• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alpha particle detector with planar double Schottky contacts directly fabricated on semi-insulating GaN:Fe template*

    2021-11-23 07:30:48QunSiYang羊群思QingLiu劉清DongZhou周東WeiZongXu徐尉宗YiWangWang王宜望FangFangRen任芳芳andHaiLu陸海
    Chinese Physics B 2021年11期
    關(guān)鍵詞:陸海羊群

    Qun-Si Yang(羊群思) Qing Liu(劉清) Dong Zhou(周東) Wei-Zong Xu(徐尉宗)Yi-Wang Wang(王宜望) Fang-Fang Ren(任芳芳) and Hai Lu(陸海)

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,Nanjing University,Nanjing 210093,China

    2School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    Keywords: GaN,alpha particle,detector,double Schottky contacts

    1. Introduction

    Over the past two decades,wide bandgap semiconductor gallium nitride(GaN)has shown extraordinary application potential in the fields of short wavelength optoelectronic devices and high-power/high frequency devices, such as blue laser diodes,[1]blue to ultraviolet (UV) light-emitting diodes,[2,3]UV detectors,[4]and high-electron-mobility transistors.[5]Meanwhile, it is also generally recognized that GaN could be used for making radiation detectors work in harsh environment due to its wide bandgap energy (~3×Eg,Si), good chemical and thermal stability as well as large displacement energy(~109 eV for N and 45 eV for Ga).[6,7]

    Compared with radiation detectors fabricated on conventional semiconductor materials like silicon and gallium arsenide,detectors made of GaN are expected capable of working stably with a long lifetime at elevated temperatures or under high doses of radiation. As summarized in the review paper by Sellinet al., GaN radiation detector could be a competitive candidate utilized in energy spectrum measurement of charged particles, which is applied specifically for the research of fusion process in nuclear reactors or particle physics in special occasions(e.g.,the Large Hadron Collider).[8]Vaiktuset al. fabricated an alpha particle detector with two Au Schottky contacts on 2-μm-thick epitaxial GaN,which gave a charge collection efficiency(CCE)of~92%.[9]Recently,the crystalline quality of epitaxial GaN film is improved steadily and large size free-standing GaN substrate are commercially available. It has been reported that GaN alpha particle detectors with mesa structure or sandwich structure have exhibited high CCE performance of nearly 100%.[10-13]Although GaN alpha particle detectors with planar Schottky structure have been reported in literature, studies on energy resolution and high temperature operation performance of this kind of detectors are very limited.[9,14]It is noticeable that planar Schottky structure has the intrinsic advantages of fabrication simplicity and process compatibility with field effect transistor technology. Another advantage of the planar Schottky structure is the low capacitance,which is important for minimizing RC related transfer delay of electrical signals.

    In this work, we have fabricated GaN alpha particle detectors with planar double Schottky contacts(DSC)directly on the semi-insulating (SI) GaN:Fe template grown by hydride vapor phase epitaxy (HVPE). Since undoped HVPE GaN is generally strongly n-type due to impurities or vacancy-related donor centers, the Schottky contact based on it could be very leaky, resulting in high background noise in energy spectrum measurement. An effective approach to enhance the resistivity of HVPE GaN is through carrier compensation by Fe doping.The leakage current can then be reduced down to a sufficiently low level, which allows the detection of weak current pulses induced by incident ionizing particles.

    The detectors fabricated in this work are characterized in terms of electrical properties and alpha particle detection performance at both room temperature and elevated temperatures.The main purpose of this work is to evaluate the future application potential of GaN-based planar DSC structure for alpha particle detection with energy resolution.

    2. Experiment

    The detectors in this work are fabricated on epitaxial Fedoped SI-GaN layer grown by HVPE on sapphire substrate.The SI-GaN layer is 5μm in thick with room temperature resistivity higher than 1×108Ω·cm. Figure 1 shows the crosssectional schematic diagram of the SI-GaN alpha particle detector with DSC.Before the metallization,the samples are degreased and sonicated in acetone,alcohol and de-ionized water for each 10 min,then dipped into dilute hydrogen fluoride solution for 60 s to remove native oxide from the GaN surface. The DSC alpha particle detectors are directly fabricated on the SI-GaN template by using standard photolithography and lift-off techniques. Semi-transparent interdigitated Ni/Au(100 ?A/100 ?A)Schottky contacts are deposited on the SI-GaN template via electron-beam evaporation. The designed contact fingers are 10μm wide and 1 mm long with an inter-spacing of 10μm. Subsequently,Ti/Au(2000 ?A/5000 ?A)pad layer is deposited on the diagonal margin of the Schottky contacts. For radiation sensitivity characterizations, the processed wafer is diced into individual dies, which are mounted onto TO packages by using conductive silver paste and via wire bonding.

    Figure 2 shows the assembled system for energy spectrum measurement of alpha particles. The TO packaged detector is placed within a shielded aluminum cylinder to prevent external electromagnetic interference. An241Am radioisotope source fixed by a polytetrafluoroethylene(PTFE)holder is collimated towards the front surface of the detector. During the detection process,incident alpha particles interacting with the active semiconductor lattice would generate multiple electron-hole pairs,which would be separated and swept towards respective electrodes by junction electrical field. The resulting current pulses are too weak to be measured directly, which have to be fed into a charge sensitive amplifier. The collected charge signals are then converted into linear-tail voltage pulses. The voltage pulse height ?Vequals toQ/CF,in whichQis the total charge induced by an alpha particle andCFis the feedback capacitor of the charge sensitive amplifier. Thus, the voltage pulse height distribution contains the information of energy deposited by incident particles within the device active layer.The feedback capacitor used in the charge sensitive preamplifier is 1 pF, resulting in a conversion gain of nominally 18.2 mV/MeV for the GaN alpha particle detector. Next, a shaping amplifier(ORTEC 672)is used to shape and amplify the output signals into linear semi-Gaussian voltage pulses.Finally, a multichannel analyzer (AMPTEK MCA-8000D) is used to complete the pulse height counting. During the energy spectrum measurement, the bias voltage applied on the detector is provided by a Keithley 2636A sourcemeter, while an oscilloscope(Tektronix MSO54)is used for the waveform monitoring. The total electronic noise of the detection system is measured by using a Tektronix AFG3102C function generator. A standard ORTEC Si alpha particle detector with a nominal CCE of~100%is adopted for the energy calibration.

    Fig.1. Cross-sectional schematic diagram of SI-GaN based DSC detector.

    Fig.2. Schematic of the experimental setup for alpha particle detection with the SI-GaN detector.

    3. Results and discussion

    The current-voltage (I-V) characteristics of the SI-GaN DSC detector are shown in Fig. 3(a). Since the two Schottky junctions of the detector are back-to-back connected, one Schottky diode is always reverse biased, while the other is forward biased. A good symmetric rectifying behavior can be observed on theI-Vcurve, which indicates that the two diodes have similar Schottky Ni/GaN interfacial barrier properties. Under 10 V bias, the detector exhibits a low roomtemperature dark current of less than 5.0×10?11A, corresponding to a linear current density of 5.0×10?10A/cm. Low leakage current is important for energy resolved particle detection, as random fluctuations in leakage current would add electrical noise into the momentary current flow caused by an ionizing event, leading to a significant source of distortion in subsequently processed signals.Figure 3(b)shows the temperature dependentI-Vcharacteristics of the GaN detector plotted in semi-log scale. In the temperature range of 30-90°C,the overall reverse leakage increases at higher temperatures.Meanwhile, at high reverse bias, the leakage current versus bias shows a linear relationship at various temperatures,which suggests that Pool-Frenkel emission is the dominant leakage conduction mechanism.[15,16]

    Fig.3. (a)The I-V characteristics of the SI-GaN DSC detector measured in low bias range;(b)the semi-log I-V characteristics of the detector measured at various temperatures.

    The energy spectral response of the SI-GaN detector is characterized by using the above-mentioned alpha particle detection system. The alpha radiation source used in this experiment is an241Am radioactive source with an exemption category of V, which has a typical radioactivity of less than 370 kBq. There are four possible alpha-particle transitions during the decay process of241Am. Each kind of transitions involves the emission of alpha particles with different energy and relative abundance, which include 5.389 MeV (1.0%),5.443 MeV (12.5%), 5.486 MeV (86.0%), and 5.545 MeV(0.3%).[17]Since their energies are very close and hard to be distinguished from each other in the energy spectrum,all following calculations conducted in this work are based on the particle energy of 5.486 MeV.The output signal from the GaN detector is firstly fed into the charge sensitive preamplifier and an oscilloscope is used to temporally monitor the amplified signal. A typical pulse waveform excited by a single alpha particle is shown in Fig. 4, which is a fast-rise voltage pulse with an exponential decay back to the baseline. Its rise time and fall time are 0.7μs and 2.2 ms,respectively. Such waveforms are further processed by the shaping amplifier, which has a shaping time set at 2 μs during energy spectrum measurement.

    Fig.4. A typical pulse signal of the SI-GaN detector through the preamplifier with a pulse amplitude of ~21 mV.

    The alpha particle energy spectra of the SI-GaN detector under various bias voltages are shown in Fig. 5. A double peak structure (“high peak” and “l(fā)ow peak”) is observed in the channels ranging from~1000 to 1900, in which the low peak stays in the low energy direction. During the measurement process, the counting time at each bias is intentionally adjusted so that all high peaks have nearly the same peak heights. It is clear that to reach the same magnitude of high peaks, the counting time has to be reduced at higher bias.Meanwhile,the overall count rate around the low peak drops.This behavior can be explained by the lateral expansion of depletion region within the DSC structure at higher bias, as illustrated in Fig.6. Due to the high resistivity of the SI-GaN,even at a bias voltage of 10 V, the GaN layer between the two inter-digitated contact electrodes is largely depleted, and the depletion layer would reach a maximum depth of 5 μm.Thus, an absence of bias dependence of the peak centroid is observed. As illustrated by the equipotential lines in Fig. 6,the applied bias mostly drops on the reverse biased junction.As bias increases, the width of the lateral depletion region would gradually broaden,until the remaining region between the two electrodes is fully depleted. Meanwhile,some regions outside the contact boundary would also be depleted. During this process,more particles impinging on the detector surface would contribute to effective counts. Thus,the higher the bias voltage, the shorter the accumulative counting time required to achieve a consistent height of the high peaks. In addition,charge collection efficiency should also increase with the rise of bias,which would contribute some high energy counts.

    Fig.5. 241Am alpha particle spectrum obtained with the SI-GaN detector at different bias.

    Fig.6. Cross sectional schematic of the DSC alpha particle detector during operation. The white arc lines and the dash lines illustrate the equipotential lines below the Schottky electrodes and boundary of the depletion region induced by external bias,respectively.

    To further analyze the double-peak characteristics,Gaussian function is used to fit the energy spectrum measured at a bias voltage of 30 V, which gives the energy positions of the peak centroids and their corresponding full widths at the half maximum(FWHM)values. As shown in Fig.7,the low peak can be fitted by Gaussian curve G1,while the high peak can be fitted by Gaussian curves G2 and G3. Apparent peak broadening and count fluctuations of the original spectrum curve can be observed. There are at least three main factors determining the energy resolution(FWHMall)of the detector,which is described by

    where FWHMstatis statistical-noise-related spectral broadening caused by the discrete nature of the count signal itself(i.e.,Fano noise),FWHMelecis caused by the random noise of the overall system including the detector and the readout circuit,and FWHMotheris spectral broadening caused by the other factors,such as performance drift of the detector during measurement process and energy straggling in the incident window of the detector.[18]The energy distribution of Fano noise can be described by the following equation:[19]

    whereFis the Fano factor,ε0is the average energy required for formation of an electron-hole pair,andEαis the alpha particle energy. By taking the Fano factor of 0.1 andε0of 8.9 eV for GaN, the calculated FWHMstatfor 5.486 MeV alpha particles is~5.18 keV.[20]The electronic noise (FWHMelec) of the entire readout circuit system is tested by feeding periodic short pulse signals produced by a functional signal generator into the circuit,which is determined as~2.3 keV.During the measurement,all parameters of the system are set as same as those used in real energy spectrum measurement. The energy separation between the peak centroids of G1 and G3 is~425 channels,which corresponds to a calibrated energy of 284 keV.Clearly,such a large energy difference between the two peaks can only be caused by FWHMother,which will be discussed in detail later.

    Fig.7. Gaussian fitting to the energy spectrum curve of the SI-GaN detector measured under a bias of 30 V.

    Fig. 8. Bragg ionization curves of 5.48 MeV alpha particles in gold layer and titanium layer calculated by the SRIM tool.

    Considering the special planar structure of the detector,its thick metal pad with an area of 300×300μm2is likely to account for the double-peak characteristics. In this model,alpha particles are emitted radially from241Am radioactive source to the surface of the detector. Some particles falling on the metal pad would inevitably lose certain amount of their energy due to the blocking effect of the pad metal. According to a report by Vigneshwaraet al.,for 5.486 MeV alpha particles vertically passing through a metal layer(500 ?A Ti/1500 ?A Au),the average energy loss is less than 110 keV.[21]Figure 8 shows the Bragg ionization curves for 5.48 MeV alpha particles in gold and titanium determined from the stopping range of Ions in matter (SRIM) simulation.[22]Based on these two curves, the average energy loss of 5.48 MeV alpha particles passing through 5000 ?A Au layer and 2000 ?A Ti layer are 220 keV and 45 keV,respectively. The sum of these two energies is 265 keV,which is close to the measured energy difference of 284 keV between G1 and G3. Thus,in Fig.7 the G1 peak should be caused by alpha particles passing through the Ti/Au(2000 ?A/5000 ?A)metal pad and then depositing energy into the underlying GaN layer, while G3 is caused by alpha particles directly penetrating through the GaN layer. Meanwhile, random interactions of particles and different incident angles would cause energy scattering to a certain extent,which thereby broadens the energy peaks.

    Interestingly, the high peak cannot be simply fitted by a single Gaussian curve G3, but a shoulder peak G2 with lower energy has to be combined. The FWHM of the two Gaussian peaks are 117 channels for G2 and 91 channels for G3, respectively. These two peaks are separated by approximately 100 channels, corresponding to an energy of 67 keV. Similar feature has been found in the alpha particle spectra of other GaN-based radiation detectors,[23]but not in SiC-based counterparts.[24,25]In the past studies, it has been well accepted that high-density defect states exist in SI-GaN materials.[26,27]These defect states are caused by dislocations,vacancies,impurities and especially Fe-ion-related compensation centers. Then a reasonable explanation for the shoulder peak is that certain amount of excited carriers are trapped by defect states along their drift path, resulting in an incomplete collection of carriers.[28]Thus, the main energy peak of incident alpha particles would broaden towards its low energy direction in the energy spectrum curve.

    As shown in Fig.9,SRIM simulation can also be used to determine the relationship between energy deposition and penetration depth of 5.48 MeV incident alpha particles in GaN,which shows that a total energy loss of 1.48 MeV is deposited within the 5μm SI-GaN.The CCE could be calculated by dividing the experimentally obtained value of energy deposition by its theoretical one(i.e.,1.48 MeV).Meanwhile,energy resolution is of great importance for evaluating the performance of radiation detectors, which is conventionally defined as the FWHM of the energy peak divided by the channel number of the peak centroid.[29]Then, based on the fitting curve with double Gaussian components, it can be determined that the energy resolution of the SI-GaN DSC detector is~8.6% at 1.209 MeV with a corresponding CCE of~81.7%. Thus, it is concluded that the DSC structure is feasible for high energy particle detectors, which provides a simple and low-cost way for radiation detection with reasonable performance. Compared with the traditional vertical Schottky devices with whole electrode, the interdigital approach in DSC design can effectively bring down the proportion of dead region and reduce the energy loss of incident particles.

    Finally, to further evaluate the potential performance of the SI-GaN detector, high temperature alpha particle energy spectrum is acquired at 90°C.As shown in the inset of Fig.10,the detector biased at 30 V is heated by using a metal ceramics heater bonded to the back of the TO package,and chip temperature is continuously monitored by a thermocouple mounted next to the detector. By comparing with the energy spectrum profile (gray area) measured at room temperature, it is found that the FWHM of high peak P1 is roughly 235 keV at high temperature, which is almost twice than that at room temperature(see Fig.10). However,little shift of peak energy is observed,which suggests that the GaN detector have potential to operate stably in high-temperature environment.

    Fig.9. Bragg ionization curve of 5.48 MeV alpha particles in GaN layer.

    Fig. 10. Alpha particle energy spectra of the SI-GaN detector acquired at room temperature(~27 °C)and 90 °C.

    4. Conclusion

    In this work, a planar double Schottky contacts alpha particle detector is directly fabricated on HVPE-grown semiinsulating GaN:Fe template. The detector exhibits low leakage current and is proved capable of detecting partial energies of alpha particles from241Am radioactive source.Distinct double-peak characteristic is observed in the energy spectrum,which is explained by energy attenuation effect of the surface metal pad. The detector exhibits a reasonable energy resolution of~8.6%at deposited energy of 1.209 MeV,and a charge collection efficiency of~81.7% at 30 V bias. The energyresolution limiting factor is found to be the trapping effect of defect states within the SI-GaN:Fe layer, resulting in an incomplete collection of excited charges. The GaN detector also exhibit potential to operate in high temperature environment.This study provides a feasible way to fabricate low-cost and radiation hard GaN-based high energy particle detectors with reasonable performance. To further improve the device performance in terms of energy resolution,thicker SI-GaN layer with improved crystalline quality should be developed.

    猜你喜歡
    陸海羊群
    上海出發(fā)愛達(dá)世界
    陸海之縱
    陸海新通道鐵海聯(lián)運(yùn)班列今年開行破1000班
    和狼的第一次交戰(zhàn)
    新少年(2020年4期)2020-05-26 01:59:19
    羊群莫名蒸發(fā)疑案
    羊群莫名蒸發(fā)疑案
    城里的羊群
    中國詩歌(2018年3期)2018-11-14 19:09:21
    陸海統(tǒng)籌推進(jìn)海岸帶地質(zhì)調(diào)查
    不止一個(gè)
    一種奇巧的測(cè)角法
    午夜a级毛片| 国产熟女欧美一区二区| 免费大片18禁| 99热精品在线国产| 99热6这里只有精品| 国产v大片淫在线免费观看| 1024手机看黄色片| 亚洲精品456在线播放app| 老司机福利观看| 国产高清视频在线观看网站| av天堂在线播放| 国产高清视频在线观看网站| 欧美在线一区亚洲| 性插视频无遮挡在线免费观看| 久久久久九九精品影院| 亚洲欧美精品综合久久99| 欧洲精品卡2卡3卡4卡5卡区| 午夜久久久久精精品| a级一级毛片免费在线观看| 久久精品国产亚洲av涩爱 | 亚洲精品日韩av片在线观看| 亚洲综合色惰| 九九热线精品视视频播放| 女人十人毛片免费观看3o分钟| 毛片一级片免费看久久久久| 麻豆成人午夜福利视频| 99热这里只有是精品在线观看| 国产精品伦人一区二区| 国产 一区 欧美 日韩| 18+在线观看网站| 小说图片视频综合网站| 亚洲成人精品中文字幕电影| 欧美日韩在线观看h| 国产精品久久久久久精品电影| 97在线视频观看| 成人午夜高清在线视频| 精品欧美国产一区二区三| 美女高潮的动态| 国产 一区 欧美 日韩| 亚洲精华国产精华液的使用体验 | 欧美zozozo另类| 午夜爱爱视频在线播放| 精品无人区乱码1区二区| 啦啦啦啦在线视频资源| 老师上课跳d突然被开到最大视频| 啦啦啦观看免费观看视频高清| 内射极品少妇av片p| 夜夜看夜夜爽夜夜摸| 最好的美女福利视频网| 99热网站在线观看| 青春草亚洲视频在线观看| 中国美女看黄片| 热99re8久久精品国产| 亚洲美女搞黄在线观看| 免费一级毛片在线播放高清视频| 伦理电影大哥的女人| 此物有八面人人有两片| 国产亚洲5aaaaa淫片| 久久精品夜夜夜夜夜久久蜜豆| 日韩制服骚丝袜av| 欧美日韩精品成人综合77777| 久久亚洲精品不卡| www日本黄色视频网| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区视频9| 亚洲精品色激情综合| 精品人妻视频免费看| 成人三级黄色视频| 爱豆传媒免费全集在线观看| 国产精品三级大全| 国产黄色小视频在线观看| 免费在线观看成人毛片| 岛国毛片在线播放| 成人国产麻豆网| 国产成人a∨麻豆精品| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 国产男人的电影天堂91| 桃色一区二区三区在线观看| 欧美人与善性xxx| 成人三级黄色视频| av卡一久久| 尤物成人国产欧美一区二区三区| 亚洲第一区二区三区不卡| 国产一区亚洲一区在线观看| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 哪个播放器可以免费观看大片| av在线播放精品| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| av免费在线看不卡| 久久精品夜色国产| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 久久午夜亚洲精品久久| 国产精品野战在线观看| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 久久久久性生活片| 国产精品国产高清国产av| 菩萨蛮人人尽说江南好唐韦庄 | 午夜爱爱视频在线播放| 亚洲最大成人中文| 99热只有精品国产| 精品无人区乱码1区二区| 欧美人与善性xxx| 日韩中字成人| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 欧美日本亚洲视频在线播放| 亚洲婷婷狠狠爱综合网| 午夜视频国产福利| eeuss影院久久| 成人无遮挡网站| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 久久久精品欧美日韩精品| 亚洲精品456在线播放app| 黄色日韩在线| 看免费成人av毛片| 美女大奶头视频| av卡一久久| 99热这里只有是精品50| av天堂在线播放| 91在线精品国自产拍蜜月| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲熟妇中文字幕五十中出| 欧美丝袜亚洲另类| 白带黄色成豆腐渣| 男女边吃奶边做爰视频| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 欧美一区二区国产精品久久精品| 国产精品久久久久久久久免| av.在线天堂| 国国产精品蜜臀av免费| 精品久久久久久成人av| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 蜜桃久久精品国产亚洲av| 日本黄色视频三级网站网址| 综合色丁香网| 99久久人妻综合| 国产一级毛片七仙女欲春2| 精品午夜福利在线看| 久久精品夜色国产| 国产伦理片在线播放av一区 | 欧美一级a爱片免费观看看| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜爱| 99久国产av精品国产电影| 国产精品伦人一区二区| 天堂网av新在线| 亚洲,欧美,日韩| 日本-黄色视频高清免费观看| 热99在线观看视频| 亚洲七黄色美女视频| 少妇熟女欧美另类| 看片在线看免费视频| 国产免费一级a男人的天堂| 国产私拍福利视频在线观看| 乱人视频在线观看| a级毛片免费高清观看在线播放| 97在线视频观看| 欧美在线一区亚洲| 国产老妇伦熟女老妇高清| 成人二区视频| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区 | 日本欧美国产在线视频| 中出人妻视频一区二区| 中文字幕久久专区| 白带黄色成豆腐渣| 久久国产乱子免费精品| 男女边吃奶边做爰视频| 51国产日韩欧美| 日韩国内少妇激情av| 91麻豆精品激情在线观看国产| 51国产日韩欧美| 国产精品国产高清国产av| 99热只有精品国产| 校园春色视频在线观看| 欧美最新免费一区二区三区| 全区人妻精品视频| 久久久久性生活片| 乱码一卡2卡4卡精品| 人人妻人人澡人人爽人人夜夜 | 两个人视频免费观看高清| 嘟嘟电影网在线观看| 18+在线观看网站| 午夜福利在线观看免费完整高清在 | 国产一区二区激情短视频| 高清毛片免费观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 看片在线看免费视频| 亚洲欧美精品自产自拍| 少妇被粗大猛烈的视频| 综合色av麻豆| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 26uuu在线亚洲综合色| 久久久久网色| 九草在线视频观看| 青春草亚洲视频在线观看| 天堂影院成人在线观看| 黄片wwwwww| 精品欧美国产一区二区三| 两性午夜刺激爽爽歪歪视频在线观看| 色综合站精品国产| 在线播放国产精品三级| 免费看a级黄色片| 亚洲va在线va天堂va国产| 欧美日本视频| 国产成人精品婷婷| 国产在视频线在精品| 欧美又色又爽又黄视频| 青青草视频在线视频观看| 欧美成人精品欧美一级黄| 国产精品一区二区三区四区免费观看| 晚上一个人看的免费电影| 国内精品久久久久精免费| av在线亚洲专区| 久久精品91蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 国产精品嫩草影院av在线观看| 国产av一区在线观看免费| 亚洲av二区三区四区| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 午夜福利成人在线免费观看| 亚洲国产日韩欧美精品在线观看| 欧美+亚洲+日韩+国产| 久久精品影院6| 日韩亚洲欧美综合| 少妇裸体淫交视频免费看高清| 蜜桃亚洲精品一区二区三区| 国产毛片a区久久久久| 精品一区二区免费观看| 97热精品久久久久久| 午夜精品国产一区二区电影 | 国产精品一区二区三区四区久久| 嫩草影院入口| 欧美最黄视频在线播放免费| 中文欧美无线码| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 熟女电影av网| 日韩三级伦理在线观看| 秋霞在线观看毛片| 可以在线观看毛片的网站| 国产爱豆传媒在线观看| 九色成人免费人妻av| av卡一久久| 日本三级黄在线观看| 中文亚洲av片在线观看爽| 亚州av有码| 国产人妻一区二区三区在| 看片在线看免费视频| 久久久久久九九精品二区国产| 中国国产av一级| 国产精华一区二区三区| 国产 一区 欧美 日韩| 国产精品1区2区在线观看.| 婷婷色综合大香蕉| 久久6这里有精品| 精品人妻一区二区三区麻豆| 免费看光身美女| 男人舔女人下体高潮全视频| 日韩高清综合在线| 国产精品麻豆人妻色哟哟久久 | 一区二区三区免费毛片| 国产在视频线在精品| 我的老师免费观看完整版| 97在线视频观看| 男人狂女人下面高潮的视频| 日韩,欧美,国产一区二区三区 | 国产成人91sexporn| 99久久精品国产国产毛片| 日韩欧美在线乱码| 少妇被粗大猛烈的视频| 美女内射精品一级片tv| 国产精品永久免费网站| 午夜福利在线观看免费完整高清在 | 看免费成人av毛片| 亚洲精品日韩在线中文字幕 | 99热这里只有是精品在线观看| 在线国产一区二区在线| 午夜a级毛片| 少妇被粗大猛烈的视频| 日日啪夜夜撸| 国产精品精品国产色婷婷| 91精品国产九色| ponron亚洲| 91久久精品国产一区二区成人| 亚洲人成网站高清观看| 免费看a级黄色片| 久久国内精品自在自线图片| 免费看光身美女| 哪里可以看免费的av片| 一级av片app| 国产精品一区二区性色av| 欧美zozozo另类| 91精品一卡2卡3卡4卡| 波多野结衣高清无吗| 天天躁日日操中文字幕| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 国产片特级美女逼逼视频| 国产成人午夜福利电影在线观看| 久久精品国产清高在天天线| 女人被狂操c到高潮| 一区二区三区高清视频在线| 日本免费a在线| 国产高清三级在线| 日本色播在线视频| 午夜福利视频1000在线观看| 成人一区二区视频在线观看| 91av网一区二区| 给我免费播放毛片高清在线观看| 久久久欧美国产精品| 婷婷色综合大香蕉| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 婷婷六月久久综合丁香| 久久午夜福利片| 国产激情偷乱视频一区二区| 国产一区二区在线观看日韩| 精品熟女少妇av免费看| 色噜噜av男人的天堂激情| 搡老妇女老女人老熟妇| 国产一级毛片在线| 九九在线视频观看精品| 人妻制服诱惑在线中文字幕| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| 男女啪啪激烈高潮av片| or卡值多少钱| 久久草成人影院| 天天一区二区日本电影三级| 最新中文字幕久久久久| 性色avwww在线观看| 午夜精品一区二区三区免费看| 国产免费一级a男人的天堂| 久久久久久久午夜电影| 美女高潮的动态| 九草在线视频观看| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站| 如何舔出高潮| 久久精品91蜜桃| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂 | 国国产精品蜜臀av免费| 成年av动漫网址| 国内少妇人妻偷人精品xxx网站| 欧美在线一区亚洲| 国产在线男女| 中文字幕精品亚洲无线码一区| 欧美最新免费一区二区三区| 舔av片在线| 青春草视频在线免费观看| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 国产精品国产高清国产av| av在线播放精品| 亚洲国产精品合色在线| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 99久国产av精品国产电影| 不卡一级毛片| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 老司机影院成人| 国产精品综合久久久久久久免费| 国产黄色视频一区二区在线观看 | 亚洲av成人av| 少妇的逼水好多| 舔av片在线| 成人永久免费在线观看视频| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 欧美三级亚洲精品| 精品一区二区三区视频在线| 午夜福利在线在线| 亚洲欧美精品综合久久99| www日本黄色视频网| 99热这里只有精品一区| 男女做爰动态图高潮gif福利片| 直男gayav资源| 色吧在线观看| 青春草视频在线免费观看| 亚洲欧洲日产国产| 麻豆成人av视频| 偷拍熟女少妇极品色| 伦精品一区二区三区| 天美传媒精品一区二区| 波野结衣二区三区在线| 久久久色成人| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| 精品人妻视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 久久99热这里只有精品18| 天堂影院成人在线观看| 少妇的逼好多水| 国产成人午夜福利电影在线观看| 少妇裸体淫交视频免费看高清| 少妇熟女aⅴ在线视频| 久久韩国三级中文字幕| 亚洲欧美精品自产自拍| 一级黄片播放器| 亚洲乱码一区二区免费版| 亚洲欧美精品综合久久99| 久久精品国产亚洲av香蕉五月| 国产又黄又爽又无遮挡在线| 亚洲国产欧美人成| 不卡视频在线观看欧美| 国产精品久久视频播放| 两个人的视频大全免费| 成年免费大片在线观看| 婷婷六月久久综合丁香| 精品久久久噜噜| 久久久久久大精品| 久久久久国产网址| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 成人av在线播放网站| 免费看a级黄色片| 欧美另类亚洲清纯唯美| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 亚洲欧美日韩卡通动漫| 免费观看在线日韩| 韩国av在线不卡| 深夜a级毛片| 别揉我奶头 嗯啊视频| av又黄又爽大尺度在线免费看 | 少妇高潮的动态图| 69av精品久久久久久| 91精品一卡2卡3卡4卡| 亚洲欧洲国产日韩| 黄片无遮挡物在线观看| 美女内射精品一级片tv| 亚洲精华国产精华液的使用体验 | 一区二区三区四区激情视频 | 国产精品国产三级国产av玫瑰| 美女高潮的动态| 男人舔奶头视频| 精品一区二区三区视频在线| 免费观看在线日韩| 插阴视频在线观看视频| 婷婷精品国产亚洲av| 免费观看人在逋| 国产精品人妻久久久久久| 精品久久国产蜜桃| 国产色婷婷99| 免费电影在线观看免费观看| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| 成年免费大片在线观看| 久久久午夜欧美精品| 亚洲成人久久爱视频| 一区二区三区高清视频在线| 免费在线观看成人毛片| 日韩精品有码人妻一区| 精品久久久久久久久久免费视频| 日韩强制内射视频| 一个人看的www免费观看视频| 日韩亚洲欧美综合| 欧美日韩在线观看h| 亚洲精品456在线播放app| 日韩欧美精品v在线| 99久国产av精品国产电影| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说 | 亚洲av成人av| 亚洲欧美日韩高清在线视频| 变态另类丝袜制服| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 久久亚洲国产成人精品v| 嫩草影院精品99| 天堂av国产一区二区熟女人妻| 精品午夜福利在线看| 又黄又爽又刺激的免费视频.| 色综合亚洲欧美另类图片| 久久久久久久久久久丰满| 国内揄拍国产精品人妻在线| 内地一区二区视频在线| 日韩制服骚丝袜av| 国内久久婷婷六月综合欲色啪| 久久精品夜夜夜夜夜久久蜜豆| 国产精品伦人一区二区| 人人妻人人澡欧美一区二区| 麻豆精品久久久久久蜜桃| 午夜福利在线在线| 日本撒尿小便嘘嘘汇集6| 蜜臀久久99精品久久宅男| 非洲黑人性xxxx精品又粗又长| 日日啪夜夜撸| 久久精品久久久久久久性| 成人三级黄色视频| 老司机福利观看| avwww免费| 国产乱人偷精品视频| 久久久久久久久大av| 真实男女啪啪啪动态图| 我的女老师完整版在线观看| 高清在线视频一区二区三区 | 国产av在哪里看| 久久精品久久久久久久性| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 婷婷色综合大香蕉| 别揉我奶头 嗯啊视频| 久久久久久伊人网av| 国产成人a区在线观看| 97超视频在线观看视频| 97超碰精品成人国产| 国产精品久久视频播放| 午夜福利在线在线| 国产综合懂色| 综合色丁香网| 精品一区二区三区人妻视频| 老司机福利观看| 国产成人福利小说| h日本视频在线播放| 久久精品夜色国产| 久久久久久久久大av| 国产亚洲精品av在线| 国产精品一区二区三区四区免费观看| 精品一区二区三区视频在线| 在线观看一区二区三区| 欧美变态另类bdsm刘玥| 亚洲五月天丁香| 神马国产精品三级电影在线观看| 99久久成人亚洲精品观看| 狂野欧美激情性xxxx在线观看| 免费无遮挡裸体视频| 51国产日韩欧美| 久久99热这里只有精品18| kizo精华| 99久久精品国产国产毛片| 美女大奶头视频| 精品国内亚洲2022精品成人| 色播亚洲综合网| 男女啪啪激烈高潮av片| 又爽又黄a免费视频| 中文字幕熟女人妻在线| 小说图片视频综合网站| 女人被狂操c到高潮| 欧美精品国产亚洲| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 免费av毛片视频| 麻豆成人av视频| 国产老妇伦熟女老妇高清| 久久精品国产自在天天线| 99精品在免费线老司机午夜| 夜夜爽天天搞| av在线观看视频网站免费| 国产成人a区在线观看| 一区二区三区四区激情视频 | 成人亚洲精品av一区二区| 波多野结衣高清作品| 伦理电影大哥的女人| 非洲黑人性xxxx精品又粗又长| av免费在线看不卡| 天天一区二区日本电影三级| 最近2019中文字幕mv第一页| 国产私拍福利视频在线观看| 精品少妇黑人巨大在线播放 | 国产成人午夜福利电影在线观看| 18禁裸乳无遮挡免费网站照片| 国产真实伦视频高清在线观看| 免费人成在线观看视频色| 天天躁日日操中文字幕| 2021天堂中文幕一二区在线观| 国产高清三级在线| 99国产精品一区二区蜜桃av| 日本免费一区二区三区高清不卡| 中文字幕人妻熟人妻熟丝袜美| 国产黄色小视频在线观看| 国产爱豆传媒在线观看| 中文在线观看免费www的网站| 一级毛片久久久久久久久女| 日韩欧美 国产精品| 99久久成人亚洲精品观看| 日本av手机在线免费观看| 国产乱人视频| 国产色爽女视频免费观看| 丝袜美腿在线中文| 亚洲精品乱码久久久久久按摩| av在线老鸭窝| а√天堂www在线а√下载| 亚洲精品乱码久久久久久按摩| 男女那种视频在线观看| 少妇猛男粗大的猛烈进出视频 | 国产av一区在线观看免费| 观看美女的网站| 欧美+亚洲+日韩+国产| 99热这里只有是精品50| 毛片一级片免费看久久久久| 黄片无遮挡物在线观看| 国产伦精品一区二区三区四那|