品一区| 日本色播在线视频| av在线播放精品| 久久精品国产鲁丝片午夜精品| 夫妻性生交免费视频一级片| 亚洲婷婷狠狠爱综合网| 免费av不卡在线播放| 成人午夜高清在线视频| 国产精品99久久久久久久久| 天美传媒精品一区二区| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 麻豆国产av国片精品| 免费观看精品视频网站| 国产免费一级a男人的天堂| 草草在线视频免费看| 日本av手机在线免费观看| 色视频www国产| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| av天堂中文字幕网| 久久韩国三级中文字幕| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 春色校园在线视频观看| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 日本与韩国留学比较| 亚洲精品影视一区二区三区av| 黄色欧美视频在线观看| 午夜a级毛片| 国产亚洲欧美98| 亚洲第一区二区三区不卡| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 亚洲激情五月婷婷啪啪| 乱人视频在线观看| 亚洲人成网站在线播| 亚洲成人久久性| 一个人观看的视频www高清免费观看| 日韩视频在线欧美| 欧美bdsm另类| 午夜精品在线福利| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 大型黄色视频在线免费观看| 国产男人的电影天堂91| 一本一本综合久久| 日韩欧美国产在线观看| 身体一侧抽搐| 欧美性猛交黑人性爽| 桃色一区二区三区在线观看| 内射极品少妇av片p| 日韩精品有码人妻一区| 一本一本综合久久| 两性午夜刺激爽爽歪歪视频在线观看| 蜜臀久久99精品久久宅男| 综合色av麻豆| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 69人妻影院| 久久这里有精品视频免费| 欧美bdsm另类| 一个人免费在线观看电影| 免费看日本二区| 色5月婷婷丁香| 久久欧美精品欧美久久欧美| 亚洲av成人av| 99热6这里只有精品| 夫妻性生交免费视频一级片| 久久久久久伊人网av| 成人性生交大片免费视频hd| 女同久久另类99精品国产91| 午夜精品在线福利| 又粗又爽又猛毛片免费看| 一级黄片播放器| 国产精品福利在线免费观看| 精品日产1卡2卡| 国内揄拍国产精品人妻在线| 国产又黄又爽又无遮挡在线| 亚洲内射少妇av| 中文字幕人妻熟人妻熟丝袜美| 村上凉子中文字幕在线| 男人的好看免费观看在线视频| av在线老鸭窝| 九九在线视频观看精品| 国产精品久久久久久精品电影| 一区二区三区四区激情视频 | 人妻制服诱惑在线中文字幕| 国产 一区精品| 毛片女人毛片| 国产黄片美女视频| 午夜福利在线观看吧| 中文亚洲av片在线观看爽| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 能在线免费观看的黄片| 亚洲欧美精品专区久久| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 波多野结衣巨乳人妻| 深爱激情五月婷婷| 岛国毛片在线播放| 69av精品久久久久久| 久久久精品大字幕| 亚洲av.av天堂| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 听说在线观看完整版免费高清| 一卡2卡三卡四卡精品乱码亚洲| 天天一区二区日本电影三级| 国产成人午夜福利电影在线观看| 亚洲精品成人久久久久久| 日产精品乱码卡一卡2卡三| 色播亚洲综合网| 波野结衣二区三区在线| 久久99蜜桃精品久久| 亚洲av电影不卡..在线观看| 一区福利在线观看| 欧美成人免费av一区二区三区| 只有这里有精品99| 99在线视频只有这里精品首页| 网址你懂的国产日韩在线| 国产精品精品国产色婷婷| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 99在线视频只有这里精品首页| 亚洲精华国产精华液的使用体验 | 最近2019中文字幕mv第一页| 国内精品美女久久久久久| 色播亚洲综合网| 成人午夜精彩视频在线观看| 草草在线视频免费看| 亚洲美女搞黄在线观看| 久久人人爽人人爽人人片va| 91狼人影院| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| 夜夜夜夜夜久久久久| 欧美日韩精品成人综合77777| 尤物成人国产欧美一区二区三区| 国产一区二区在线av高清观看| 91狼人影院| 亚洲精品影视一区二区三区av| 99久国产av精品| 草草在线视频免费看| 久久久精品大字幕| 美女xxoo啪啪120秒动态图| 看十八女毛片水多多多| 久久久色成人| 午夜福利在线在线| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 久久久欧美国产精品| 两个人视频免费观看高清| 中文亚洲av片在线观看爽| 最近2019中文字幕mv第一页| 黄片wwwwww| 国产精品麻豆人妻色哟哟久久 | 99热网站在线观看| av专区在线播放| 听说在线观看完整版免费高清| 久久久欧美国产精品| 97在线视频观看| 黄色欧美视频在线观看| avwww免费| 成熟少妇高潮喷水视频| av天堂在线播放| 国产真实乱freesex| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 在线国产一区二区在线| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 国产亚洲欧美98| 国产成人91sexporn| 精品久久久久久久人妻蜜臀av| 两个人视频免费观看高清| 日本-黄色视频高清免费观看| 在线免费观看不下载黄p国产| avwww免费| 免费人成在线观看视频色| 欧美性感艳星| 全区人妻精品视频| 国产视频内射| 丰满的人妻完整版| 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 亚洲图色成人| 3wmmmm亚洲av在线观看| 久久精品国产99精品国产亚洲性色| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 99久久精品一区二区三区| 久久精品国产清高在天天线| 亚洲人成网站在线播| 日本五十路高清| 精品人妻熟女av久视频| 亚洲电影在线观看av| 午夜免费激情av| 久久精品91蜜桃| 亚洲国产精品成人久久小说 | 91精品国产九色| 波多野结衣高清作品| 搞女人的毛片| 日本欧美国产在线视频| 哪个播放器可以免费观看大片| 亚洲av成人精品一区久久| 免费观看人在逋| 永久网站在线| 国产精品蜜桃在线观看 | 亚洲精品乱码久久久v下载方式| 波多野结衣高清作品| 免费看光身美女| 国产老妇伦熟女老妇高清| 亚洲精品成人久久久久久| 亚洲三级黄色毛片| 丝袜美腿在线中文| 国内少妇人妻偷人精品xxx网站| 欧美另类亚洲清纯唯美| 精品久久久久久久久av| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 国产高潮美女av| 三级毛片av免费| 国产极品天堂在线| 国产淫片久久久久久久久| 国产成人精品久久久久久| 一级毛片我不卡| 在线a可以看的网站| 亚洲aⅴ乱码一区二区在线播放| 国产精品乱码一区二三区的特点| 免费看美女性在线毛片视频| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看| 亚洲aⅴ乱码一区二区在线播放| 变态另类成人亚洲欧美熟女| 日本撒尿小便嘘嘘汇集6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美bdsm另类| 麻豆一二三区av精品| 亚洲精品影视一区二区三区av| 2022亚洲国产成人精品| 日本一本二区三区精品| 国产黄色小视频在线观看| 日韩欧美 国产精品| 日本三级黄在线观看| 亚洲自偷自拍三级| 看黄色毛片网站| 亚洲七黄色美女视频| 欧美最新免费一区二区三区| 久久6这里有精品| 免费看光身美女| 岛国在线免费视频观看| 天天一区二区日本电影三级| 两个人视频免费观看高清| 一个人看视频在线观看www免费| 日本免费a在线| 亚洲无线观看免费| 日本av手机在线免费观看| 少妇熟女aⅴ在线视频| av在线播放精品| 亚洲经典国产精华液单| 99久久精品国产国产毛片| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| av国产免费在线观看| 麻豆一二三区av精品| 高清毛片免费观看视频网站| 亚洲精品成人久久久久久| 少妇的逼水好多| 国产成人影院久久av| av国产免费在线观看| 人人妻人人看人人澡| 国产高清有码在线观看视频| 在线观看免费视频日本深夜| 国产人妻一区二区三区在| 国产av在哪里看| 欧美色欧美亚洲另类二区| av国产免费在线观看| 欧美高清性xxxxhd video| 久久久久久久久大av| 日韩视频在线欧美| 亚洲最大成人av| av在线亚洲专区| 欧美在线一区亚洲| 亚洲电影在线观看av|