• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN:Fe template*

    2021-11-23 07:30:48QunSiYang羊群思QingLiu劉清DongZhou周東WeiZongXu徐尉宗YiWangWang王宜望FangFangRen任芳芳andHaiLu陸海
    Chinese Physics B 2021年11期
    關(guān)鍵詞:陸海羊群

    Qun-Si Yang(羊群思) Qing Liu(劉清) Dong Zhou(周東) Wei-Zong Xu(徐尉宗)Yi-Wang Wang(王宜望) Fang-Fang Ren(任芳芳) and Hai Lu(陸海)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,Nanjing University,Nanjing 210093,China

    2School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    Keywords: GaN,alpha particle,detector,double Schottky contacts

    1. Introduction

    Over the past two decades,wide bandgap semiconductor gallium nitride(GaN)has shown extraordinary application potential in the fields of short wavelength optoelectronic devices and high-power/high frequency devices, such as blue laser diodes,[1]blue to ultraviolet (UV) light-emitting diodes,[2,3]UV detectors,[4]and high-electron-mobility transistors.[5]Meanwhile, it is also generally recognized that GaN could be used for making radiation detectors work in harsh environment due to its wide bandgap energy (~3×Eg,Si), good chemical and thermal stability as well as large displacement energy(~109 eV for N and 45 eV for Ga).[6,7]

    Compared with radiation detectors fabricated on conventional semiconductor materials like silicon and gallium arsenide,detectors made of GaN are expected capable of working stably with a long lifetime at elevated temperatures or under high doses of radiation. As summarized in the review paper by Sellinet al., GaN radiation detector could be a competitive candidate utilized in energy spectrum measurement of charged particles, which is applied specifically for the research of fusion process in nuclear reactors or particle physics in special occasions(e.g.,the Large Hadron Collider).[8]Vaiktuset al. fabricated an alpha particle detector with two Au Schottky contacts on 2-μm-thick epitaxial GaN,which gave a charge collection efficiency(CCE)of~92%.[9]Recently,the crystalline quality of epitaxial GaN film is improved steadily and large size free-standing GaN substrate are commercially available. It has been reported that GaN alpha particle detectors with mesa structure or sandwich structure have exhibited high CCE performance of nearly 100%.[10-13]Although GaN alpha particle detectors with planar Schottky structure have been reported in literature, studies on energy resolution and high temperature operation performance of this kind of detectors are very limited.[9,14]It is noticeable that planar Schottky structure has the intrinsic advantages of fabrication simplicity and process compatibility with field effect transistor technology. Another advantage of the planar Schottky structure is the low capacitance,which is important for minimizing RC related transfer delay of electrical signals.

    In this work, we have fabricated GaN alpha particle detectors with planar double Schottky contacts(DSC)directly on the semi-insulating (SI) GaN:Fe template grown by hydride vapor phase epitaxy (HVPE). Since undoped HVPE GaN is generally strongly n-type due to impurities or vacancy-related donor centers, the Schottky contact based on it could be very leaky, resulting in high background noise in energy spectrum measurement. An effective approach to enhance the resistivity of HVPE GaN is through carrier compensation by Fe doping.The leakage current can then be reduced down to a sufficiently low level, which allows the detection of weak current pulses induced by incident ionizing particles.

    The detectors fabricated in this work are characterized in terms of electrical properties and alpha particle detection performance at both room temperature and elevated temperatures.The main purpose of this work is to evaluate the future application potential of GaN-based planar DSC structure for alpha particle detection with energy resolution.

    2. Experiment

    The detectors in this work are fabricated on epitaxial Fedoped SI-GaN layer grown by HVPE on sapphire substrate.The SI-GaN layer is 5μm in thick with room temperature resistivity higher than 1×108Ω·cm. Figure 1 shows the crosssectional schematic diagram of the SI-GaN alpha particle detector with DSC.Before the metallization,the samples are degreased and sonicated in acetone,alcohol and de-ionized water for each 10 min,then dipped into dilute hydrogen fluoride solution for 60 s to remove native oxide from the GaN surface. The DSC alpha particle detectors are directly fabricated on the SI-GaN template by using standard photolithography and lift-off techniques. Semi-transparent interdigitated Ni/Au(100 ?A/100 ?A)Schottky contacts are deposited on the SI-GaN template via electron-beam evaporation. The designed contact fingers are 10μm wide and 1 mm long with an inter-spacing of 10μm. Subsequently,Ti/Au(2000 ?A/5000 ?A)pad layer is deposited on the diagonal margin of the Schottky contacts. For radiation sensitivity characterizations, the processed wafer is diced into individual dies, which are mounted onto TO packages by using conductive silver paste and via wire bonding.

    Figure 2 shows the assembled system for energy spectrum measurement of alpha particles. The TO packaged detector is placed within a shielded aluminum cylinder to prevent external electromagnetic interference. An241Am radioisotope source fixed by a polytetrafluoroethylene(PTFE)holder is collimated towards the front surface of the detector. During the detection process,incident alpha particles interacting with the active semiconductor lattice would generate multiple electron-hole pairs,which would be separated and swept towards respective electrodes by junction electrical field. The resulting current pulses are too weak to be measured directly, which have to be fed into a charge sensitive amplifier. The collected charge signals are then converted into linear-tail voltage pulses. The voltage pulse height ?Vequals toQ/CF,in whichQis the total charge induced by an alpha particle andCFis the feedback capacitor of the charge sensitive amplifier. Thus, the voltage pulse height distribution contains the information of energy deposited by incident particles within the device active layer.The feedback capacitor used in the charge sensitive preamplifier is 1 pF, resulting in a conversion gain of nominally 18.2 mV/MeV for the GaN alpha particle detector. Next, a shaping amplifier(ORTEC 672)is used to shape and amplify the output signals into linear semi-Gaussian voltage pulses.Finally, a multichannel analyzer (AMPTEK MCA-8000D) is used to complete the pulse height counting. During the energy spectrum measurement, the bias voltage applied on the detector is provided by a Keithley 2636A sourcemeter, while an oscilloscope(Tektronix MSO54)is used for the waveform monitoring. The total electronic noise of the detection system is measured by using a Tektronix AFG3102C function generator. A standard ORTEC Si alpha particle detector with a nominal CCE of~100%is adopted for the energy calibration.

    Fig.1. Cross-sectional schematic diagram of SI-GaN based DSC detector.

    Fig.2. Schematic of the experimental setup for alpha particle detection with the SI-GaN detector.

    3. Results and discussion

    The current-voltage (I-V) characteristics of the SI-GaN DSC detector are shown in Fig. 3(a). Since the two Schottky junctions of the detector are back-to-back connected, one Schottky diode is always reverse biased, while the other is forward biased. A good symmetric rectifying behavior can be observed on theI-Vcurve, which indicates that the two diodes have similar Schottky Ni/GaN interfacial barrier properties. Under 10 V bias, the detector exhibits a low roomtemperature dark current of less than 5.0×10?11A, corresponding to a linear current density of 5.0×10?10A/cm. Low leakage current is important for energy resolved particle detection, as random fluctuations in leakage current would add electrical noise into the momentary current flow caused by an ionizing event, leading to a significant source of distortion in subsequently processed signals.Figure 3(b)shows the temperature dependentI-Vcharacteristics of the GaN detector plotted in semi-log scale. In the temperature range of 30-90°C,the overall reverse leakage increases at higher temperatures.Meanwhile, at high reverse bias, the leakage current versus bias shows a linear relationship at various temperatures,which suggests that Pool-Frenkel emission is the dominant leakage conduction mechanism.[15,16]

    Fig.3. (a)The I-V characteristics of the SI-GaN DSC detector measured in low bias range;(b)the semi-log I-V characteristics of the detector measured at various temperatures.

    The energy spectral response of the SI-GaN detector is characterized by using the above-mentioned alpha particle detection system. The alpha radiation source used in this experiment is an241Am radioactive source with an exemption category of V, which has a typical radioactivity of less than 370 kBq. There are four possible alpha-particle transitions during the decay process of241Am. Each kind of transitions involves the emission of alpha particles with different energy and relative abundance, which include 5.389 MeV (1.0%),5.443 MeV (12.5%), 5.486 MeV (86.0%), and 5.545 MeV(0.3%).[17]Since their energies are very close and hard to be distinguished from each other in the energy spectrum,all following calculations conducted in this work are based on the particle energy of 5.486 MeV.The output signal from the GaN detector is firstly fed into the charge sensitive preamplifier and an oscilloscope is used to temporally monitor the amplified signal. A typical pulse waveform excited by a single alpha particle is shown in Fig. 4, which is a fast-rise voltage pulse with an exponential decay back to the baseline. Its rise time and fall time are 0.7μs and 2.2 ms,respectively. Such waveforms are further processed by the shaping amplifier, which has a shaping time set at 2 μs during energy spectrum measurement.

    Fig.4. A typical pulse signal of the SI-GaN detector through the preamplifier with a pulse amplitude of ~21 mV.

    The alpha particle energy spectra of the SI-GaN detector under various bias voltages are shown in Fig. 5. A double peak structure (“high peak” and “l(fā)ow peak”) is observed in the channels ranging from~1000 to 1900, in which the low peak stays in the low energy direction. During the measurement process, the counting time at each bias is intentionally adjusted so that all high peaks have nearly the same peak heights. It is clear that to reach the same magnitude of high peaks, the counting time has to be reduced at higher bias.Meanwhile,the overall count rate around the low peak drops.This behavior can be explained by the lateral expansion of depletion region within the DSC structure at higher bias, as illustrated in Fig.6. Due to the high resistivity of the SI-GaN,even at a bias voltage of 10 V, the GaN layer between the two inter-digitated contact electrodes is largely depleted, and the depletion layer would reach a maximum depth of 5 μm.Thus, an absence of bias dependence of the peak centroid is observed. As illustrated by the equipotential lines in Fig. 6,the applied bias mostly drops on the reverse biased junction.As bias increases, the width of the lateral depletion region would gradually broaden,until the remaining region between the two electrodes is fully depleted. Meanwhile,some regions outside the contact boundary would also be depleted. During this process,more particles impinging on the detector surface would contribute to effective counts. Thus,the higher the bias voltage, the shorter the accumulative counting time required to achieve a consistent height of the high peaks. In addition,charge collection efficiency should also increase with the rise of bias,which would contribute some high energy counts.

    Fig.5. 241Am alpha particle spectrum obtained with the SI-GaN detector at different bias.

    Fig.6. Cross sectional schematic of the DSC alpha particle detector during operation. The white arc lines and the dash lines illustrate the equipotential lines below the Schottky electrodes and boundary of the depletion region induced by external bias,respectively.

    To further analyze the double-peak characteristics,Gaussian function is used to fit the energy spectrum measured at a bias voltage of 30 V, which gives the energy positions of the peak centroids and their corresponding full widths at the half maximum(FWHM)values. As shown in Fig.7,the low peak can be fitted by Gaussian curve G1,while the high peak can be fitted by Gaussian curves G2 and G3. Apparent peak broadening and count fluctuations of the original spectrum curve can be observed. There are at least three main factors determining the energy resolution(FWHMall)of the detector,which is described by

    where FWHMstatis statistical-noise-related spectral broadening caused by the discrete nature of the count signal itself(i.e.,Fano noise),FWHMelecis caused by the random noise of the overall system including the detector and the readout circuit,and FWHMotheris spectral broadening caused by the other factors,such as performance drift of the detector during measurement process and energy straggling in the incident window of the detector.[18]The energy distribution of Fano noise can be described by the following equation:[19]

    whereFis the Fano factor,ε0is the average energy required for formation of an electron-hole pair,andEαis the alpha particle energy. By taking the Fano factor of 0.1 andε0of 8.9 eV for GaN, the calculated FWHMstatfor 5.486 MeV alpha particles is~5.18 keV.[20]The electronic noise (FWHMelec) of the entire readout circuit system is tested by feeding periodic short pulse signals produced by a functional signal generator into the circuit,which is determined as~2.3 keV.During the measurement,all parameters of the system are set as same as those used in real energy spectrum measurement. The energy separation between the peak centroids of G1 and G3 is~425 channels,which corresponds to a calibrated energy of 284 keV.Clearly,such a large energy difference between the two peaks can only be caused by FWHMother,which will be discussed in detail later.

    Fig.7. Gaussian fitting to the energy spectrum curve of the SI-GaN detector measured under a bias of 30 V.

    Fig. 8. Bragg ionization curves of 5.48 MeV alpha particles in gold layer and titanium layer calculated by the SRIM tool.

    Considering the special planar structure of the detector,its thick metal pad with an area of 300×300μm2is likely to account for the double-peak characteristics. In this model,alpha particles are emitted radially from241Am radioactive source to the surface of the detector. Some particles falling on the metal pad would inevitably lose certain amount of their energy due to the blocking effect of the pad metal. According to a report by Vigneshwaraet al.,for 5.486 MeV alpha particles vertically passing through a metal layer(500 ?A Ti/1500 ?A Au),the average energy loss is less than 110 keV.[21]Figure 8 shows the Bragg ionization curves for 5.48 MeV alpha particles in gold and titanium determined from the stopping range of Ions in matter (SRIM) simulation.[22]Based on these two curves, the average energy loss of 5.48 MeV alpha particles passing through 5000 ?A Au layer and 2000 ?A Ti layer are 220 keV and 45 keV,respectively. The sum of these two energies is 265 keV,which is close to the measured energy difference of 284 keV between G1 and G3. Thus,in Fig.7 the G1 peak should be caused by alpha particles passing through the Ti/Au(2000 ?A/5000 ?A)metal pad and then depositing energy into the underlying GaN layer, while G3 is caused by alpha particles directly penetrating through the GaN layer. Meanwhile, random interactions of particles and different incident angles would cause energy scattering to a certain extent,which thereby broadens the energy peaks.

    Interestingly, the high peak cannot be simply fitted by a single Gaussian curve G3, but a shoulder peak G2 with lower energy has to be combined. The FWHM of the two Gaussian peaks are 117 channels for G2 and 91 channels for G3, respectively. These two peaks are separated by approximately 100 channels, corresponding to an energy of 67 keV. Similar feature has been found in the alpha particle spectra of other GaN-based radiation detectors,[23]but not in SiC-based counterparts.[24,25]In the past studies, it has been well accepted that high-density defect states exist in SI-GaN materials.[26,27]These defect states are caused by dislocations,vacancies,impurities and especially Fe-ion-related compensation centers. Then a reasonable explanation for the shoulder peak is that certain amount of excited carriers are trapped by defect states along their drift path, resulting in an incomplete collection of carriers.[28]Thus, the main energy peak of incident alpha particles would broaden towards its low energy direction in the energy spectrum curve.

    As shown in Fig.9,SRIM simulation can also be used to determine the relationship between energy deposition and penetration depth of 5.48 MeV incident alpha particles in GaN,which shows that a total energy loss of 1.48 MeV is deposited within the 5μm SI-GaN.The CCE could be calculated by dividing the experimentally obtained value of energy deposition by its theoretical one(i.e.,1.48 MeV).Meanwhile,energy resolution is of great importance for evaluating the performance of radiation detectors, which is conventionally defined as the FWHM of the energy peak divided by the channel number of the peak centroid.[29]Then, based on the fitting curve with double Gaussian components, it can be determined that the energy resolution of the SI-GaN DSC detector is~8.6% at 1.209 MeV with a corresponding CCE of~81.7%. Thus, it is concluded that the DSC structure is feasible for high energy particle detectors, which provides a simple and low-cost way for radiation detection with reasonable performance. Compared with the traditional vertical Schottky devices with whole electrode, the interdigital approach in DSC design can effectively bring down the proportion of dead region and reduce the energy loss of incident particles.

    Finally, to further evaluate the potential performance of the SI-GaN detector, high temperature alpha particle energy spectrum is acquired at 90°C.As shown in the inset of Fig.10,the detector biased at 30 V is heated by using a metal ceramics heater bonded to the back of the TO package,and chip temperature is continuously monitored by a thermocouple mounted next to the detector. By comparing with the energy spectrum profile (gray area) measured at room temperature, it is found that the FWHM of high peak P1 is roughly 235 keV at high temperature, which is almost twice than that at room temperature(see Fig.10). However,little shift of peak energy is observed,which suggests that the GaN detector have potential to operate stably in high-temperature environment.

    Fig.9. Bragg ionization curve of 5.48 MeV alpha particles in GaN layer.

    Fig. 10. Alpha particle energy spectra of the SI-GaN detector acquired at room temperature(~27 °C)and 90 °C.

    4. Conclusion

    In this work, a planar double Schottky contacts alpha particle detector is directly fabricated on HVPE-grown semiinsulating GaN:Fe template. The detector exhibits low leakage current and is proved capable of detecting partial energies of alpha particles from241Am radioactive source.Distinct double-peak characteristic is observed in the energy spectrum,which is explained by energy attenuation effect of the surface metal pad. The detector exhibits a reasonable energy resolution of~8.6%at deposited energy of 1.209 MeV,and a charge collection efficiency of~81.7% at 30 V bias. The energyresolution limiting factor is found to be the trapping effect of defect states within the SI-GaN:Fe layer, resulting in an incomplete collection of excited charges. The GaN detector also exhibit potential to operate in high temperature environment.This study provides a feasible way to fabricate low-cost and radiation hard GaN-based high energy particle detectors with reasonable performance. To further improve the device performance in terms of energy resolution,thicker SI-GaN layer with improved crystalline quality should be developed.

    猜你喜歡
    陸海羊群
    上海出發(fā)愛達(dá)世界
    陸海之縱
    陸海新通道鐵海聯(lián)運(yùn)班列今年開行破1000班
    和狼的第一次交戰(zhàn)
    新少年(2020年4期)2020-05-26 01:59:19
    羊群莫名蒸發(fā)疑案
    羊群莫名蒸發(fā)疑案
    城里的羊群
    中國詩歌(2018年3期)2018-11-14 19:09:21
    陸海統(tǒng)籌推進(jìn)海岸帶地質(zhì)調(diào)查
    不止一個(gè)
    一種奇巧的測(cè)角法
    午夜视频国产福利| 午夜久久久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 高清不卡的av网站| 韩国av在线不卡| 精品视频人人做人人爽| 国产免费一级a男人的天堂| 日日撸夜夜添| 中文字幕精品免费在线观看视频 | 考比视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲国产精品专区欧美| 男男h啪啪无遮挡| 999精品在线视频| 亚洲精华国产精华液的使用体验| 免费高清在线观看视频在线观看| 国产精品免费大片| 国产精品久久久久久精品电影小说| 欧美成人精品欧美一级黄| av视频免费观看在线观看| 我的老师免费观看完整版| 日日撸夜夜添| 女性被躁到高潮视频| 一个人免费看片子| 永久免费av网站大全| 中国三级夫妇交换| 精品久久久精品久久久| 国产成人精品一,二区| 插逼视频在线观看| 国产一区亚洲一区在线观看| 黄色视频在线播放观看不卡| 97超碰精品成人国产| 日韩人妻高清精品专区| √禁漫天堂资源中文www| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久v下载方式| 欧美激情极品国产一区二区三区 | 啦啦啦中文免费视频观看日本| 性色av一级| 亚洲人成网站在线观看播放| 如日韩欧美国产精品一区二区三区 | 国产精品熟女久久久久浪| 日本91视频免费播放| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久| 日日爽夜夜爽网站| 高清在线视频一区二区三区| 国产免费一级a男人的天堂| 777米奇影视久久| 99久久精品国产国产毛片| 久久久国产欧美日韩av| 22中文网久久字幕| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 久久久久久久久久成人| 免费观看a级毛片全部| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 久久久国产精品麻豆| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频 | 国产成人精品久久久久久| 国产欧美另类精品又又久久亚洲欧美| 欧美精品亚洲一区二区| 亚洲久久久国产精品| 午夜av观看不卡| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 国产欧美亚洲国产| 国产精品国产三级国产av玫瑰| 春色校园在线视频观看| 久久久欧美国产精品| freevideosex欧美| 啦啦啦中文免费视频观看日本| 久久久久久久大尺度免费视频| 女性生殖器流出的白浆| 大码成人一级视频| 韩国av在线不卡| 人妻一区二区av| 国产极品天堂在线| av国产精品久久久久影院| 18禁动态无遮挡网站| 五月开心婷婷网| 日韩不卡一区二区三区视频在线| 99久国产av精品国产电影| 国产色婷婷99| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 欧美 日韩 精品 国产| 女性生殖器流出的白浆| 亚洲国产欧美在线一区| 一边摸一边做爽爽视频免费| videosex国产| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说| 午夜视频国产福利| 婷婷色综合大香蕉| 高清不卡的av网站| 亚洲三级黄色毛片| 大香蕉久久成人网| 国产免费一区二区三区四区乱码| tube8黄色片| 我的老师免费观看完整版| 欧美国产精品一级二级三级| 亚洲av综合色区一区| 久久久久国产网址| 亚洲伊人久久精品综合| 国产成人aa在线观看| 97超碰精品成人国产| 男人操女人黄网站| 好男人视频免费观看在线| 极品少妇高潮喷水抽搐| 寂寞人妻少妇视频99o| 有码 亚洲区| 少妇熟女欧美另类| 国产精品一区二区在线观看99| 色吧在线观看| 男人爽女人下面视频在线观看| 欧美变态另类bdsm刘玥| 少妇丰满av| 能在线免费看毛片的网站| 国产日韩欧美在线精品| 国产精品一国产av| 高清欧美精品videossex| 免费人成在线观看视频色| 这个男人来自地球电影免费观看 | 国产熟女欧美一区二区| 久久ye,这里只有精品| 国产一级毛片在线| 免费观看在线日韩| 国产视频首页在线观看| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 91久久精品电影网| 亚洲精品av麻豆狂野| av黄色大香蕉| 成人手机av| 免费观看性生交大片5| 国产乱人偷精品视频| 三级国产精品欧美在线观看| 免费观看性生交大片5| 97在线人人人人妻| 亚洲av国产av综合av卡| av国产久精品久网站免费入址| 黄色欧美视频在线观看| 观看av在线不卡| 国产免费一区二区三区四区乱码| 精品一品国产午夜福利视频| 人人妻人人澡人人看| 国产精品熟女久久久久浪| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| 九色成人免费人妻av| 建设人人有责人人尽责人人享有的| 色5月婷婷丁香| 精品国产一区二区久久| 亚洲五月色婷婷综合| 伊人久久精品亚洲午夜| 2018国产大陆天天弄谢| 国产爽快片一区二区三区| 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 亚洲图色成人| 欧美日韩成人在线一区二区| 午夜福利影视在线免费观看| 日韩成人伦理影院| 日韩不卡一区二区三区视频在线| 视频中文字幕在线观看| 久久久a久久爽久久v久久| 国产精品一区二区在线观看99| 观看av在线不卡| 亚洲av免费高清在线观看| 91精品一卡2卡3卡4卡| 又大又黄又爽视频免费| 99热全是精品| 久久人妻熟女aⅴ| 久久影院123| 亚洲图色成人| 制服诱惑二区| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 激情五月婷婷亚洲| 日日啪夜夜爽| 如日韩欧美国产精品一区二区三区 | 高清毛片免费看| 三级国产精品欧美在线观看| av卡一久久| 精品视频人人做人人爽| 色婷婷av一区二区三区视频| 国产精品久久久久久精品古装| 国产av码专区亚洲av| 狂野欧美激情性xxxx在线观看| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 黄色配什么色好看| 中文字幕最新亚洲高清| 久久精品国产鲁丝片午夜精品| a级毛片在线看网站| 久久国产亚洲av麻豆专区| 青春草视频在线免费观看| 一区在线观看完整版| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 免费播放大片免费观看视频在线观看| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久久av| 精品亚洲成a人片在线观看| 国产黄频视频在线观看| 久久久久精品性色| 色网站视频免费| 91久久精品国产一区二区三区| 国产深夜福利视频在线观看| 免费高清在线观看视频在线观看| 美女cb高潮喷水在线观看| 色5月婷婷丁香| 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 插逼视频在线观看| 日本爱情动作片www.在线观看| 亚洲三级黄色毛片| 视频区图区小说| 狂野欧美激情性bbbbbb| 亚洲国产精品一区二区三区在线| 99九九在线精品视频| av专区在线播放| 一区二区av电影网| 飞空精品影院首页| 国产黄频视频在线观看| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 丰满少妇做爰视频| 亚洲中文av在线| 夫妻午夜视频| 高清在线视频一区二区三区| 精品国产乱码久久久久久小说| 国产成人aa在线观看| 亚洲成人av在线免费| 国产日韩一区二区三区精品不卡 | 人人妻人人澡人人看| 狂野欧美激情性bbbbbb| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| tube8黄色片| 久久精品国产自在天天线| 熟女人妻精品中文字幕| 三级国产精品欧美在线观看| 国产在视频线精品| 亚洲成色77777| 18禁在线播放成人免费| 赤兔流量卡办理| 桃花免费在线播放| 另类精品久久| 蜜臀久久99精品久久宅男| 免费观看的影片在线观看| 免费看光身美女| 男女边吃奶边做爰视频| 精品一区二区三卡| 国产一区亚洲一区在线观看| videos熟女内射| 日本色播在线视频| 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久| 亚洲av免费高清在线观看| 成人免费观看视频高清| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| 精品久久国产蜜桃| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 国产爽快片一区二区三区| 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 美女中出高潮动态图| 七月丁香在线播放| 97在线人人人人妻| 精品一区二区免费观看| 高清毛片免费看| 成人黄色视频免费在线看| 少妇 在线观看| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 国产成人精品在线电影| 久久久久久久精品精品| 在线精品无人区一区二区三| 青青草视频在线视频观看| 午夜免费观看性视频| 一本色道久久久久久精品综合| 中文字幕免费在线视频6| 只有这里有精品99| 丰满饥渴人妻一区二区三| 伊人亚洲综合成人网| 丰满少妇做爰视频| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 青青草视频在线视频观看| 赤兔流量卡办理| 2018国产大陆天天弄谢| 久久婷婷青草| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 多毛熟女@视频| 夜夜爽夜夜爽视频| 久久久国产一区二区| 午夜福利视频在线观看免费| 一本色道久久久久久精品综合| 乱人伦中国视频| 日韩中字成人| 美女视频免费永久观看网站| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 插阴视频在线观看视频| 一级毛片黄色毛片免费观看视频| 大片免费播放器 马上看| 精品酒店卫生间| 校园人妻丝袜中文字幕| 亚洲国产日韩一区二区| 国产av国产精品国产| 欧美+日韩+精品| 搡老乐熟女国产| 久热这里只有精品99| 国产男人的电影天堂91| 欧美97在线视频| 97超视频在线观看视频| 精品久久久噜噜| www.色视频.com| 99热这里只有精品一区| 精品国产一区二区久久| av在线app专区| 国产一区二区在线观看av| 18禁观看日本| 国产精品秋霞免费鲁丝片| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 欧美精品亚洲一区二区| freevideosex欧美| 性色av一级| 在线观看免费日韩欧美大片 | 又大又黄又爽视频免费| 乱人伦中国视频| 亚洲怡红院男人天堂| 中文字幕免费在线视频6| 国产一区二区在线观看日韩| 熟妇人妻不卡中文字幕| 亚洲综合色惰| 午夜影院在线不卡| 精品久久久久久久久av| 国产不卡av网站在线观看| 丰满乱子伦码专区| 91精品一卡2卡3卡4卡| 日韩强制内射视频| 久久久久久久久久成人| 日日摸夜夜添夜夜爱| 国产欧美亚洲国产| 亚洲高清免费不卡视频| 国产精品一区二区在线观看99| 精品少妇内射三级| 美女脱内裤让男人舔精品视频| 午夜91福利影院| 久久女婷五月综合色啪小说| 亚洲精品国产av成人精品| 国产熟女欧美一区二区| 在现免费观看毛片| 男女啪啪激烈高潮av片| 99热这里只有是精品在线观看| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频| 久久精品国产自在天天线| 久久久久久人妻| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃 | 久久午夜福利片| 亚洲成人av在线免费| av电影中文网址| 一级毛片黄色毛片免费观看视频| 久久久久网色| 亚洲激情五月婷婷啪啪| 亚洲成人一二三区av| 国产熟女午夜一区二区三区 | 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 国产日韩一区二区三区精品不卡 | 丰满乱子伦码专区| 亚洲无线观看免费| 亚洲精品av麻豆狂野| videosex国产| 我要看黄色一级片免费的| 欧美xxⅹ黑人| 久久久久国产精品人妻一区二区| 国产精品成人在线| 三上悠亚av全集在线观看| 日韩不卡一区二区三区视频在线| 久久久国产欧美日韩av| 国产精品免费大片| 尾随美女入室| 卡戴珊不雅视频在线播放| 免费av不卡在线播放| 午夜福利影视在线免费观看| 中文天堂在线官网| 性色av一级| 日韩中字成人| 丁香六月天网| 日韩av免费高清视频| 考比视频在线观看| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 一本一本综合久久| 亚洲av中文av极速乱| 麻豆精品久久久久久蜜桃| 欧美精品一区二区免费开放| 蜜桃久久精品国产亚洲av| 少妇人妻久久综合中文| 又大又黄又爽视频免费| 老女人水多毛片| 国产成人精品婷婷| 中国美白少妇内射xxxbb| xxxhd国产人妻xxx| 久久久久久久久久人人人人人人| 国产片特级美女逼逼视频| 日韩av不卡免费在线播放| 麻豆精品久久久久久蜜桃| 欧美人与性动交α欧美精品济南到 | 日韩大片免费观看网站| 成年女人在线观看亚洲视频| 欧美性感艳星| 色94色欧美一区二区| 美女cb高潮喷水在线观看| 亚洲av欧美aⅴ国产| 少妇熟女欧美另类| 少妇丰满av| 免费黄频网站在线观看国产| 97在线视频观看| 人人妻人人爽人人添夜夜欢视频| av卡一久久| 成年美女黄网站色视频大全免费 | 99热国产这里只有精品6| av黄色大香蕉| 国国产精品蜜臀av免费| 日韩,欧美,国产一区二区三区| 久久午夜福利片| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 最黄视频免费看| 亚洲国产精品国产精品| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品999| 国产成人免费无遮挡视频| 高清午夜精品一区二区三区| 国产精品99久久99久久久不卡 | 久久久久久久久久久丰满| 777米奇影视久久| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 最近中文字幕2019免费版| a级毛片黄视频| 国产精品成人在线| 精品亚洲乱码少妇综合久久| 多毛熟女@视频| 十八禁网站网址无遮挡| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 99热全是精品| 亚洲美女视频黄频| 久久狼人影院| 日本av手机在线免费观看| 色网站视频免费| 精品人妻熟女av久视频| 婷婷色综合大香蕉| 久久国产精品男人的天堂亚洲 | 建设人人有责人人尽责人人享有的| 少妇丰满av| 免费少妇av软件| 亚洲国产精品一区三区| 亚洲成人av在线免费| 欧美精品亚洲一区二区| 看非洲黑人一级黄片| 又黄又爽又刺激的免费视频.| 国产片内射在线| 少妇高潮的动态图| 在现免费观看毛片| 亚洲色图 男人天堂 中文字幕 | 蜜桃在线观看..| 午夜福利视频精品| 伊人亚洲综合成人网| 91精品国产九色| 97超视频在线观看视频| 色5月婷婷丁香| 最后的刺客免费高清国语| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 亚洲精品自拍成人| 亚洲图色成人| 伦理电影免费视频| 夫妻性生交免费视频一级片| 久久精品夜色国产| 亚洲怡红院男人天堂| 一区二区日韩欧美中文字幕 | 亚洲国产色片| 3wmmmm亚洲av在线观看| 亚洲无线观看免费| 最近手机中文字幕大全| 免费高清在线观看视频在线观看| 十八禁高潮呻吟视频| 男女国产视频网站| 欧美最新免费一区二区三区| 亚洲精品第二区| 日韩制服骚丝袜av| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 亚洲激情五月婷婷啪啪| 国产在线一区二区三区精| 国产精品欧美亚洲77777| av有码第一页| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 欧美变态另类bdsm刘玥| 美女内射精品一级片tv| 亚洲精品视频女| 亚洲国产精品国产精品| 成人18禁高潮啪啪吃奶动态图 | 一二三四中文在线观看免费高清| av网站免费在线观看视频| 亚洲国产成人一精品久久久| 午夜久久久在线观看| 国产精品.久久久| 狂野欧美激情性bbbbbb| 日韩制服骚丝袜av| 在线播放无遮挡| 一本久久精品| 日本av免费视频播放| 亚洲国产毛片av蜜桃av| 色视频在线一区二区三区| 国产男女超爽视频在线观看| 人妻系列 视频| 国产成人免费观看mmmm| 色5月婷婷丁香| 2021少妇久久久久久久久久久| 亚洲色图 男人天堂 中文字幕 | 伊人久久精品亚洲午夜| 亚洲国产精品成人久久小说| 日韩不卡一区二区三区视频在线| 热99久久久久精品小说推荐| 性色avwww在线观看| 亚洲美女黄色视频免费看| 日本欧美视频一区| 免费观看无遮挡的男女| 午夜福利网站1000一区二区三区| 在线亚洲精品国产二区图片欧美 | www.av在线官网国产| 国产 精品1| 精品久久久久久电影网| 色5月婷婷丁香| 免费日韩欧美在线观看| 又大又黄又爽视频免费| 蜜桃在线观看..| 一本大道久久a久久精品| 哪个播放器可以免费观看大片| 久久婷婷青草| av国产久精品久网站免费入址| 国产黄频视频在线观看| 中文字幕久久专区| 毛片一级片免费看久久久久| 婷婷色麻豆天堂久久| 丝袜喷水一区| 亚洲精品久久午夜乱码| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 国产亚洲最大av| 国产精品久久久久久久电影| 国产精品久久久久久精品古装| 一边亲一边摸免费视频| 国产成人精品在线电影| 99热这里只有是精品在线观看| 777米奇影视久久| 久久久国产精品麻豆| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 成人亚洲精品一区在线观看| 国产乱来视频区| 亚洲国产精品专区欧美| 人妻一区二区av| 久久久久精品性色| 日韩制服骚丝袜av| 18+在线观看网站| 欧美 亚洲 国产 日韩一| 欧美精品一区二区免费开放| 夜夜爽夜夜爽视频| 18禁在线无遮挡免费观看视频| 国产精品偷伦视频观看了| 日韩电影二区| 一级毛片我不卡| 日本色播在线视频| 亚洲人成网站在线观看播放| 国产亚洲精品久久久com| 成人国产麻豆网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品人妻久久久影院| 日韩熟女老妇一区二区性免费视频| 国产日韩欧美视频二区|