• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics simulations of dopant effects on lattice trapping of cracks in Ni matrix*

    2021-11-23 07:29:24ShulanLiu劉淑蘭andHuijingYang楊會靜
    Chinese Physics B 2021年11期

    Shulan Liu(劉淑蘭) and Huijing Yang(楊會靜)

    School of Physical Science and Technology,Tangshan Normal University,Tangshan 063000,China

    Keywords: alloying elements,doping,Ni crack,lattice trapping

    1. Introduction

    The outstanding high-temperature mechanical properties of Ni-based single crystal(SC)superalloys make them popular for applications related to advanced airplane engine blades and power-generation turbines.[1,2]Theγ-Ni phase is a popular host matrix for the Ni-based SC superalloys as it affects the overall mechanical properties of the resulting materials,[2,3]while the crack inγphase restricts its applications. Analysis of theγphase microstructure evolution was reported[4-7]earlier. However,the fracture in superalloys are complex,and the strengthening mechanism ofγ-Ni matrix is still not very clear.Thus,understandings on how to strengthen theγ-Ni matrix and minimizeγ-Ni matrix fracture has been becoming the important research.

    The rupture leading to a complete part failure often results from cracks, which are formed because of the atomic bond breakage. The fracture stress is closely connected to the critical activation of cracks and their propagation,which,in turn,depends on the lattice trapping of the cracks.[8]If the lattice traps the crack,it does not further propagate or heals when the mechanical loads are above or below the Griffith load (KGth)values,which are also called upper and lower lattice trapping limits(K±IC),respectively. The Griffith load is defined as a material state,at which the total energy change is zero when the crack propagates in a specific lattice direction of a cell with the defined in-plane boundaries.[9]At the Griffith load,a finite lattice resistance barrier exists between the isoenergetic states,which could trap the crack tip at either state. These phenomena manifest themselves as the lattice trapping effects.

    The lattice trapping of material can be affected by several factors. The lattice trapping effect depends on the kinks and the interaction range of the interatomic force field, as well as on the relative stiffness of the atomic bonds at the propagation front.[9-12]Moreover,the directions of the crack front and propagation, as well as the interatomic potential and the material’s structure components, also affect the lattice trapping limit and range.[13-17]Because of the industrial importance of the Ni-based SC superalloys, understanding their brittle fracture behavior upon cracking is essential. Thus, research on crack lattice trapping of Ni matrix is needed.

    Mechanical properties of Ni-based SC superalloys depend on their chemical compositions. Experiments and simulations indicated that doping superalloys with Re,Ru,Co,and W improved their mechanical properties.[18-27]Our previous work reported the lattice trapping limit increased for the Ni or Ni3Al cracks when Re or W was added and that W incorporation yielded much stronger effects for the Ni3Al cracks.[4,13,15]Other reports indicated the effect of Co on the crack propagation along theγ/γ'interface was minimal.[28,29]In general,Ni matrix strengthening mechanisms involving solid solution formation (with Co, Mo, W, Re, and Ru dopants) are complex. Simultaneous consideration of (i) the influence of the dopants on the mechanical properties of industrial Ni-Al-X(X=Re,Ru,Co,or W)superalloys(which was assessed previously by the embedded-atom-method, EAM)[30-33]and (ii)the importance of crack lattice trapping by the Ni matrix,analysis of fracture,strengthening mechanisms,crack propagation and crack lattice trapping of the Ni matrix doped with Re,Ru,Co and/or W is needed to design the material with the best performance.

    Because of the accuracy and cost concerns, experiments to obtain data for this analysis might be hard to conduct, especially at the atomic scale. However,this can be achieved by using the molecular dynamics (MD) method, a powerful and reliable approach (especially when combined with the EAM potentials) to solve the above problem and to predict the superalloy properties.[4,13,29,34-39]Re, Ru, and Co dopants predominantly accumulated in theγphase,while W was observed in bothγandγ'phases.[40,41]Therefore,this work focused on building a model with random substitution of Ni by 1 and 3 at.% ofX(X=Re, Ru, Co or W) in theγmatrix. We performed MD simulations to understand how these dopants affect Ni matrix crack lattice trapping limit and range at 300 K(the simulations showed that the Ni crack propagates in a brittle manner at 300 K). We also calculated the corresponding mechanical properties, surface energy, and atomic bonding strength of the Re,Ru,Co,or W dopedγ-Ni matrix.

    2. Computation details

    2.1. Calculation model

    We constructed a model with a sharp crack in the(010)[001] orientation (with the crack plane and crack front oriented perpendicular to the [010] and parallel to the [001]directions)according to the anisotropic linear elastic displacement field[42](see Fig.1(a)).The atomic configurations for the cracks in the undoped and 3 at.%doped Ni matrix are shown in Figs. 1(b)-1(d). The model contained 120, 160, and 160 atomic layers along thex,y,andz([100],[010],and[001])directions, respectively, which accounts for the 1536000 atoms in total. To confirm the appropriate and feasible model size,two larger models with 3 at.%Re atoms were also constructed.One of these large models expanded the side lengths inxandydirections and contained 200, 200, and 160 atomic layers along thex,y,andzaxes,respectively. The other large model expanded the side length in thez-direction and contained 120,160,and 200 atomic layers along thex,y,andzaxes,respectively. The smaller-sized model adopted in this work was chosen because the configuration evolution and physical properties(such as surface energy and elastic constants)did not depend on the system size. The initial crack length was set as 1/3 of the crack propagation length.

    The boundary conditions in thez-direction during the lattice trapping calculations were periodic. For thexandydirections, we used the fixed-displacement boundary conditions of the six outer atomic layers. Dopant atoms (at both 1 and 3 at.%levels)substituted Ni atoms randomly. Such setup showed reliable results in previous studies.[4,13,29,34]To further confirm this setup reliability, we studied three different random distributions of Re atoms at 3 at.%doping level. The deviations of the lattice and elastic constants as well as surface energy and lattice trapping limits for these distributions were negligible, which confirms the reliability of the current random doping scheme chosen in this work.

    Fig.1. A diagram showing simulation model: (a)Geometrical presentation of the lattice trapping. (b)Crack tip configuration for undoped Ni before relaxation. (c)-(d)Crack tip atomic configuration for the doped Ni(at 3 at.%level)by Re,Ru,Co or W before relaxation. Blue balls are Ni atoms;red balls are dopant atoms.

    2.2. Simulation details

    The Newton equations of motion at 300 K were processed by the gear algorithm[43]using 5×10?15s time step. The Ni-Al-X(X=Re,Ru,Co or W)EAM potentials[30-33]of the doped matrix were used to describe the cracks. The EAM potentials were used to fit the parameters obtained from the first-principles calculations or experimental results, such as lattice constants,cohesive energies, elastic constants of Ni, Al,X(X=Re, Ru, Co or W) and their compounds. The EAM potentials typically provide reasonable results in describing the dislocations or/and crack systems of the Ni-based superalloys.[4,13,15,18,29,30,34]The MD simulations were performed by using the XMD program.[44]During the lattice trapping modeling, the cracks were firstly simulated under different loads, after which the atoms at the crack tips were fully relaxed by using the boundary condition described in Subsection 2.1. The initial loading or unloading was set at the stress intensity to fulfill the Griffith criterion,while the crack tip was always set as stable and not allowed to advance or heal. The starting structures were in their relaxed configurations, with the further loading or unloading being proportional to the boundary displacements. The upper and lower trapping limits()were determined based on the sudden decrease and increase of the average bond lengths,respectively,along the crack front at the crack tip (see Fig. 2). The loading increase and decrease increments were set as 1% of the Griffith load(). During the loading(or unloading),each relaxed step was set as 4000 for each time,while the number of the loadings(or unloadings)was 20 times of that. Thus,the total number of steps was equal to 80000. The formula for the lattice trapping range(?K),shown below,was taken from elsewhere:[4,13-15]

    Fig.2. An example of the bond length contour maps of atom pairs across the crack surface at the crack tip. This specific model was constructed for the 1 at.%Re-doped Ni system during the loading process. Pink squares denote the Re atom positions. The bond length bar is shown on the right-hand side.

    3. Results and discussion

    3.1. Mechanical parameters

    To examine the reliability of the EAM potentials,the lattice constanta, the elastic constantsCi j(includingC11,C12,andC44), the elastic modulus (including the bulk modulusB=(C11+2C12)/3,Young’s modulusE=9GB/(G+3B)and the shear modulusG)for the undoped and doped(at both 1 and 3 at.%levels)Ni matrix without cracks were calculated. The shear modulusGwas computed as the arithmetic Hill average of Voigt(GV)and Reuss(GR)bounds as follows:

    whereS11,S12,andS44are the elastic compliances.[45]

    All calculated mechanical parameters are listed in Table 1. The value ofaof the Ni matrix increased as it was doped with Re,Ru or W.However,the lattice constant of the Co-doped Ni barely changed,which agrees with the previous work.[29]The lattice parameter change upon doping can be explained by the size of the atomic radii of the dopants (which are equal to 1.37, 1.34, 1.25, and 1.39 ?A for Re, Ru, Co and W,respectively)relative to the atomic radius of the matrix Ni atoms(equal 1.25 ?A as well as by the interatomic interactions(discussed in Subsection 3.3). The strength of the Re-, Ruand W-doped Ni matrix was significantly higher at the 3 at.%doping level (than at the 1 at.% level), judging by the higher values of the elastic constantsC11,C12, andC44and the elastic moduliB,EandG(see Table 1). Specifically, the values of the bulk moduliBof the Re-, Ru- and W-doped Ni at the 1 ( 3 at.%) level were equal to 180.72 (184.57), 179.51(183.41), and 180.75 (184.94) GPa, respectively, which represents 1.08% (3.23%), 0.40 % (2.58%), and 1.10% (3.44%)increase in comparison to the undoped Ni matrix. The order of the matrix strengthening by the dopant addition can be described as W>Re>Ru.No difference was observed between the values ofa(orCij) of the undoped Ni matrix calculated using different Ni-Al-X(X=Re,Ru,Co or W)EAM potentials, which agrees with the elastic constant values calculated previously.[29,46,47]Thus, the application of ternary Ni-Al-X(X=Re,Ru,Co or W)EAM potentials to the doped and undoped Ni matrix is a valid and reliable approach.

    Table 1. Lattice(a)and elastic(Cij)constants as well as bulk(B),shear(G),and Young’s(E)moduli for the Ni matrix doped with 1 and 3 at.%of Re,Ru,Co or W.

    3.2. Crack lattice trapping

    3.2.1. Crack lattice trapping limits and range

    Fig. 3. Crack lattice trapping limits and ranges in undoped Ni (marked as“No”)and Ni matrix doped with 1 and 3 at.%of Re,Ru,Co and W.

    The lattice trapping ranges(?K)were small for all doped Ni matrices(see Fig.3). Specifically,when 3 at.%of Re,Ru,Co or W was added,the corresponding ?Kvalues were equal to 0.044,0.045,0.022,and 0.035,respectively.Such small ?Kvalues were very likely because of the long-range interatomic potential,which,according to some studies,[4,10,12,13,15,48]often indicates negligible lattice trapping by the breaking bonds.Thus,the interatomic interactions of Ni matrix doped with Re,Ru,Co or W possessed long-range characteristics.

    Fig.4. Upper and lower crack surface atomic configurations at the crack tip of Ni crack system doped with(a)1 at.%and(b)3 at.%of Re under loading condition. Ni and Re atoms are shown as blue and red balls,respectively.

    3.2.2. Average atomic and surface energies

    To further investigate the strengthening mechanisms of the doped Ni crack system,we used MD simulations to calculate the average atomic (Eeatom) and surface (γ) energies (see Fig.5),defined below:[4,7,13,29]

    Small values ofEeatomindicate more stable systems. Figure 5 shows the calculatedEeatomvalues for each system.The addition of Re, Ru and W decreased theEeatomvalues, which were smaller for the 3 at.% doping levels than for the 1 at.% doping levels.Eeatomwere equal to?4.492(?4.586) eV/atom,?4.472 (?4.528) eV/atom, and?4.502(?4.615) eV/atom for the Ni matrix doped with 1 at.% (or 3 at.%)of Re,Ru,and W,respectively. Thus,the addition of Re,Ru,and W improved the Ni matrix stability. However,Eeatomdid not change when Co was added to the matrix.

    Surface energyγincreased as the Re,Ru,and W elements were added at the 3 at.%level(see Fig.5). They were equal to 1626.92 J/m2, 1621.48 J/m2, and 1667.25 J/m2, respectively,which is 2.22%,1.88%,and 4.76%higher than theγof the undoped Ni matrix(which was equal to 1591.49 J/m2). The surface energy of the matrix did not change when Co was added.Combining this data with the average atomic and surface energies, we concluded that the influence on the strengthening could be placed in the order of W>Re>Ru>Co. The same order was obtained for the dopant effect on the lattice trapping limits discussed in Subsection 3.2.1.

    Fig.5. The surface(γ)and the average atomic(Eeatom)energies for the undoped and doped(with 1 and 3 at.%of Re,Ru,Co or W)Ni crack systems.

    3.2.3. Bonding strength between atoms

    Earlier in this paper, we concluded that the Ni crack lattice trapping and the corresponding mechanical parameters of the Ni matrix were influenced by the dopant nature (Re, Ru,Co or W).Such behavior could be related to the interactions of the dopants with the matrix atoms. Thus,to better understand this phenomenon, we compared the strengths of the Ni-Ni,Ni-Re, Ni-Ru, Ni-Co, and Ni-W bonds by using the EAM potentials.[29,34,52]

    Typically, the deeper the potential well of the EAM, the stronger the atomic bonding strength. Comparison of EAM potential wells of the Ni-Ni and Ni-X(X=Re,Ru,Co or W)bonds indicated that the Re-Ni,Ru-Ni and W-Ni interactions are stronger than the Ni-Ni ones(see Fig.6). For instance,the absolute values of the Ni-Ni,Ni-Re,Ni-Ru,Ni-Co,and Ni-W potentials were equal to 0.21,0.35,0.30,0.18,and 0.51 eV at the curve minima located atr= 2.58, 2.65, 2.61, 2.55,and 2.64 ?A, respectively. Thus, the interaction strength between Ni and these dopants could be described by the order of W>Re>Ru>Co, which agrees with the results discussed in Subsection 3.2.

    Fig.6. Ni-Ni,Ni-Re,Ni-Ru,Ni-Co and Ni-W pair potentials calculated by EAM as a function of the atomic distance r.

    The results discussed above helped us conclude that Ni doping with Re,Ru,and W created strong Ni-Re,Ni-Ru,and Ni-W bonds, which, in turn, improved the matrix mechanical properties and stability as well as prevented crack tip bond breakage and promoted the crack healing at 300 K. Doping with Co exhibited the opposite effect because of the formation of weaker Ni-Co bonds. The best Ni matrix strengthening effect and crack brittle fracture improvement were observed when 1 and 3 at.%of W were incorporated into the Ni matrix.Thus,out of the dopants tested in this work,W demonstrated the strongest effect.

    4. Conclusion

    This work demonstrated theoretical simulations by an MD method performed to understand how doping of Ni matrix with Re,Ru,Co,and W affect its lattice trapping at 300 K.We implemented a Ni crack model with randomly distributed Re, Ru, Co, and W, added at the 1 and 3 at.% levels. Out of all additives tested in this work,W addition into the Ni matrix demonstrated the most improved mechanical strength(namely,the elastic constants,the bulk modulus,the shear modulus and Young’s modulus)and stability as well as crack advancement prevention and healing. The crack lattice trapping ranges were small for undoped and doped Ni matrices because of the longrange Ni-Re, Ni-Ru, Ni-Co, and Ni-W interatomic interactions. The comparison of the pair potential well depths obtained by EAM showed that the bonding strengths between the dopant and Ni were in the order of W>Re>Ru>Co. The Ni-Re,Ni-Ru and Ni-W bonds were stronger than the Ni-Ni ones. Out of all the dopants, W demonstrated the strongest bond with the Ni matrix,while Co exhibited the weakest.

    Acknowledgement

    We are grateful to Professor T.Yu and Z.G.Liu for beneficial discussions.

    国产精品一区二区在线观看99 | 国产爱豆传媒在线观看| 久久久国产成人精品二区| 国产精品久久视频播放| 国产亚洲最大av| 26uuu在线亚洲综合色| 亚洲乱码一区二区免费版| 天天躁夜夜躁狠狠久久av| 国产女主播在线喷水免费视频网站 | 久久欧美精品欧美久久欧美| 国产老妇女一区| 在线观看66精品国产| 大香蕉久久网| 麻豆成人av视频| 亚洲性久久影院| 熟妇人妻久久中文字幕3abv| 免费av观看视频| 免费av观看视频| 国产午夜精品论理片| 国产又色又爽无遮挡免| 啦啦啦观看免费观看视频高清| 国产 一区 欧美 日韩| 国产v大片淫在线免费观看| 午夜激情福利司机影院| 国内精品宾馆在线| 国产精品久久久久久av不卡| 最近视频中文字幕2019在线8| 中国国产av一级| 18禁在线播放成人免费| 青春草亚洲视频在线观看| 色综合站精品国产| 有码 亚洲区| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久av| 永久免费av网站大全| 白带黄色成豆腐渣| 欧美人与善性xxx| 麻豆成人av视频| 伊人久久精品亚洲午夜| 女人久久www免费人成看片 | АⅤ资源中文在线天堂| 国产成人91sexporn| 日韩av不卡免费在线播放| 亚洲av日韩在线播放| 一级黄色大片毛片| 我的老师免费观看完整版| 欧美又色又爽又黄视频| 五月伊人婷婷丁香| 国产三级中文精品| 欧美又色又爽又黄视频| 只有这里有精品99| 日韩av在线免费看完整版不卡| 久久精品人妻少妇| 欧美一区二区精品小视频在线| 成年女人看的毛片在线观看| 日本免费在线观看一区| 国产精品综合久久久久久久免费| 日韩av在线免费看完整版不卡| 国产精品福利在线免费观看| 只有这里有精品99| 亚洲成人精品中文字幕电影| 村上凉子中文字幕在线| 村上凉子中文字幕在线| 少妇被粗大猛烈的视频| 亚洲18禁久久av| 在线免费观看的www视频| 高清日韩中文字幕在线| 亚洲精品色激情综合| 亚洲18禁久久av| 久久精品综合一区二区三区| 国产一区亚洲一区在线观看| 日韩三级伦理在线观看| 欧美性猛交黑人性爽| 97在线视频观看| 日本爱情动作片www.在线观看| 国产黄a三级三级三级人| 我要搜黄色片| 亚洲五月天丁香| 1024手机看黄色片| 国产私拍福利视频在线观看| 男人舔奶头视频| 男人舔女人下体高潮全视频| 亚洲av男天堂| 少妇的逼好多水| 亚洲av电影在线观看一区二区三区 | 最近手机中文字幕大全| 免费观看的影片在线观看| 99在线视频只有这里精品首页| 国产精品一区www在线观看| 欧美高清性xxxxhd video| 久久精品久久久久久噜噜老黄 | 亚洲怡红院男人天堂| 国产精品久久久久久精品电影| 97超视频在线观看视频| 中文精品一卡2卡3卡4更新| 乱人视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 成人无遮挡网站| 亚洲成人久久爱视频| 日本黄色片子视频| 国产色婷婷99| 特级一级黄色大片| 亚洲av日韩在线播放| 日本与韩国留学比较| 看非洲黑人一级黄片| 高清日韩中文字幕在线| 国产精品三级大全| 亚洲av熟女| 国产精品嫩草影院av在线观看| 一级av片app| 国产色婷婷99| 国产午夜精品论理片| 99久久九九国产精品国产免费| 身体一侧抽搐| 亚洲精品亚洲一区二区| 91久久精品电影网| 91av网一区二区| av又黄又爽大尺度在线免费看 | 18禁裸乳无遮挡免费网站照片| 亚洲成人久久爱视频| 女的被弄到高潮叫床怎么办| 久久人妻av系列| 日韩欧美在线乱码| 一个人看的www免费观看视频| 日韩av不卡免费在线播放| 久久亚洲精品不卡| 成人漫画全彩无遮挡| 国产高清国产精品国产三级 | 淫秽高清视频在线观看| 男女视频在线观看网站免费| 成人无遮挡网站| 超碰97精品在线观看| 99久久成人亚洲精品观看| 99久久精品一区二区三区| 欧美最新免费一区二区三区| 91午夜精品亚洲一区二区三区| 日韩制服骚丝袜av| 丰满乱子伦码专区| av卡一久久| 日韩欧美精品免费久久| 欧美xxxx性猛交bbbb| 99久国产av精品| 看片在线看免费视频| www.av在线官网国产| 在线a可以看的网站| 日韩av不卡免费在线播放| 日韩中字成人| 久久亚洲精品不卡| 亚洲av福利一区| 精品免费久久久久久久清纯| 一本久久精品| 桃色一区二区三区在线观看| 亚洲久久久久久中文字幕| 夜夜爽夜夜爽视频| 亚洲最大成人中文| 人体艺术视频欧美日本| 久久精品国产自在天天线| 综合色av麻豆| 91精品伊人久久大香线蕉| 亚洲欧美一区二区三区国产| videos熟女内射| 伊人久久精品亚洲午夜| 国产精品久久久久久久电影| 干丝袜人妻中文字幕| 亚洲精品乱码久久久v下载方式| 久久这里有精品视频免费| av天堂中文字幕网| 自拍偷自拍亚洲精品老妇| 亚洲自偷自拍三级| av视频在线观看入口| 99热6这里只有精品| 欧美一级a爱片免费观看看| 99久久九九国产精品国产免费| 亚洲激情五月婷婷啪啪| 国产私拍福利视频在线观看| 国产一区二区亚洲精品在线观看| 丰满少妇做爰视频| 久久精品久久久久久久性| 高清在线视频一区二区三区 | 成人毛片60女人毛片免费| 亚洲国产精品sss在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久综合国产亚洲精品| 成人漫画全彩无遮挡| 久久韩国三级中文字幕| 日韩亚洲欧美综合| 欧美3d第一页| 国产色婷婷99| 成人高潮视频无遮挡免费网站| 欧美精品一区二区大全| 日韩欧美三级三区| 校园人妻丝袜中文字幕| 精品人妻熟女av久视频| videos熟女内射| 亚洲在久久综合| 午夜日本视频在线| 国产精品人妻久久久影院| 两个人视频免费观看高清| 久久99热6这里只有精品| 国产成人精品一,二区| 全区人妻精品视频| 免费观看a级毛片全部| 亚洲国产欧美人成| 国产精品熟女久久久久浪| 午夜福利成人在线免费观看| 国产探花在线观看一区二区| 亚洲av二区三区四区| 91aial.com中文字幕在线观看| 乱人视频在线观看| 韩国av在线不卡| 精品久久久久久久人妻蜜臀av| 亚洲av日韩在线播放| 日韩欧美三级三区| 一区二区三区免费毛片| 午夜福利成人在线免费观看| 麻豆成人av视频| 神马国产精品三级电影在线观看| 国产亚洲91精品色在线| 久久午夜福利片| 亚洲人成网站在线播| 尾随美女入室| 久久精品人妻少妇| 有码 亚洲区| 午夜爱爱视频在线播放| 久久久精品大字幕| 亚洲中文字幕日韩| 最新中文字幕久久久久| 久久99热这里只频精品6学生 | av专区在线播放| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 国语对白做爰xxxⅹ性视频网站| 成人亚洲精品av一区二区| 日韩国内少妇激情av| 91午夜精品亚洲一区二区三区| 亚洲av福利一区| 亚洲av免费高清在线观看| 国产成人精品一,二区| 亚洲av二区三区四区| 2021天堂中文幕一二区在线观| 精华霜和精华液先用哪个| 噜噜噜噜噜久久久久久91| 国产黄色视频一区二区在线观看 | 亚洲欧美成人综合另类久久久 | 97超碰精品成人国产| 成人毛片a级毛片在线播放| 在线免费观看的www视频| 亚洲va在线va天堂va国产| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 中文欧美无线码| 激情 狠狠 欧美| 麻豆精品久久久久久蜜桃| 青春草视频在线免费观看| 国产极品精品免费视频能看的| 97超视频在线观看视频| 大香蕉97超碰在线| 十八禁国产超污无遮挡网站| av福利片在线观看| 亚洲av男天堂| 毛片女人毛片| 欧美97在线视频| 1000部很黄的大片| av又黄又爽大尺度在线免费看 | 国产成人a区在线观看| 最近中文字幕2019免费版| 久久这里只有精品中国| 亚洲高清免费不卡视频| 晚上一个人看的免费电影| 日本三级黄在线观看| 成人午夜精彩视频在线观看| 亚洲电影在线观看av| 最近最新中文字幕免费大全7| 国产亚洲av嫩草精品影院| 99久久人妻综合| 国产精品一区二区在线观看99 | 老司机影院成人| 亚洲人成网站高清观看| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 国产精品久久视频播放| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 久久精品国产亚洲av涩爱| 97人妻精品一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 桃色一区二区三区在线观看| 日韩一区二区视频免费看| 大话2 男鬼变身卡| 黑人高潮一二区| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 亚洲电影在线观看av| 国产成年人精品一区二区| 免费观看的影片在线观看| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 在线免费观看的www视频| 一边摸一边抽搐一进一小说| 国产精品永久免费网站| 天天一区二区日本电影三级| 国产 一区精品| 日本免费a在线| 特大巨黑吊av在线直播| 日本熟妇午夜| 亚洲成人中文字幕在线播放| 欧美成人a在线观看| 亚洲国产精品国产精品| 在线a可以看的网站| 菩萨蛮人人尽说江南好唐韦庄 | 99久久人妻综合| 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 简卡轻食公司| 日日摸夜夜添夜夜添av毛片| 免费看a级黄色片| 日本免费a在线| 老司机福利观看| 亚洲av二区三区四区| 免费电影在线观看免费观看| 日韩亚洲欧美综合| 中文字幕久久专区| 日本五十路高清| 69av精品久久久久久| videos熟女内射| 三级国产精品欧美在线观看| 久久久久久国产a免费观看| 少妇熟女欧美另类| 黄色配什么色好看| 99热网站在线观看| 毛片女人毛片| 久久久a久久爽久久v久久| 不卡视频在线观看欧美| av在线亚洲专区| 晚上一个人看的免费电影| 春色校园在线视频观看| 搡女人真爽免费视频火全软件| 亚洲成色77777| 亚洲av中文字字幕乱码综合| 国产精品.久久久| 国产欧美另类精品又又久久亚洲欧美| 三级毛片av免费| 不卡视频在线观看欧美| 高清日韩中文字幕在线| 国产人妻一区二区三区在| 欧美高清成人免费视频www| 在线观看一区二区三区| 大香蕉97超碰在线| 18+在线观看网站| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 日韩在线高清观看一区二区三区| 国产一区二区在线观看日韩| 毛片女人毛片| 欧美日韩国产亚洲二区| 久久亚洲精品不卡| 亚洲四区av| 黄色配什么色好看| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄 | 一个人看的www免费观看视频| 国产成人精品婷婷| 99热全是精品| 成人亚洲欧美一区二区av| 国产男人的电影天堂91| 美女高潮的动态| 国产av码专区亚洲av| 国产男人的电影天堂91| 久久精品国产99精品国产亚洲性色| 九九在线视频观看精品| 国产黄a三级三级三级人| 婷婷色av中文字幕| 伦理电影大哥的女人| 最近最新中文字幕免费大全7| 国产麻豆成人av免费视频| 久久久久国产网址| 亚洲精品乱久久久久久| 国产中年淑女户外野战色| 免费av观看视频| 久久婷婷人人爽人人干人人爱| 国产淫片久久久久久久久| 伦精品一区二区三区| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 老师上课跳d突然被开到最大视频| 精品人妻偷拍中文字幕| 久久精品久久精品一区二区三区| 老女人水多毛片| 蜜臀久久99精品久久宅男| 亚洲精品影视一区二区三区av| 一级毛片aaaaaa免费看小| 男女下面进入的视频免费午夜| 国产在视频线精品| 久久久欧美国产精品| 美女国产视频在线观看| 国产麻豆成人av免费视频| 国产精品国产高清国产av| 国产一区二区亚洲精品在线观看| 中文字幕免费在线视频6| ponron亚洲| 丝袜美腿在线中文| 国产探花在线观看一区二区| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 九九爱精品视频在线观看| 国产精品1区2区在线观看.| 一边亲一边摸免费视频| 最后的刺客免费高清国语| 欧美3d第一页| 国产成人freesex在线| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 看十八女毛片水多多多| 国产一区二区在线av高清观看| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 欧美zozozo另类| 国产欧美日韩精品一区二区| www日本黄色视频网| 国产精品久久久久久精品电影小说 | 乱系列少妇在线播放| 国产成人freesex在线| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| 亚洲真实伦在线观看| 免费观看的影片在线观看| 伊人久久精品亚洲午夜| 国产高清视频在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 国产免费一级a男人的天堂| 国产精品久久久久久av不卡| 97超碰精品成人国产| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 男女下面进入的视频免费午夜| 一区二区三区免费毛片| 欧美日本视频| av又黄又爽大尺度在线免费看 | 又黄又爽又刺激的免费视频.| 国产精品国产三级专区第一集| 久久久色成人| 成年版毛片免费区| 深爱激情五月婷婷| 久久精品熟女亚洲av麻豆精品 | 高清午夜精品一区二区三区| 我要搜黄色片| 欧美97在线视频| 丰满人妻一区二区三区视频av| 一级av片app| 亚洲精品自拍成人| 欧美成人a在线观看| 国产成人一区二区在线| 少妇的逼好多水| 国产大屁股一区二区在线视频| av国产免费在线观看| 精品人妻熟女av久视频| 日本免费在线观看一区| 免费观看性生交大片5| 国产一级毛片在线| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 精品少妇黑人巨大在线播放 | 久久这里有精品视频免费| 在线观看一区二区三区| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 午夜日本视频在线| 午夜精品在线福利| 一级黄色大片毛片| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 床上黄色一级片| 国产成人精品一,二区| 美女国产视频在线观看| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕 | 欧美性猛交黑人性爽| 联通29元200g的流量卡| 国产精品久久久久久精品电影| 如何舔出高潮| 神马国产精品三级电影在线观看| 精品欧美国产一区二区三| 黄色一级大片看看| av在线天堂中文字幕| 看黄色毛片网站| 一边亲一边摸免费视频| 国产日韩欧美在线精品| 亚洲av.av天堂| 国产乱人偷精品视频| 菩萨蛮人人尽说江南好唐韦庄 | 九草在线视频观看| 国产黄色小视频在线观看| 亚洲成av人片在线播放无| 少妇的逼好多水| 欧美97在线视频| 变态另类丝袜制服| 亚洲人成网站高清观看| 亚洲国产精品专区欧美| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆| 三级国产精品片| 人人妻人人澡欧美一区二区| 少妇熟女欧美另类| 国产高潮美女av| 欧美色视频一区免费| 精品少妇黑人巨大在线播放 | 国产大屁股一区二区在线视频| 亚洲精品久久久久久婷婷小说 | 亚洲欧美精品综合久久99| av在线观看视频网站免费| 久99久视频精品免费| 午夜福利在线观看免费完整高清在| 卡戴珊不雅视频在线播放| 黄色日韩在线| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 男人的好看免费观看在线视频| 国产精品久久久久久久电影| 插阴视频在线观看视频| .国产精品久久| 成人无遮挡网站| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 少妇高潮的动态图| 久久精品久久精品一区二区三区| 日韩,欧美,国产一区二区三区 | 日韩欧美在线乱码| 日韩强制内射视频| 看黄色毛片网站| 国产高清国产精品国产三级 | 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 欧美日韩一区二区视频在线观看视频在线 | 99在线视频只有这里精品首页| 亚洲中文字幕一区二区三区有码在线看| 国产在视频线精品| 国产av码专区亚洲av| 国产在视频线精品| 午夜福利在线观看免费完整高清在| 国产精品熟女久久久久浪| 亚洲中文字幕一区二区三区有码在线看| 老司机影院成人| 在线观看av片永久免费下载| 中文乱码字字幕精品一区二区三区 | 成人综合一区亚洲| 长腿黑丝高跟| 可以在线观看毛片的网站| 又粗又硬又长又爽又黄的视频| 天堂av国产一区二区熟女人妻| 成人特级av手机在线观看| 国产精品人妻久久久久久| 一级毛片久久久久久久久女| 天天一区二区日本电影三级| 国产免费视频播放在线视频 | 国产免费一级a男人的天堂| 亚洲国产色片| 又粗又爽又猛毛片免费看| 久久久久性生活片| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 久久精品国产自在天天线| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 极品教师在线视频| 国产伦精品一区二区三区视频9| 天堂影院成人在线观看| 亚洲自偷自拍三级| 中文字幕av在线有码专区| 深爱激情五月婷婷| 国产精品国产高清国产av| 欧美xxxx黑人xx丫x性爽| 永久网站在线| 在线免费观看不下载黄p国产| 欧美日韩在线观看h| 欧美高清性xxxxhd video| 我的女老师完整版在线观看| 十八禁国产超污无遮挡网站| 国产成人福利小说| 国产淫语在线视频| a级毛片免费高清观看在线播放| 中文资源天堂在线| 女人十人毛片免费观看3o分钟| 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| av在线蜜桃| 乱系列少妇在线播放| 亚洲精品,欧美精品| 国产精品伦人一区二区| 哪个播放器可以免费观看大片| 日本三级黄在线观看| 日韩欧美三级三区| 国产在线男女| av天堂中文字幕网| 六月丁香七月| 亚洲第一区二区三区不卡| 国产美女午夜福利| 国产极品天堂在线| 中文字幕制服av| 日韩欧美三级三区| 国产精品电影一区二区三区| 我要看日韩黄色一级片| 天天一区二区日本电影三级| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版 | 综合色av麻豆| 国产伦一二天堂av在线观看|