• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN:Fe template*

    2021-11-23 07:30:48QunSiYang羊群思QingLiu劉清DongZhou周東WeiZongXu徐尉宗YiWangWang王宜望FangFangRen任芳芳andHaiLu陸海
    Chinese Physics B 2021年11期
    關(guān)鍵詞:陸海羊群

    Qun-Si Yang(羊群思) Qing Liu(劉清) Dong Zhou(周東) Wei-Zong Xu(徐尉宗)Yi-Wang Wang(王宜望) Fang-Fang Ren(任芳芳) and Hai Lu(陸海)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,Nanjing University,Nanjing 210093,China

    2School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    Keywords: GaN,alpha particle,detector,double Schottky contacts

    1. Introduction

    Over the past two decades,wide bandgap semiconductor gallium nitride(GaN)has shown extraordinary application potential in the fields of short wavelength optoelectronic devices and high-power/high frequency devices, such as blue laser diodes,[1]blue to ultraviolet (UV) light-emitting diodes,[2,3]UV detectors,[4]and high-electron-mobility transistors.[5]Meanwhile, it is also generally recognized that GaN could be used for making radiation detectors work in harsh environment due to its wide bandgap energy (~3×Eg,Si), good chemical and thermal stability as well as large displacement energy(~109 eV for N and 45 eV for Ga).[6,7]

    Compared with radiation detectors fabricated on conventional semiconductor materials like silicon and gallium arsenide,detectors made of GaN are expected capable of working stably with a long lifetime at elevated temperatures or under high doses of radiation. As summarized in the review paper by Sellinet al., GaN radiation detector could be a competitive candidate utilized in energy spectrum measurement of charged particles, which is applied specifically for the research of fusion process in nuclear reactors or particle physics in special occasions(e.g.,the Large Hadron Collider).[8]Vaiktuset al. fabricated an alpha particle detector with two Au Schottky contacts on 2-μm-thick epitaxial GaN,which gave a charge collection efficiency(CCE)of~92%.[9]Recently,the crystalline quality of epitaxial GaN film is improved steadily and large size free-standing GaN substrate are commercially available. It has been reported that GaN alpha particle detectors with mesa structure or sandwich structure have exhibited high CCE performance of nearly 100%.[10-13]Although GaN alpha particle detectors with planar Schottky structure have been reported in literature, studies on energy resolution and high temperature operation performance of this kind of detectors are very limited.[9,14]It is noticeable that planar Schottky structure has the intrinsic advantages of fabrication simplicity and process compatibility with field effect transistor technology. Another advantage of the planar Schottky structure is the low capacitance,which is important for minimizing RC related transfer delay of electrical signals.

    In this work, we have fabricated GaN alpha particle detectors with planar double Schottky contacts(DSC)directly on the semi-insulating (SI) GaN:Fe template grown by hydride vapor phase epitaxy (HVPE). Since undoped HVPE GaN is generally strongly n-type due to impurities or vacancy-related donor centers, the Schottky contact based on it could be very leaky, resulting in high background noise in energy spectrum measurement. An effective approach to enhance the resistivity of HVPE GaN is through carrier compensation by Fe doping.The leakage current can then be reduced down to a sufficiently low level, which allows the detection of weak current pulses induced by incident ionizing particles.

    The detectors fabricated in this work are characterized in terms of electrical properties and alpha particle detection performance at both room temperature and elevated temperatures.The main purpose of this work is to evaluate the future application potential of GaN-based planar DSC structure for alpha particle detection with energy resolution.

    2. Experiment

    The detectors in this work are fabricated on epitaxial Fedoped SI-GaN layer grown by HVPE on sapphire substrate.The SI-GaN layer is 5μm in thick with room temperature resistivity higher than 1×108Ω·cm. Figure 1 shows the crosssectional schematic diagram of the SI-GaN alpha particle detector with DSC.Before the metallization,the samples are degreased and sonicated in acetone,alcohol and de-ionized water for each 10 min,then dipped into dilute hydrogen fluoride solution for 60 s to remove native oxide from the GaN surface. The DSC alpha particle detectors are directly fabricated on the SI-GaN template by using standard photolithography and lift-off techniques. Semi-transparent interdigitated Ni/Au(100 ?A/100 ?A)Schottky contacts are deposited on the SI-GaN template via electron-beam evaporation. The designed contact fingers are 10μm wide and 1 mm long with an inter-spacing of 10μm. Subsequently,Ti/Au(2000 ?A/5000 ?A)pad layer is deposited on the diagonal margin of the Schottky contacts. For radiation sensitivity characterizations, the processed wafer is diced into individual dies, which are mounted onto TO packages by using conductive silver paste and via wire bonding.

    Figure 2 shows the assembled system for energy spectrum measurement of alpha particles. The TO packaged detector is placed within a shielded aluminum cylinder to prevent external electromagnetic interference. An241Am radioisotope source fixed by a polytetrafluoroethylene(PTFE)holder is collimated towards the front surface of the detector. During the detection process,incident alpha particles interacting with the active semiconductor lattice would generate multiple electron-hole pairs,which would be separated and swept towards respective electrodes by junction electrical field. The resulting current pulses are too weak to be measured directly, which have to be fed into a charge sensitive amplifier. The collected charge signals are then converted into linear-tail voltage pulses. The voltage pulse height ?Vequals toQ/CF,in whichQis the total charge induced by an alpha particle andCFis the feedback capacitor of the charge sensitive amplifier. Thus, the voltage pulse height distribution contains the information of energy deposited by incident particles within the device active layer.The feedback capacitor used in the charge sensitive preamplifier is 1 pF, resulting in a conversion gain of nominally 18.2 mV/MeV for the GaN alpha particle detector. Next, a shaping amplifier(ORTEC 672)is used to shape and amplify the output signals into linear semi-Gaussian voltage pulses.Finally, a multichannel analyzer (AMPTEK MCA-8000D) is used to complete the pulse height counting. During the energy spectrum measurement, the bias voltage applied on the detector is provided by a Keithley 2636A sourcemeter, while an oscilloscope(Tektronix MSO54)is used for the waveform monitoring. The total electronic noise of the detection system is measured by using a Tektronix AFG3102C function generator. A standard ORTEC Si alpha particle detector with a nominal CCE of~100%is adopted for the energy calibration.

    Fig.1. Cross-sectional schematic diagram of SI-GaN based DSC detector.

    Fig.2. Schematic of the experimental setup for alpha particle detection with the SI-GaN detector.

    3. Results and discussion

    The current-voltage (I-V) characteristics of the SI-GaN DSC detector are shown in Fig. 3(a). Since the two Schottky junctions of the detector are back-to-back connected, one Schottky diode is always reverse biased, while the other is forward biased. A good symmetric rectifying behavior can be observed on theI-Vcurve, which indicates that the two diodes have similar Schottky Ni/GaN interfacial barrier properties. Under 10 V bias, the detector exhibits a low roomtemperature dark current of less than 5.0×10?11A, corresponding to a linear current density of 5.0×10?10A/cm. Low leakage current is important for energy resolved particle detection, as random fluctuations in leakage current would add electrical noise into the momentary current flow caused by an ionizing event, leading to a significant source of distortion in subsequently processed signals.Figure 3(b)shows the temperature dependentI-Vcharacteristics of the GaN detector plotted in semi-log scale. In the temperature range of 30-90°C,the overall reverse leakage increases at higher temperatures.Meanwhile, at high reverse bias, the leakage current versus bias shows a linear relationship at various temperatures,which suggests that Pool-Frenkel emission is the dominant leakage conduction mechanism.[15,16]

    Fig.3. (a)The I-V characteristics of the SI-GaN DSC detector measured in low bias range;(b)the semi-log I-V characteristics of the detector measured at various temperatures.

    The energy spectral response of the SI-GaN detector is characterized by using the above-mentioned alpha particle detection system. The alpha radiation source used in this experiment is an241Am radioactive source with an exemption category of V, which has a typical radioactivity of less than 370 kBq. There are four possible alpha-particle transitions during the decay process of241Am. Each kind of transitions involves the emission of alpha particles with different energy and relative abundance, which include 5.389 MeV (1.0%),5.443 MeV (12.5%), 5.486 MeV (86.0%), and 5.545 MeV(0.3%).[17]Since their energies are very close and hard to be distinguished from each other in the energy spectrum,all following calculations conducted in this work are based on the particle energy of 5.486 MeV.The output signal from the GaN detector is firstly fed into the charge sensitive preamplifier and an oscilloscope is used to temporally monitor the amplified signal. A typical pulse waveform excited by a single alpha particle is shown in Fig. 4, which is a fast-rise voltage pulse with an exponential decay back to the baseline. Its rise time and fall time are 0.7μs and 2.2 ms,respectively. Such waveforms are further processed by the shaping amplifier, which has a shaping time set at 2 μs during energy spectrum measurement.

    Fig.4. A typical pulse signal of the SI-GaN detector through the preamplifier with a pulse amplitude of ~21 mV.

    The alpha particle energy spectra of the SI-GaN detector under various bias voltages are shown in Fig. 5. A double peak structure (“high peak” and “l(fā)ow peak”) is observed in the channels ranging from~1000 to 1900, in which the low peak stays in the low energy direction. During the measurement process, the counting time at each bias is intentionally adjusted so that all high peaks have nearly the same peak heights. It is clear that to reach the same magnitude of high peaks, the counting time has to be reduced at higher bias.Meanwhile,the overall count rate around the low peak drops.This behavior can be explained by the lateral expansion of depletion region within the DSC structure at higher bias, as illustrated in Fig.6. Due to the high resistivity of the SI-GaN,even at a bias voltage of 10 V, the GaN layer between the two inter-digitated contact electrodes is largely depleted, and the depletion layer would reach a maximum depth of 5 μm.Thus, an absence of bias dependence of the peak centroid is observed. As illustrated by the equipotential lines in Fig. 6,the applied bias mostly drops on the reverse biased junction.As bias increases, the width of the lateral depletion region would gradually broaden,until the remaining region between the two electrodes is fully depleted. Meanwhile,some regions outside the contact boundary would also be depleted. During this process,more particles impinging on the detector surface would contribute to effective counts. Thus,the higher the bias voltage, the shorter the accumulative counting time required to achieve a consistent height of the high peaks. In addition,charge collection efficiency should also increase with the rise of bias,which would contribute some high energy counts.

    Fig.5. 241Am alpha particle spectrum obtained with the SI-GaN detector at different bias.

    Fig.6. Cross sectional schematic of the DSC alpha particle detector during operation. The white arc lines and the dash lines illustrate the equipotential lines below the Schottky electrodes and boundary of the depletion region induced by external bias,respectively.

    To further analyze the double-peak characteristics,Gaussian function is used to fit the energy spectrum measured at a bias voltage of 30 V, which gives the energy positions of the peak centroids and their corresponding full widths at the half maximum(FWHM)values. As shown in Fig.7,the low peak can be fitted by Gaussian curve G1,while the high peak can be fitted by Gaussian curves G2 and G3. Apparent peak broadening and count fluctuations of the original spectrum curve can be observed. There are at least three main factors determining the energy resolution(FWHMall)of the detector,which is described by

    where FWHMstatis statistical-noise-related spectral broadening caused by the discrete nature of the count signal itself(i.e.,Fano noise),FWHMelecis caused by the random noise of the overall system including the detector and the readout circuit,and FWHMotheris spectral broadening caused by the other factors,such as performance drift of the detector during measurement process and energy straggling in the incident window of the detector.[18]The energy distribution of Fano noise can be described by the following equation:[19]

    whereFis the Fano factor,ε0is the average energy required for formation of an electron-hole pair,andEαis the alpha particle energy. By taking the Fano factor of 0.1 andε0of 8.9 eV for GaN, the calculated FWHMstatfor 5.486 MeV alpha particles is~5.18 keV.[20]The electronic noise (FWHMelec) of the entire readout circuit system is tested by feeding periodic short pulse signals produced by a functional signal generator into the circuit,which is determined as~2.3 keV.During the measurement,all parameters of the system are set as same as those used in real energy spectrum measurement. The energy separation between the peak centroids of G1 and G3 is~425 channels,which corresponds to a calibrated energy of 284 keV.Clearly,such a large energy difference between the two peaks can only be caused by FWHMother,which will be discussed in detail later.

    Fig.7. Gaussian fitting to the energy spectrum curve of the SI-GaN detector measured under a bias of 30 V.

    Fig. 8. Bragg ionization curves of 5.48 MeV alpha particles in gold layer and titanium layer calculated by the SRIM tool.

    Considering the special planar structure of the detector,its thick metal pad with an area of 300×300μm2is likely to account for the double-peak characteristics. In this model,alpha particles are emitted radially from241Am radioactive source to the surface of the detector. Some particles falling on the metal pad would inevitably lose certain amount of their energy due to the blocking effect of the pad metal. According to a report by Vigneshwaraet al.,for 5.486 MeV alpha particles vertically passing through a metal layer(500 ?A Ti/1500 ?A Au),the average energy loss is less than 110 keV.[21]Figure 8 shows the Bragg ionization curves for 5.48 MeV alpha particles in gold and titanium determined from the stopping range of Ions in matter (SRIM) simulation.[22]Based on these two curves, the average energy loss of 5.48 MeV alpha particles passing through 5000 ?A Au layer and 2000 ?A Ti layer are 220 keV and 45 keV,respectively. The sum of these two energies is 265 keV,which is close to the measured energy difference of 284 keV between G1 and G3. Thus,in Fig.7 the G1 peak should be caused by alpha particles passing through the Ti/Au(2000 ?A/5000 ?A)metal pad and then depositing energy into the underlying GaN layer, while G3 is caused by alpha particles directly penetrating through the GaN layer. Meanwhile, random interactions of particles and different incident angles would cause energy scattering to a certain extent,which thereby broadens the energy peaks.

    Interestingly, the high peak cannot be simply fitted by a single Gaussian curve G3, but a shoulder peak G2 with lower energy has to be combined. The FWHM of the two Gaussian peaks are 117 channels for G2 and 91 channels for G3, respectively. These two peaks are separated by approximately 100 channels, corresponding to an energy of 67 keV. Similar feature has been found in the alpha particle spectra of other GaN-based radiation detectors,[23]but not in SiC-based counterparts.[24,25]In the past studies, it has been well accepted that high-density defect states exist in SI-GaN materials.[26,27]These defect states are caused by dislocations,vacancies,impurities and especially Fe-ion-related compensation centers. Then a reasonable explanation for the shoulder peak is that certain amount of excited carriers are trapped by defect states along their drift path, resulting in an incomplete collection of carriers.[28]Thus, the main energy peak of incident alpha particles would broaden towards its low energy direction in the energy spectrum curve.

    As shown in Fig.9,SRIM simulation can also be used to determine the relationship between energy deposition and penetration depth of 5.48 MeV incident alpha particles in GaN,which shows that a total energy loss of 1.48 MeV is deposited within the 5μm SI-GaN.The CCE could be calculated by dividing the experimentally obtained value of energy deposition by its theoretical one(i.e.,1.48 MeV).Meanwhile,energy resolution is of great importance for evaluating the performance of radiation detectors, which is conventionally defined as the FWHM of the energy peak divided by the channel number of the peak centroid.[29]Then, based on the fitting curve with double Gaussian components, it can be determined that the energy resolution of the SI-GaN DSC detector is~8.6% at 1.209 MeV with a corresponding CCE of~81.7%. Thus, it is concluded that the DSC structure is feasible for high energy particle detectors, which provides a simple and low-cost way for radiation detection with reasonable performance. Compared with the traditional vertical Schottky devices with whole electrode, the interdigital approach in DSC design can effectively bring down the proportion of dead region and reduce the energy loss of incident particles.

    Finally, to further evaluate the potential performance of the SI-GaN detector, high temperature alpha particle energy spectrum is acquired at 90°C.As shown in the inset of Fig.10,the detector biased at 30 V is heated by using a metal ceramics heater bonded to the back of the TO package,and chip temperature is continuously monitored by a thermocouple mounted next to the detector. By comparing with the energy spectrum profile (gray area) measured at room temperature, it is found that the FWHM of high peak P1 is roughly 235 keV at high temperature, which is almost twice than that at room temperature(see Fig.10). However,little shift of peak energy is observed,which suggests that the GaN detector have potential to operate stably in high-temperature environment.

    Fig.9. Bragg ionization curve of 5.48 MeV alpha particles in GaN layer.

    Fig. 10. Alpha particle energy spectra of the SI-GaN detector acquired at room temperature(~27 °C)and 90 °C.

    4. Conclusion

    In this work, a planar double Schottky contacts alpha particle detector is directly fabricated on HVPE-grown semiinsulating GaN:Fe template. The detector exhibits low leakage current and is proved capable of detecting partial energies of alpha particles from241Am radioactive source.Distinct double-peak characteristic is observed in the energy spectrum,which is explained by energy attenuation effect of the surface metal pad. The detector exhibits a reasonable energy resolution of~8.6%at deposited energy of 1.209 MeV,and a charge collection efficiency of~81.7% at 30 V bias. The energyresolution limiting factor is found to be the trapping effect of defect states within the SI-GaN:Fe layer, resulting in an incomplete collection of excited charges. The GaN detector also exhibit potential to operate in high temperature environment.This study provides a feasible way to fabricate low-cost and radiation hard GaN-based high energy particle detectors with reasonable performance. To further improve the device performance in terms of energy resolution,thicker SI-GaN layer with improved crystalline quality should be developed.

    猜你喜歡
    陸海羊群
    上海出發(fā)愛達(dá)世界
    陸海之縱
    陸海新通道鐵海聯(lián)運(yùn)班列今年開行破1000班
    和狼的第一次交戰(zhàn)
    新少年(2020年4期)2020-05-26 01:59:19
    羊群莫名蒸發(fā)疑案
    羊群莫名蒸發(fā)疑案
    城里的羊群
    中國詩歌(2018年3期)2018-11-14 19:09:21
    陸海統(tǒng)籌推進(jìn)海岸帶地質(zhì)調(diào)查
    不止一個(gè)
    一種奇巧的測(cè)角法
    菩萨蛮人人尽说江南好唐韦庄| 久久久久国产精品人妻一区二区| av在线app专区| 亚洲欧美成人精品一区二区| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 久久精品久久久久久久性| 久久这里有精品视频免费| 久久人妻熟女aⅴ| www.色视频.com| 看免费av毛片| 中文字幕免费在线视频6| 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕| 两个人看的免费小视频| 亚洲av综合色区一区| 久久精品aⅴ一区二区三区四区 | 最新的欧美精品一区二区| 2018国产大陆天天弄谢| 51国产日韩欧美| 男女无遮挡免费网站观看| 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 一级毛片我不卡| 内地一区二区视频在线| 国产免费现黄频在线看| 亚洲综合色惰| 咕卡用的链子| 国产xxxxx性猛交| 在线天堂最新版资源| 久久这里只有精品19| 欧美性感艳星| 美女福利国产在线| 中国国产av一级| 成人无遮挡网站| 最后的刺客免费高清国语| 成人无遮挡网站| av不卡在线播放| 性色avwww在线观看| 狂野欧美激情性xxxx在线观看| 国产免费一区二区三区四区乱码| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 女性被躁到高潮视频| 国产高清三级在线| 国产免费一级a男人的天堂| 国产麻豆69| 交换朋友夫妻互换小说| 国产乱来视频区| 三级国产精品片| 亚洲精品456在线播放app| 少妇人妻精品综合一区二区| 少妇熟女欧美另类| 麻豆精品久久久久久蜜桃| 精品亚洲乱码少妇综合久久| xxx大片免费视频| 久久久国产精品麻豆| 精品亚洲乱码少妇综合久久| 国产欧美日韩一区二区三区在线| 韩国精品一区二区三区 | 久久久久久久久久久久大奶| 制服诱惑二区| 黑人高潮一二区| 狂野欧美激情性xxxx在线观看| 看免费av毛片| www日本在线高清视频| 99热这里只有是精品在线观看| av线在线观看网站| 97超碰精品成人国产| 精品熟女少妇av免费看| 如日韩欧美国产精品一区二区三区| 成人国产麻豆网| 日韩一本色道免费dvd| 插逼视频在线观看| 亚洲精品美女久久久久99蜜臀 | 乱码一卡2卡4卡精品| 久久久久久人妻| 人妻 亚洲 视频| 成年人免费黄色播放视频| 亚洲第一区二区三区不卡| 成人手机av| 成人国语在线视频| 黑人欧美特级aaaaaa片| 亚洲综合精品二区| 国产日韩欧美视频二区| 精品人妻一区二区三区麻豆| 80岁老熟妇乱子伦牲交| 女人久久www免费人成看片| av网站免费在线观看视频| 日韩不卡一区二区三区视频在线| 制服人妻中文乱码| 午夜激情av网站| 国产精品人妻久久久久久| 久久99精品国语久久久| 国产激情久久老熟女| 亚洲综合精品二区| 日韩免费高清中文字幕av| 看免费av毛片| 欧美性感艳星| 视频中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清国产精品国产三级| 91精品国产国语对白视频| 久久国内精品自在自线图片| 韩国高清视频一区二区三区| 极品少妇高潮喷水抽搐| 97超碰精品成人国产| 中文字幕人妻丝袜制服| 制服诱惑二区| 日韩av免费高清视频| 91精品伊人久久大香线蕉| 一二三四在线观看免费中文在 | 亚洲经典国产精华液单| 亚洲精品,欧美精品| 少妇的逼好多水| 最近2019中文字幕mv第一页| 久久亚洲国产成人精品v| 午夜av观看不卡| 91精品伊人久久大香线蕉| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 精品卡一卡二卡四卡免费| 国产色爽女视频免费观看| 永久免费av网站大全| 国产视频首页在线观看| 亚洲国产欧美日韩在线播放| 亚洲,欧美,日韩| 超色免费av| 中文字幕人妻熟女乱码| 亚洲av男天堂| av片东京热男人的天堂| 日本av免费视频播放| 中文欧美无线码| www.色视频.com| 欧美性感艳星| 亚洲欧美一区二区三区国产| 精品人妻一区二区三区麻豆| 国产在线视频一区二区| 日韩一本色道免费dvd| 亚洲国产欧美在线一区| 成人无遮挡网站| 三上悠亚av全集在线观看| 亚洲性久久影院| 美女大奶头黄色视频| 少妇的丰满在线观看| 精品少妇内射三级| 丝袜在线中文字幕| 在线精品无人区一区二区三| 22中文网久久字幕| 26uuu在线亚洲综合色| 一级a做视频免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲婷婷狠狠爱综合网| 亚洲国产最新在线播放| 免费黄色在线免费观看| 日日摸夜夜添夜夜爱| 免费大片18禁| 制服人妻中文乱码| 午夜福利视频精品| 一本大道久久a久久精品| 青春草国产在线视频| 久久这里有精品视频免费| 男女免费视频国产| 精品一区二区三区四区五区乱码 | 免费不卡的大黄色大毛片视频在线观看| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产专区5o| 亚洲三级黄色毛片| 永久网站在线| 99香蕉大伊视频| 国产激情久久老熟女| 成人二区视频| 精品福利永久在线观看| 精品卡一卡二卡四卡免费| 美女中出高潮动态图| 午夜av观看不卡| av电影中文网址| 国产不卡av网站在线观看| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 日韩,欧美,国产一区二区三区| 少妇的丰满在线观看| 国产精品一二三区在线看| 波野结衣二区三区在线| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 国产女主播在线喷水免费视频网站| 视频中文字幕在线观看| 亚洲精品久久成人aⅴ小说| 欧美日韩精品成人综合77777| 我要看黄色一级片免费的| a级片在线免费高清观看视频| 成人国产麻豆网| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区三区久久久樱花| 日韩av免费高清视频| 女的被弄到高潮叫床怎么办| 18在线观看网站| 亚洲高清免费不卡视频| 伦精品一区二区三区| 亚洲av.av天堂| 一级黄片播放器| 亚洲成色77777| 精品一区在线观看国产| 国产在线一区二区三区精| 亚洲精品日韩在线中文字幕| 色婷婷久久久亚洲欧美| 成人亚洲精品一区在线观看| 多毛熟女@视频| 午夜精品国产一区二区电影| 亚洲精品久久久久久婷婷小说| 18禁在线无遮挡免费观看视频| av视频免费观看在线观看| 国产欧美日韩综合在线一区二区| 久久人人爽人人片av| 亚洲经典国产精华液单| 黑人欧美特级aaaaaa片| 日韩一区二区视频免费看| 久久久久精品久久久久真实原创| 99热这里只有是精品在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久 成人 亚洲| 成人午夜精彩视频在线观看| 美女国产视频在线观看| 黄色 视频免费看| 国产成人精品无人区| 免费观看无遮挡的男女| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 一级片免费观看大全| 毛片一级片免费看久久久久| 欧美+日韩+精品| 在线观看三级黄色| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 国产精品一区www在线观看| videosex国产| 亚洲国产精品一区三区| 精品人妻在线不人妻| 亚洲国产精品专区欧美| 亚洲国产成人一精品久久久| 香蕉国产在线看| 国产精品熟女久久久久浪| 亚洲精品美女久久久久99蜜臀 | 国产一区二区三区综合在线观看 | 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 久久久久久久亚洲中文字幕| 国产熟女午夜一区二区三区| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 丰满少妇做爰视频| 日韩熟女老妇一区二区性免费视频| 男女国产视频网站| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 狠狠精品人妻久久久久久综合| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 在线天堂最新版资源| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区 | 欧美 日韩 精品 国产| 男女啪啪激烈高潮av片| 美女国产高潮福利片在线看| 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 天天影视国产精品| 国产欧美日韩综合在线一区二区| 欧美丝袜亚洲另类| 汤姆久久久久久久影院中文字幕| 国产精品嫩草影院av在线观看| 五月开心婷婷网| 久久影院123| 精品一区二区三卡| 色婷婷av一区二区三区视频| 国产深夜福利视频在线观看| 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| freevideosex欧美| 亚洲人与动物交配视频| 一级片免费观看大全| 99久久精品国产国产毛片| 伦理电影大哥的女人| 亚洲情色 制服丝袜| 精品视频人人做人人爽| 啦啦啦在线观看免费高清www| 国产在线一区二区三区精| 日本色播在线视频| 久久人人爽人人片av| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 插逼视频在线观看| 人妻人人澡人人爽人人| 老司机影院毛片| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看| 国产激情久久老熟女| tube8黄色片| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 亚洲国产av新网站| 九九爱精品视频在线观看| 国产一区二区三区av在线| 一级黄片播放器| 人成视频在线观看免费观看| www日本在线高清视频| 精品国产露脸久久av麻豆| 卡戴珊不雅视频在线播放| 亚洲在久久综合| 国产高清国产精品国产三级| 宅男免费午夜| 搡老乐熟女国产| 日韩一区二区视频免费看| 在线观看三级黄色| 亚洲三级黄色毛片| 九色成人免费人妻av| 乱码一卡2卡4卡精品| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 一区二区av电影网| 日日啪夜夜爽| 亚洲欧洲日产国产| 午夜福利乱码中文字幕| 黑人猛操日本美女一级片| 欧美精品高潮呻吟av久久| av片东京热男人的天堂| 久久久国产欧美日韩av| 日日撸夜夜添| 国产高清三级在线| 亚洲综合色网址| 国产一区有黄有色的免费视频| av片东京热男人的天堂| 一个人免费看片子| 亚洲成国产人片在线观看| 男女午夜视频在线观看 | 亚洲精品久久成人aⅴ小说| 国产男人的电影天堂91| 精品视频人人做人人爽| 色哟哟·www| 亚洲三级黄色毛片| 2018国产大陆天天弄谢| av视频免费观看在线观看| 日韩av免费高清视频| 亚洲国产看品久久| 夫妻午夜视频| 国产精品国产av在线观看| 多毛熟女@视频| 日韩一区二区视频免费看| 久久久国产一区二区| 国产xxxxx性猛交| 国产一区亚洲一区在线观看| 三上悠亚av全集在线观看| 亚洲第一区二区三区不卡| 菩萨蛮人人尽说江南好唐韦庄| 国产精品偷伦视频观看了| 午夜福利视频精品| 国产一区二区三区综合在线观看 | 91精品国产国语对白视频| 夜夜爽夜夜爽视频| 人人妻人人澡人人看| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 少妇的逼好多水| 老熟女久久久| 日本av免费视频播放| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 精品少妇内射三级| 人妻一区二区av| 欧美国产精品一级二级三级| 纯流量卡能插随身wifi吗| 边亲边吃奶的免费视频| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲 | 九色亚洲精品在线播放| 老司机影院毛片| 黑人欧美特级aaaaaa片| 成人综合一区亚洲| 日韩精品有码人妻一区| 亚洲精品第二区| 中文字幕人妻丝袜制服| 久久精品久久精品一区二区三区| 亚洲国产看品久久| 亚洲av成人精品一二三区| 国产乱来视频区| 男女免费视频国产| 午夜福利视频精品| 国产精品不卡视频一区二区| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 国产精品无大码| 国产精品久久久久久精品电影小说| 欧美日韩综合久久久久久| 在线观看国产h片| 久久精品aⅴ一区二区三区四区 | 最后的刺客免费高清国语| 免费观看av网站的网址| 最近2019中文字幕mv第一页| 国产一区二区三区av在线| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 在线观看一区二区三区激情| 国产激情久久老熟女| 欧美变态另类bdsm刘玥| 午夜免费鲁丝| 国产男女超爽视频在线观看| 女性被躁到高潮视频| 天天躁夜夜躁狠狠久久av| 国产日韩欧美视频二区| 看非洲黑人一级黄片| 精品亚洲乱码少妇综合久久| 精品国产一区二区久久| 国产亚洲一区二区精品| 日韩制服丝袜自拍偷拍| 亚洲国产精品国产精品| 90打野战视频偷拍视频| av片东京热男人的天堂| 99热全是精品| 国产成人精品在线电影| 一级片'在线观看视频| 丝袜在线中文字幕| 国产精品久久久久久久电影| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 精品一区二区三区四区五区乱码 | 中文字幕精品免费在线观看视频 | 久久国产亚洲av麻豆专区| 久久亚洲国产成人精品v| 午夜久久久在线观看| 国产色爽女视频免费观看| 国产麻豆69| 欧美成人精品欧美一级黄| 国产精品国产三级专区第一集| 国产精品久久久久久精品电影小说| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 久久久久精品人妻al黑| 亚洲欧洲精品一区二区精品久久久 | 国产av国产精品国产| 国产精品一区二区在线观看99| 亚洲四区av| 国产精品 国内视频| 欧美3d第一页| 精品一区二区免费观看| 久久婷婷青草| 日本av手机在线免费观看| 免费av不卡在线播放| 99久国产av精品国产电影| 久久久久久久久久久久大奶| 丝袜在线中文字幕| 亚洲一级一片aⅴ在线观看| 日韩欧美一区视频在线观看| 最近中文字幕高清免费大全6| 国产男女超爽视频在线观看| 欧美日韩av久久| 大香蕉久久成人网| 久久精品国产鲁丝片午夜精品| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 咕卡用的链子| 1024视频免费在线观看| 欧美成人精品欧美一级黄| 日日撸夜夜添| 另类亚洲欧美激情| 在线观看免费高清a一片| 在线天堂最新版资源| 下体分泌物呈黄色| 美女主播在线视频| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 90打野战视频偷拍视频| 国产 精品1| 亚洲色图 男人天堂 中文字幕 | 欧美bdsm另类| 欧美97在线视频| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 精品一区二区三区视频在线| 波多野结衣一区麻豆| av黄色大香蕉| 有码 亚洲区| 日本黄色日本黄色录像| 国产精品熟女久久久久浪| 免费人妻精品一区二区三区视频| 伊人久久国产一区二区| 91久久精品国产一区二区三区| 亚洲国产日韩一区二区| 老司机影院成人| 国产福利在线免费观看视频| 性色av一级| 成人国产麻豆网| 免费人成在线观看视频色| 免费大片18禁| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| 亚洲国产精品专区欧美| 午夜免费男女啪啪视频观看| 亚洲高清免费不卡视频| 亚洲一区二区三区欧美精品| 久久精品国产亚洲av天美| 有码 亚洲区| www.av在线官网国产| 欧美国产精品va在线观看不卡| av在线观看视频网站免费| 久久精品国产a三级三级三级| 一边亲一边摸免费视频| 大香蕉久久网| 9热在线视频观看99| 五月伊人婷婷丁香| 天天影视国产精品| 日本av手机在线免费观看| 精品熟女少妇av免费看| 国产精品久久久久久精品古装| 爱豆传媒免费全集在线观看| 久久av网站| 国产在视频线精品| 中文欧美无线码| 久久久a久久爽久久v久久| 国产高清国产精品国产三级| 人体艺术视频欧美日本| 韩国av在线不卡| www.色视频.com| 国产不卡av网站在线观看| 精品国产国语对白av| 日韩一本色道免费dvd| 丝瓜视频免费看黄片| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区国产| 精品一区二区三区四区五区乱码 | 高清av免费在线| 国产欧美亚洲国产| 午夜激情av网站| 亚洲欧美成人综合另类久久久| 日韩欧美一区视频在线观看| 美女内射精品一级片tv| 日产精品乱码卡一卡2卡三| 国产日韩欧美亚洲二区| 欧美性感艳星| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 精品久久蜜臀av无| 久久久久国产网址| 国产成人aa在线观看| 亚洲国产av影院在线观看| av视频免费观看在线观看| 国产免费一区二区三区四区乱码| 久久99精品国语久久久| 欧美精品高潮呻吟av久久| 久久久久久久精品精品| 中文天堂在线官网| av线在线观看网站| 中国国产av一级| 免费女性裸体啪啪无遮挡网站| 欧美亚洲日本最大视频资源| 亚洲综合色网址| 伦理电影大哥的女人| 少妇人妻精品综合一区二区| 我的女老师完整版在线观看| 久久精品国产亚洲av涩爱| av女优亚洲男人天堂| 搡女人真爽免费视频火全软件| 免费看不卡的av| 婷婷色综合www| 哪个播放器可以免费观看大片| 日韩电影二区| 好男人视频免费观看在线| 免费人妻精品一区二区三区视频| 在线观看一区二区三区激情| 久久 成人 亚洲| 1024视频免费在线观看| 在线观看人妻少妇| 久久精品久久精品一区二区三区| 国产精品 国内视频| 精品人妻一区二区三区麻豆| 天美传媒精品一区二区| 一级片免费观看大全| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 久久99一区二区三区| 国产欧美日韩一区二区三区在线| 国产一区亚洲一区在线观看| 热99久久久久精品小说推荐| 日韩欧美精品免费久久| 日韩av在线免费看完整版不卡| 日本91视频免费播放| 亚洲情色 制服丝袜| 亚洲精品aⅴ在线观看| 国产在线一区二区三区精| 国产精品女同一区二区软件| 精品熟女少妇av免费看| 国产无遮挡羞羞视频在线观看| 国产激情久久老熟女| 99精国产麻豆久久婷婷| 另类精品久久| 国产国拍精品亚洲av在线观看| 久久久久久久久久久免费av| 韩国高清视频一区二区三区| 少妇的逼好多水| 精品国产一区二区三区久久久樱花| 国产成人欧美| 91久久精品国产一区二区三区| 制服丝袜香蕉在线| 久久精品国产亚洲av天美| 国产综合精华液| a级毛片在线看网站| 又黄又爽又刺激的免费视频.| 91精品国产国语对白视频|