• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma*

    2021-11-23 07:28:48AynisaTursun阿依妮薩圖爾蓀MamatAliBake買(mǎi)買(mǎi)提艾力巴克BaisongXie謝柏松YashengNiyazi亞生尼亞孜andAbuduresuliAbudurexiti阿不都熱蘇力阿不都熱西提
    Chinese Physics B 2021年11期
    關(guān)鍵詞:艾力買(mǎi)買(mǎi)提巴克

    Aynisa Tursun(阿依妮薩圖爾蓀) Mamat Ali Bake(買(mǎi)買(mǎi)提艾力巴克) Baisong Xie(謝柏松)Yasheng Niyazi(亞生尼亞孜) and Abuduresuli Abudurexiti(阿不都熱蘇力阿不都熱西提)

    1School of Physics Science and Technology,Xinjiang University,Urumqi 830046,China

    2Key Laboratory of Beam Technology of the Ministry of Education,and College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China

    3Institute of Physics and Electrical Engineering,Kashi University,Kashgar 844009,China

    Keywords: electron acceleration, γ-ray emission, inverse Compton scattering, near-critical-density plasma,2D-QED-PIC simulation

    1. Introduction

    Owing to the rapid development of laser technology,[1,2]ultra-intense (1022W/cm2) and ultrashort (a few femtoseconds) laser pulses can be obtained in the laboratory.[3]Laser intensities in the order of 1023-1025W/cm2are expected to become available in the next few years.[4,5]When an ultrahighintensity laser interacts with a plasma,the electron motion becomes relativistic,[6,7]and quantum electrodynamics (QED)effects such asγ-ray emission[8]and electron-positron pair production become significant.[9,10]Considerable theoretical and numerical[11-13]research on the generation of high-energy electrons and ultrabrightγ-rays has been conducted for applications in medicine,[14]industry,[15]and astrophysics.[16]Many researchers have proposed various schemes for obtaining high-energy electron sources forγ-ray generation, such as laser-driven direct laser acceleration (DLA),[17,18]radiation pressure acceleration,[19]and laser wakefield acceleration(LWFA).[20,21]Among them, LWFA is the most widely studied and thought to be a more straightforwardγ-ray emission mechanism,along with the all-optical mechanism.[22]

    Recent studies have shown that electron beams with energies as high as several GeV can be obtained from laser-plasma interactions using LWFA,[23,24]andγ-photons with energies beyond the GeV regime can be produced by nonlinear Compton scattering as the wakefield-accelerated electron beam interacts with the reflected laser pulse.[25,26]Many researchers have studied effective mechanisms for producingγ-rays with a peak brilliance of 1020-1026photons/s/mm2/mrad2/0.1%BW at MeV to GeV energies using lasers with intensities of 1021-1023W/cm2.[27,28]Zhuet al.[29]recently obtainedγ-rays with a peak brilliance of 1026photons/s/mm2/mrad2/0.1%BW at 1 MeV using a multi-petawatt laser pulse in a two-stage wakefield accelerator. Guet al.[30]proposed a new mechanism for generating brilliantγ-rays using a plasma mirror and obtainedγ-rays with a peak intensity of 0.74 PW and a brilliance of 1024photons/s/mm2/mrad2/0.1%BW at 58 MeV under a laser intensity of 1023W/cm2. In a recent study, we investigated an efficient method of generating high-energyγ-photons using the interaction between a wakefield-accelerated electron beam and a counter-propagating high-intensity laser pulse with a compound target, and obtained two groups ofγ-rays with a small divergence angle.[31]Changet al.[32]proposed a new resonance acceleration scheme for generating relativistic electron bunches and brilliantγ-rays, used a three-dimensional particle-in-cell (PIC) simulation and reportedγ-ray pulses with a peak brilliance of 1025photons/s/mm2/mrad2/0.1%BW(15 MeV) at a laser intensity of 1.9× 1023W/cm2.More recently, Zhanget al.[33]reported nano-micro array thin target for ultra-short (440 as) and ultra-bright[1024photons/s/mm2/mrad2/0.1%BW(15 MeV)]γ-ray emission with high conversion efficiency. These high-energy electrons andγ-rays represent a novel light source with a broad range of applications in the production of high-energy electron-positron pairs,exploring high-energy astrophysics in the laboratory,and performing nuclear physics research.[34,35]

    Fig.1. Schematic diagram of ultrabright γ-ray emission from the interaction of an intense LP laser and a compound target. The targets consist of a uniform NCD hydrogen plasma with a density of ne=nc and an aluminum solid foil with a density of ne=700nc.Blue and orange represent the NCD plasma and solid target,respectively.

    In this study, we investigate the generation of highenergy, ultrabrightγ-rays by the interaction of an intense linearly polarized (LP) laser with a near-critical-density (NCD)plasma using two-dimensional(2D)QED PIC simulations. In the simulations,three target configurations are used to investigate the effects of target shape onγ-ray generation,as shown in Fig. 1. Theγ-photon density, energy, angular distribution,and peak brightness for each target are compared in detail.The results show that when a laser pulse with an intensity of 8.5×1022W/cm2propagates in an NCD plasma, a large amount of electrons are trapped by the self-generated magnetic field and radiation reaction(RR)trapping effects and accelerated to high energy. Consequently,γ-rays are emitted by nonlinear betatron oscillation in the first stage and by nonlinear Compton scattering in the second stage. The accelerated electrons emit GeVγ-photons by inverse Compton scattering when they collide with the reflected laser pulse. The simulation results indicate that target 3 affords better focusing of both the laser field and electron beam compared to targets 1 and 2.Consequently, well-collimatedγ-rays with high energy, high density, and low divergence angle are produced when target 3 is used. The density and cutoff energy of both the accelerated electrons and the emittedγ-rays are much higher than those obtained by other proposed mechanisms[36,37]using the same driving laser. The angular distribution of theγ-rays is within approximatelyθ ≤20°, and the cutoff energies of the accelerated electrons andγ-photons exceed 3 GeV and 2 GeV,respectively. The brilliance of theγ-rays and the conversion efficiency are higher than those reported in Ref. [38], where two counter-propagating intense laser pulses were used. The results demonstrate that it is essential to optimize the shape of the solid target to enhance theγ-ray energy and brilliance and the conversion efficiency.

    2. Theoretical model of γ-ray emission

    When an ultrahigh-intensity laser pulse interacts with a plasma,electrons are simultaneously affected by the RR force and emit high-energyγ-photons. When the laser intensity is relatively high, the RR force becomes non-negligible.[39]In laser-plasma interactions, the relativistic gauge-invariant parameterχedetermines the importance of the nonlinear QED effects and the ratio ofγ-ray emission.[40]In the classical description,the total radiation power of the accelerated electrons is written as[41]

    whereF= dP/dt,Pis the electron momentum,meandeare the mass and charge of the electron, respectively,cis the speed of light in vacuum, andγeis the electron Lorentz factor. The classical description of electron radiation in a strong electromagnetic field overestimates the total emitted power.In the quantum description, the emitted photon energy may not exceed the electron energy, whereas there is no such restriction in the classical description. We introduce the quantum effect functionG(χe), which decreases the electron radiation power,[43]into the classical expression. The quantum effects can be expressed as[42]

    3. Simulation setups

    To test our model, a 2D-PIC simulation was conducted using the EPOCH code,[44]which takes into account of the QED effects via a Monte Carlo algorithm. In our simulation,the simulation box has dimensions of(110×24)μm in thexandydirections, respectively, and is divided into 3300×400 grid cells,with 10 macroparticles in each cell.An LP Gaussian laser pulse with an intensity ofI0=8.5×1022W/cm2enters the simulation box from the left boundary att=0. The corresponding normalized amplitude isa0=eE0/mecω0=250,

    whereE0andω0are the laser electric field strength and laser frequency,respectively. The laser pulse duration isτ=15 fs,the laser wavelength isλ0=1 μm, and the spot size of the laser isr0=5μm in all the simulations. Three target configurations are considered,as shown in Fig.1. For target 1,a flat foil with no channel is attached behind the NCD plasma, as shown in Fig.1(a). Flat and curved foils with an NCD plasma channel are used as targets 2 and 3,as shown in Figs.1(b)and 1(c), respectively. The NCD plasma is a uniform hydrogen plasma with a densityne=nc,and solid aluminum foils with a densityne=700ncare used,whereneis the electron density,andnc=meω20/4πe2is the critical density. The NCD plasma is located betweenx=10μm andx=100μm, and betweeny=?6μm andy=6μm,and the thickness of the aluminum foil is 2μm.Simple outflow and periodic boundary conditions are applied in thexandydirections,respectively.

    4. Simulation results

    Figure 3 shows the density distributions of electrons and photons for each target after laser reflection(t=360 fs). Under the same laser and NCD plasma conditions, the electron and photon density profiles for targets 2 and 3 are completely different from that for target 1. For target 1, because of inefficient focusing by the self-generated magnetic field, a large number of electrons escape the channel center, and thus the electron beam has a large source size, as shown in Fig. 3(a).Consequently,γ-rays with low density and a large source size are produced, as shown in Fig. 3(b). However, for targets 2 and 3,because the self-generated magnetic field affords better focusing, electrons are confined in a small space on the laser propagation axis and produce high-densityγ-rays with a density distribution similar to that of the electrons, as shown in Figs. 3(d) and 3(f). The photon density was approximately 90ncand 120ncfor targets 2 and 3, which are three and four times higher, respectively, than the value of approximately 30ncfor target 1. The results indicate that up and down solid foils(the channel)plays an important role in focusing the laser and generating a magnetic field,which is favorable for obtaining a low-divergence, high-density electron beam andγ-rays.Note that more tightly focused and denserγ-photons are generated when target 3 is used than when target 2 is used. The reason is that target 3 provides better focusing of the laser field as well as the electrons.

    Figure 4 shows the energy spectra of electrons andγphotons for each target configuration att=300 and 360 fs(before and after laser reflection, respectively). In the first stage of the interaction,an intense laser propagates in the NCD plasma. Because of the additional contributions of the selfgenerated magnetic field and RR trapping effect,a large number of electrons are trapped and accelerated to high energy.The cutoff energy of the accelerated electrons att=300 fs is 3 GeV for target 3 but only approximately 1.5 GeV for target 1, as shown in Fig.4(a). Consequently, some low-energyγ-photons are emitted via nonlinear betatron oscillation when target 1 is used,as shown in Fig.4(b). However,theγ-photon cutoff energies for targets 2 and 3 are much higher than that for target 1. This result also indicates that the NCD plasma channel plays a key role in the generation of high-energyγ-rays.In the second stage,the accelerated electrons collide with the counter-propagating reflected laser, and the strong ponderomotive force of the laser changes the electron direction and thus increases the electron Lorentz factorγe. Therefore, the value of the quantum invariant parameterχeis maximized,increasing the probability ofγ-ray emission and theγ-ray energy. In this stage,because nonlinear Compton scattering occurs, the energy of some of the accelerated electrons is decreased, and high-energyγ-photons are emitted, as shown in Fig.4(d).Note that,for target 3,the cutoff energy ofγ-photons is 2.2 GeV,whereas it is only approximately 500 MeV for target 1.

    Fig.2. Distribution of self-generated magnetic field Bz in(x,y)plane for three targets before(t =350 fs,top row)and after(t =360 fs,bottom row)laser reflection. The magnetic field is normalized by B0=meω0/e.

    Fig.3. Distribution of electron(top row)and photon(bottom row)densities in(x,y)plane for each target after laser reflection(t=360 fs). The electron and photon densities are normalized by the critical density nc.

    Fig.4. Energy spectra of electrons[(a)and(c)]and γ-photons[(b)and(d)]for each target before(top row)and after(bottom row)laser reflection.

    Fig. 5. Energy angular distribution of γ-photons for each target after laser reflection (t =360 fs). The color bar shows the photon number (Nγ) on a logarithmic(log10 Nγ)scale with arbitrary units.

    Table 1. γ-ray peak brilliance B(k)(photons/s/mm2/mrad2/0.1%BW)for each target at t=360 fs.

    Figure 5 plots the energy angular distribution ofγphotons for each target configuration after laser reflection(t= 360 fs). Low-energyγ-photons with a large divergence angle (~37°) are generated when target 1 is used,as shown in Fig. 5(a). However, for targets 2 and 3,the divergence angles of theγ-photons are approximately 25.5°and 20.5°, as shown in Figs. 5(b) and 5(c), respectively. The correspondingγ-ray peak brilliance for each target att= 360 fs is given in Table 1. It can be concluded that, for target 1, there are 2×1014and 3.67×1011photons at 100 MeV and 500 MeV, respectively, within a source size of 7.2×4 μm2, which gives a peak brightness of approximately 1×1024photons/s/mm2/mrad2/0.1%BW at 100 MeV and 2×1021photons/s/mm2/mrad2/0.1%BW at 500 MeV. By contrast, for target 2, the peak brightness of theγ-rays at 100 MeV (source size is 1.63×2.05 μm2) is 1.6×1026photons/s/mm2/mrad2/0.1%BW, and for target 3,it is 4.6×1026photons/s/mm2/mrad2/0.1%BW(source size is 1.37×1.45 μm2), which is two orders of magnitude larger than that for target 1. The well-collimated, high-density, and ultrabrightγ-rays obtained using our scheme may be suitable for the generation of energetic positrons and for laboratory astrophysics research.

    5. Discussion

    The fraction of energy coupled to electrons and the relaxation time are related to the laser and plasma parameters, as discussed in previous papers.[45-47]Therefore,in this section,we discuss in detail the effects of plasma channel length, target curvature radius,laser polarization,laser intensity,and the RR force on the electron acceleration andγ-ray emission.

    5.1. Effect of plasma channel length

    We study the effects of NCD plasma channel length on the electron acceleration andγ-ray emission for target 3 with a fixed target curvature radius ofr=6μm. To ensure that the laser is reflected from the foil and collides with the accelerated electrons, we consider the following times and channel lengths:t=300 fs forL=80μm,t=330 fs forL=90μm,t=360 fs forL=100 μm,t=390 fs forL=110 μm, andt=420 fs forL=120μm. The simulation results show that for short channels, for example,L=80 μm andL=90 μm,trapped electrons are accelerated to lower energies because of the short acceleration distance, and thus lower-energy electrons andγ-photons are produced,as shown in Figs.6(a)and 6(b). However, for long channels, for example,L=110 μm andL=120μm,the travel time is longer,and most of the laser energy is depleted before laser reflection(the laser energy after reflection is approximately 100 J, which is one-tenth the initial laser energy). Under these conditions,the photons also have lower energies than those produced atL=100 μm. As shown in Fig. 9(b), the electron energy conversion efficiency increased linearly untilt=300 fs,remained constant for 60 fs,and then decreased. This result indicates that a long channel(i.e.,a long travel time)is not favorable for electron acceleration. When a channel length ofL=100μm is used,the accelerated electron cutoff energy is as high as 3 GeV,and the correspondingγ-photon energy exceeds that obtained using the other channel lengths. Figures 6(c) and 6(d) show that the peak brightness ofγ-photons and the conversion efficiency of laser energy to electrons andγ-photons are higher than those at the other channel lengths. This result shows that to obtain high-energyγ-rays,it is very important to choose an appropriate channel length.

    Fig.6.Energy spectra of(a)electrons and(b)γ-photons,(c)γ-ray peak brilliance(photons/s/mm2/mrad2/0.1%BW),and(d)energy conversion efficiency of electrons and γ-photons for different plasma channel lengths.

    Fig.7.Energy spectra of(a)electrons and(b)γ-photons,(c)γ-ray peak brilliance(photons/s/mm2/mrad2/0.1%BW),and(d)energy conversion efficiency of electrons and γ-photons for different target curvature radii after laser reflection(t=360 fs).

    Fig. 8. Energy angular distribution of γ-photons for different foil curvature radii after laser reflection (t =360 fs). The color bar shows the photon number(Nγ)on a logarithmic(log10 Nγ)scale with arbitrary units.

    5.2. Effect of target curvature radius

    The effects of target curvature radius on the electron acceleration andγ-ray emission are also investigated for target 3 with a fixed channel length ofL=100μm. The simulation results show that when the radius of curvature of the target is equal to or smaller than the laser spot size,r0=5 μm, the number of trapped electrons is limited;thus,a relatively small number of electrons interact with the reflected laser,and thus the electron and photon energies are low,as shown in Figs.7(a)and 7(b). Figures 7(c)and 7(d)show that the peak brightness of theγ-rays and the energy conversion efficiency decrease with increasing curvature radius. The primary reason is that the laser field is less focused at a relatively large curvature radius, which results in a largeγ-ray divergence. In addition,the divergence angle ofγ-photons is also relatively wide at a small curvature radius, as shown in Fig. 8(a). Atr=6 μm,more electrons are trapped in the channel and they are accelerated to higher energy than in the other cases. Consequently,γ-photons with higher energy and a smaller divergence angle are emitted. For this optimal radius, the electron and photon cutoff energies are 3 GeV and 2.2 GeV, respectively, and the divergence angle of theγ-rays is approximately 20.5°, as shown in Fig.8(b). The results show that the maximum electron and photon energies both decrease significantly with increasing radius of curvature. From these simulation results,we can conclude that large and small curvature radii decrease the focusing of the laser field and the trapping of electrons in the channel,and ultimately decrease the maximum energy and increase theγ-ray divergences angle.For both simulations and experiments,it is crucial to select a target with an appropriate curvature radius to generate high-qualityγ-rays.

    Fig.9. Energy spectra of(a)electrons and γ-photons for LP and CP lasers at t=360 fs,(b)time evolution of energy conversion efficiency for LP and CP lasers at t=360 fs.

    5.3. Effect of laser polarization

    5.4. Effect of laser intensity

    It is essential to investigate the effect of laser intensity on ultrabrightγ-ray emission from laser-plasma interaction.Using another simulation, we investigated the effect of laser intensity using the optimal laser (the LP laser) and plasma parameters and the results are summarized in the Table 2.The simulation results show that the electron andγ-ray energies increase with increasing laser intensitya0,as shown in Figs.10(a)and 10(b).The reason is that the higher laser intensity produces more energetic electrons owing to the combined effects of the stronger acceleration field, self-generated magnetic field, and RR trapping effect, ultimately strengthening the emission of well-collimatedγ-rays,as shown in Fig.10(c).Figure 10(d)shows the energy conversion efficiencies of electrons andγ-photons as a function of laser amplitudea0for the optimal laser and plasma parameters. The energy conversion efficiency of electrons increased linearly up toa0=150 and then increased more steeply witha0.The conversion efficiency to photons increased rapidly from a few percent to 26%, and the conversion efficiencies of electrons andγ-photons were comparable at approximatelya0=300 (see Table 2). As the laser intensity increased, photons absorbed more energy than electrons,as shown in Fig.10(d).

    5.5. Effect of radiation reaction

    For comparison, we also performed additional simulations without the RR effect using the optimal target parameters for the LP laser and the results are also summarized in the Table 2. The simulation results indicated that without the RR trapping effect,the strong ponderomotive force of the intense laser tends to push electrons from the high-intensity region.Consequently,few electrons are trapped in the channel center,and they diverge in the transverse direction at the acceleration stage, as shown in Figs.11(a)and 11(b). However, when the RR effect is considered,the electrons in the NCD plasma experience a strong RR force due to radiating photons. When the RR force becomes large enough to compensate for the expelling ponderomotive force of the laser, the RR causes electrons to be trapped inside the laser instead of removed by ponderomotive pressure.[48]Consequently,electrons gradually accumulate in the high-intensity region (channel center) and form a high-density electron bunch, as shown in Figs.11(a1)and 11(b1). This electron bunch then co-propagates with the laser pulse and is accelerated to high energy in the first stage;thus,it emits more high-energy,well-collimatedγ-photons in the first stage, as shown in Figs. 11(c1) and 11(d1). We see from this figure that the photon density exceeds 50ncwhen the RR is considered,which is much higher than that without the RR, as shown in Figs. 11(c) and 11(d). In the second stage of the interaction,this well-collimated electron beam counterpropagates with the reflected laser pulse, and theγ-ray emission is enhanced by inverse Compton scattering,as discussed in Section 4.

    Fig.10. Energy spectra of(a)electrons and(b)γ-photons at t =360 fs. (c)Angular distribution of γ-photons at laser intensities of a0=50,100,150,200,250,and 300 at t=360 fs. (d)Energy conversion efficiencies of electrons and γ-photons at t=360 fs.

    Fig.11. Distribution of electrons at t =250 fs[(a)and(a1)]and t =350 fs[(b)and(b1)]and of γ-photons at t =250 fs[(c)and(c1)]and t =350 fs[(d)and(d1)]without(top row)and with RR effects for the same laser and target parameters(target 3). Electron and γ-photon densities are normalized by the critical density nc.

    Table 2. The Ne and Nγ are the number of electrons and γ-photons with energy of 1 GeV,Ee and Eγ are the cutoff energies of electrons and γ-photons,ηe and ηγ are the laser energy conversion efficiencies to electrons and γ-photons in the cases of laser intensities from a0=50 to a0=300(for LP laser with RR),CP laser(for a0=250 and with RR),and without RR(for LP laser and a0=250)at t=360 fs for target 3. The channel length and curvature radius are fixed to their optimal values.

    6. Summary

    An efficient scheme for the generation of ultrabrightγrays from the interaction of an intense laser pulse with an NCD plasma was studied by using a 2D-PIC simulation. When the intense laser propagates in the NCD plasma, some electrons are trapped in the channel by the self-generated magnetic field and the RR trapping effect and are accelerated to energies of several GeV in the first stage. High-energy, high-density ultrabrightγ-photons are emitted by nonlinear Compton scattering as the accelerated electrons collide with the reflected laser pulse in the second stage. The effects of target shape on the generation of brightγ-rays are investigated using three target configurations. Simulation results showed that the presence of a channel and the use of a curved foil target significantly affect the generation of low-divergence, high-energyγ-rays when targets 2 and 3 are used. For target 3, the beam quality of the accelerated electrons is improved, and the density ofγ-photons is 4.5 and 1.5 times higher than those for targets 1 and 2, respectively. The peakγ-ray brightness is 4.6×1026photons/s/mm2/mrad2/0.1%BW at 100 MeV. Furthermore,the optimal plasma channel length and curvature radius of target 3 for efficientγ-ray emission were also analyzed.The results indicate that the optimal channel length and curvature radius of target 3 areL=100μm andr=6μm,respectively.Finally,we investigated the effects of the laser polarization,laser intensity,and RR force onγ-ray emission. A comparison of LP and CP lasers revealed that the laser polarization strongly affects the electron acceleration and the generation of brightγ-rays. With increasing laser intensity, many electrons in the NCD plasma are trapped in the strong laser field region owing to the strong RR trapping effect and form an ultradense electron bunch. As a result, high-density ultrabrilliant GeVγ-rays can be obtained via Compton scattering.

    Acknowledgment

    The authors are particularly grateful to CFSA at the University of Warwick for allowing us to use the EPOCH code (developed under UK EPSRC Grants (Grant Nos.EP/G054940/1,EP/G055165/1,and EP/G056803/1)).

    猜你喜歡
    艾力買(mǎi)買(mǎi)提巴克
    《天山牧人家》
    《黑馬》(油畫(huà))
    第六章 對(duì)人的熱愛(ài)
    智斗雙面婆婆
    婦女生活(2021年8期)2021-08-26 09:00:26
    巴克的掌控
    最美可麗餅
    艾力江·買(mǎi)買(mǎi)提國(guó)畫(huà)作品
    五千個(gè)買(mǎi)買(mǎi)提
    專心的小瑪妮雅
    亚洲av欧美aⅴ国产| 他把我摸到了高潮在线观看 | 国产精品久久久久久精品古装| 精品久久久精品久久久| 在线观看www视频免费| 午夜激情av网站| 国产精品久久久久久精品电影小说| 亚洲成人手机| 欧美乱码精品一区二区三区| 啦啦啦在线免费观看视频4| 法律面前人人平等表现在哪些方面| 国产精品亚洲av一区麻豆| 精品久久蜜臀av无| 国产亚洲午夜精品一区二区久久| 成人18禁高潮啪啪吃奶动态图| 91九色精品人成在线观看| 999久久久国产精品视频| 深夜精品福利| 免费观看a级毛片全部| av天堂久久9| 成人永久免费在线观看视频 | 大片电影免费在线观看免费| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 人人妻人人澡人人爽人人夜夜| 成年人黄色毛片网站| 久久ye,这里只有精品| 亚洲色图av天堂| 国产日韩欧美在线精品| 一夜夜www| av片东京热男人的天堂| 人人妻人人爽人人添夜夜欢视频| 欧美激情高清一区二区三区| 亚洲国产av影院在线观看| 免费在线观看日本一区| 老汉色∧v一级毛片| 亚洲视频免费观看视频| 日韩大码丰满熟妇| 两个人看的免费小视频| 国产日韩欧美视频二区| h视频一区二区三区| 久久精品国产亚洲av高清一级| 免费不卡黄色视频| 色播在线永久视频| tube8黄色片| 中文字幕人妻丝袜制服| 欧美成人免费av一区二区三区 | 欧美性长视频在线观看| 国产又爽黄色视频| 一级,二级,三级黄色视频| 熟女少妇亚洲综合色aaa.| 亚洲va日本ⅴa欧美va伊人久久| 国产日韩欧美亚洲二区| 亚洲av第一区精品v没综合| 成人国产av品久久久| 国产午夜精品久久久久久| 日本av免费视频播放| 国产在线精品亚洲第一网站| 999久久久精品免费观看国产| 男女床上黄色一级片免费看| 成年人黄色毛片网站| 国产成人av激情在线播放| 国产精品亚洲一级av第二区| 久久天堂一区二区三区四区| 久9热在线精品视频| 精品国产乱子伦一区二区三区| 一区二区三区激情视频| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 成人精品一区二区免费| 亚洲第一av免费看| 18禁美女被吸乳视频| 国产精品亚洲av一区麻豆| 欧美 亚洲 国产 日韩一| 日韩成人在线观看一区二区三区| 男女下面插进去视频免费观看| 777米奇影视久久| 亚洲va日本ⅴa欧美va伊人久久| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲国产一区二区在线观看 | 最新美女视频免费是黄的| 69精品国产乱码久久久| 久久久久国内视频| 免费人妻精品一区二区三区视频| 久久久久国内视频| 国产精品亚洲av一区麻豆| 国产精品 欧美亚洲| xxxhd国产人妻xxx| 超碰成人久久| 丰满饥渴人妻一区二区三| 自线自在国产av| 国产真人三级小视频在线观看| 亚洲精品美女久久久久99蜜臀| 人人妻人人澡人人爽人人夜夜| 在线观看免费日韩欧美大片| 日本wwww免费看| 亚洲av片天天在线观看| 日韩成人在线观看一区二区三区| 久久久久国内视频| 精品卡一卡二卡四卡免费| 免费黄频网站在线观看国产| 51午夜福利影视在线观看| 亚洲国产欧美在线一区| 久久国产精品影院| 国产欧美日韩精品亚洲av| 99香蕉大伊视频| 99精品在免费线老司机午夜| 亚洲成人免费av在线播放| 久久人妻熟女aⅴ| 午夜激情久久久久久久| 变态另类成人亚洲欧美熟女 | 99热网站在线观看| 老司机深夜福利视频在线观看| 日本欧美视频一区| 男女边摸边吃奶| 国产日韩一区二区三区精品不卡| 91字幕亚洲| 亚洲性夜色夜夜综合| 老司机福利观看| 国产精品一区二区精品视频观看| 精品国产一区二区三区四区第35| 免费人妻精品一区二区三区视频| 亚洲午夜理论影院| 精品人妻在线不人妻| 国产成人影院久久av| 天堂8中文在线网| 久久久久久久大尺度免费视频| 性高湖久久久久久久久免费观看| 老司机福利观看| 国产视频一区二区在线看| 天堂动漫精品| 桃花免费在线播放| 成年版毛片免费区| 91成年电影在线观看| 成人国产av品久久久| cao死你这个sao货| 天堂8中文在线网| 久久人人97超碰香蕉20202| 免费观看人在逋| 亚洲avbb在线观看| 色老头精品视频在线观看| 九色亚洲精品在线播放| 在线亚洲精品国产二区图片欧美| 亚洲成人免费av在线播放| 日韩大码丰满熟妇| 蜜桃国产av成人99| 国产精品国产av在线观看| 久久精品国产亚洲av高清一级| 国产成人av教育| 黄色怎么调成土黄色| 12—13女人毛片做爰片一| 啦啦啦 在线观看视频| 久久久国产成人免费| 免费一级毛片在线播放高清视频 | 丁香欧美五月| 少妇裸体淫交视频免费看高清 | 一本—道久久a久久精品蜜桃钙片| 色视频在线一区二区三区| 亚洲精品成人av观看孕妇| 午夜福利欧美成人| 成年人免费黄色播放视频| 男人操女人黄网站| 欧美国产精品一级二级三级| 免费在线观看视频国产中文字幕亚洲| www.自偷自拍.com| 亚洲精品美女久久av网站| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| av不卡在线播放| 亚洲伊人色综图| 日本黄色日本黄色录像| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看| kizo精华| 国产精品亚洲av一区麻豆| 亚洲五月色婷婷综合| 女性生殖器流出的白浆| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说 | 999久久久国产精品视频| 日本a在线网址| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲av一区麻豆| 1024视频免费在线观看| 色综合欧美亚洲国产小说| 精品少妇内射三级| 国产精品国产高清国产av | 女性被躁到高潮视频| 老熟女久久久| 国产不卡一卡二| 在线天堂中文资源库| 亚洲精品中文字幕一二三四区 | 亚洲专区中文字幕在线| 久久久水蜜桃国产精品网| 中文欧美无线码| 久久99热这里只频精品6学生| 午夜两性在线视频| 一区福利在线观看| 19禁男女啪啪无遮挡网站| 男人舔女人的私密视频| 亚洲久久久国产精品| 肉色欧美久久久久久久蜜桃| 女警被强在线播放| av国产精品久久久久影院| 国产精品久久久久久精品古装| 99精品欧美一区二区三区四区| 91国产中文字幕| 国产97色在线日韩免费| 日韩免费高清中文字幕av| 国产日韩一区二区三区精品不卡| 国产老妇伦熟女老妇高清| 韩国精品一区二区三区| 少妇被粗大的猛进出69影院| 亚洲性夜色夜夜综合| aaaaa片日本免费| 美国免费a级毛片| 久久精品国产a三级三级三级| 精品乱码久久久久久99久播| 十八禁人妻一区二区| svipshipincom国产片| 777久久人妻少妇嫩草av网站| 十八禁高潮呻吟视频| 露出奶头的视频| 日本vs欧美在线观看视频| 咕卡用的链子| www.自偷自拍.com| 天天添夜夜摸| 亚洲国产av影院在线观看| 天天躁日日躁夜夜躁夜夜| 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久小说| 97人妻天天添夜夜摸| 国产在线免费精品| 国产一区二区 视频在线| 日韩成人在线观看一区二区三区| 国产欧美日韩一区二区精品| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 美女午夜性视频免费| 美女主播在线视频| 777久久人妻少妇嫩草av网站| 露出奶头的视频| 久久影院123| 国产在线观看jvid| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸| 久久热在线av| 狠狠精品人妻久久久久久综合| 免费高清在线观看日韩| 一本色道久久久久久精品综合| 精品久久久精品久久久| 夜夜夜夜夜久久久久| 亚洲色图综合在线观看| 制服人妻中文乱码| 91九色精品人成在线观看| 一进一出好大好爽视频| 国产精品成人在线| 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 精品少妇黑人巨大在线播放| 中文欧美无线码| 亚洲成人手机| 丁香六月天网| 亚洲av日韩在线播放| 精品一区二区三区四区五区乱码| 大片免费播放器 马上看| av天堂在线播放| 日韩欧美免费精品| 精品久久蜜臀av无| 手机成人av网站| 热99久久久久精品小说推荐| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 国产精品亚洲av一区麻豆| 黄色视频在线播放观看不卡| 亚洲视频免费观看视频| 香蕉国产在线看| 亚洲午夜理论影院| av欧美777| 桃花免费在线播放| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 五月天丁香电影| 亚洲性夜色夜夜综合| 久久99热这里只频精品6学生| 考比视频在线观看| 国产精品久久电影中文字幕 | 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 啦啦啦免费观看视频1| 精品国产一区二区久久| 久久久久久久大尺度免费视频| 汤姆久久久久久久影院中文字幕| 国产精品一区二区精品视频观看| 欧美在线一区亚洲| 下体分泌物呈黄色| 母亲3免费完整高清在线观看| 在线观看舔阴道视频| 亚洲精品国产精品久久久不卡| 国产日韩一区二区三区精品不卡| 亚洲精品久久成人aⅴ小说| 久久久久视频综合| 免费少妇av软件| e午夜精品久久久久久久| 老司机靠b影院| 免费看十八禁软件| 曰老女人黄片| 天天操日日干夜夜撸| 午夜福利影视在线免费观看| 天天添夜夜摸| 美国免费a级毛片| 国产成人精品在线电影| 国产99久久九九免费精品| 蜜桃在线观看..| 国产精品 欧美亚洲| 日韩 欧美 亚洲 中文字幕| 亚洲人成伊人成综合网2020| 日本五十路高清| 一区二区三区精品91| 少妇 在线观看| 在线看a的网站| 一本久久精品| 久久人妻熟女aⅴ| 搡老熟女国产l中国老女人| 国产午夜精品久久久久久| 国产激情久久老熟女| 丁香六月天网| 久久久国产成人免费| 成年人午夜在线观看视频| 免费少妇av软件| 日韩欧美国产一区二区入口| 黄频高清免费视频| 美女扒开内裤让男人捅视频| 免费黄频网站在线观看国产| 国产熟女午夜一区二区三区| 超碰成人久久| 成人免费观看视频高清| 欧美另类亚洲清纯唯美| 大型黄色视频在线免费观看| 麻豆av在线久日| 亚洲国产欧美网| 精品人妻1区二区| 欧美成狂野欧美在线观看| www日本在线高清视频| 久久天堂一区二区三区四区| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 在线观看人妻少妇| 大香蕉久久成人网| 精品少妇内射三级| avwww免费| 99riav亚洲国产免费| 亚洲成人手机| 国产欧美日韩一区二区三| 老司机午夜十八禁免费视频| 亚洲一区中文字幕在线| 亚洲精品粉嫩美女一区| 亚洲精品国产一区二区精华液| 欧美 日韩 精品 国产| 中文字幕人妻丝袜制服| 成人三级做爰电影| 精品福利观看| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 国产精品 国内视频| 亚洲av片天天在线观看| 亚洲第一青青草原| 最新在线观看一区二区三区| 国产深夜福利视频在线观看| 国产成人一区二区三区免费视频网站| 国产亚洲精品第一综合不卡| 在线av久久热| avwww免费| 夫妻午夜视频| 国产不卡av网站在线观看| 夫妻午夜视频| 一本一本久久a久久精品综合妖精| 黄片播放在线免费| 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| 18禁国产床啪视频网站| 天堂8中文在线网| 亚洲精品美女久久av网站| 丁香六月欧美| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 狠狠婷婷综合久久久久久88av| 亚洲av成人一区二区三| 亚洲精品中文字幕一二三四区 | 亚洲av日韩精品久久久久久密| 精品少妇久久久久久888优播| 一本一本久久a久久精品综合妖精| 午夜免费鲁丝| 精品久久久久久久毛片微露脸| 黑人操中国人逼视频| 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 久久精品成人免费网站| 久久婷婷成人综合色麻豆| 国产熟女午夜一区二区三区| 国产在线一区二区三区精| 操美女的视频在线观看| 天天影视国产精品| 国产成人啪精品午夜网站| 另类亚洲欧美激情| 脱女人内裤的视频| 露出奶头的视频| 又黄又粗又硬又大视频| 久久免费观看电影| 欧美亚洲日本最大视频资源| 国产精品美女特级片免费视频播放器 | 人人澡人人妻人| 欧美激情 高清一区二区三区| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 99国产精品一区二区三区| 电影成人av| 五月天丁香电影| 午夜福利在线观看吧| 另类精品久久| 国产成人一区二区三区免费视频网站| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av第一区精品v没综合| 美女国产高潮福利片在线看| 嫁个100分男人电影在线观看| 12—13女人毛片做爰片一| 国产精品秋霞免费鲁丝片| 少妇精品久久久久久久| 免费av中文字幕在线| 国产欧美日韩一区二区三| 午夜免费鲁丝| 亚洲九九香蕉| 美女国产高潮福利片在线看| 桃红色精品国产亚洲av| 18禁观看日本| 亚洲成国产人片在线观看| 99香蕉大伊视频| 久久久欧美国产精品| 日韩中文字幕视频在线看片| 涩涩av久久男人的天堂| 三级毛片av免费| 不卡一级毛片| 香蕉国产在线看| 亚洲精品在线美女| 在线观看免费日韩欧美大片| 天堂俺去俺来也www色官网| 高清毛片免费观看视频网站 | 18禁国产床啪视频网站| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 一级黄色大片毛片| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| 一二三四在线观看免费中文在| 啪啪无遮挡十八禁网站| 美女福利国产在线| 国产一区二区三区在线臀色熟女 | 久久久久视频综合| 国产又爽黄色视频| 国产亚洲欧美精品永久| 午夜福利欧美成人| 午夜久久久在线观看| 免费少妇av软件| 国产精品 欧美亚洲| 一进一出好大好爽视频| 91大片在线观看| 久久精品aⅴ一区二区三区四区| 精品久久久久久电影网| av线在线观看网站| 最新在线观看一区二区三区| 在线观看一区二区三区激情| 91麻豆av在线| 人妻 亚洲 视频| 欧美大码av| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久| 另类亚洲欧美激情| 国产成人精品久久二区二区91| 757午夜福利合集在线观看| 亚洲国产精品一区二区三区在线| 精品久久久精品久久久| 精品久久久久久久毛片微露脸| 午夜91福利影院| 久久精品人人爽人人爽视色| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| 国产精品熟女久久久久浪| 亚洲av欧美aⅴ国产| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 国产精品久久久久久精品电影小说| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 肉色欧美久久久久久久蜜桃| 香蕉久久夜色| 久久中文字幕一级| 中文字幕精品免费在线观看视频| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 精品国内亚洲2022精品成人 | 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 欧美日韩精品网址| 男女边摸边吃奶| 老熟妇乱子伦视频在线观看| 18禁美女被吸乳视频| 国产在视频线精品| 黑丝袜美女国产一区| 在线观看免费高清a一片| 亚洲熟妇熟女久久| 国精品久久久久久国模美| 老汉色av国产亚洲站长工具| 人人妻人人添人人爽欧美一区卜| 99精品欧美一区二区三区四区| 亚洲精品久久午夜乱码| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 国产1区2区3区精品| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 日韩欧美免费精品| 欧美精品啪啪一区二区三区| 精品福利永久在线观看| 777久久人妻少妇嫩草av网站| 交换朋友夫妻互换小说| 精品一区二区三区视频在线观看免费 | 757午夜福利合集在线观看| 成人黄色视频免费在线看| 免费黄频网站在线观看国产| 黄色a级毛片大全视频| 男女之事视频高清在线观看| 免费在线观看影片大全网站| 色综合欧美亚洲国产小说| 国产精品二区激情视频| 老司机深夜福利视频在线观看| 欧美精品一区二区免费开放| 啦啦啦免费观看视频1| 国产精品电影一区二区三区 | 久久久久精品国产欧美久久久| 日韩视频一区二区在线观看| 亚洲精品成人av观看孕妇| 极品人妻少妇av视频| 宅男免费午夜| 欧美日韩国产mv在线观看视频| av超薄肉色丝袜交足视频| 999久久久国产精品视频| 成人18禁在线播放| 18禁国产床啪视频网站| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 久久精品亚洲av国产电影网| 巨乳人妻的诱惑在线观看| 久久热在线av| 在线看a的网站| 亚洲 国产 在线| 午夜成年电影在线免费观看| 成人亚洲精品一区在线观看| 五月天丁香电影| 黄色片一级片一级黄色片| 亚洲视频免费观看视频| 久久精品国产综合久久久| 亚洲精品自拍成人| 精品人妻1区二区| 淫妇啪啪啪对白视频| 日本a在线网址| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 51午夜福利影视在线观看| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 五月开心婷婷网| 亚洲欧美激情在线| 人妻一区二区av| av不卡在线播放| 99香蕉大伊视频| 欧美午夜高清在线| 国产亚洲精品一区二区www | 国产成人免费无遮挡视频| 免费看十八禁软件| 少妇精品久久久久久久| 久久 成人 亚洲| 嫁个100分男人电影在线观看| 日本欧美视频一区| 精品少妇内射三级| 国产色视频综合| 在线观看免费视频网站a站| 亚洲国产欧美网| 后天国语完整版免费观看| 日韩人妻精品一区2区三区| 悠悠久久av| 久久ye,这里只有精品| 91av网站免费观看| 久久久久久久国产电影| 最新美女视频免费是黄的| 国产成人精品无人区| www.自偷自拍.com| 淫妇啪啪啪对白视频| 日韩人妻精品一区2区三区|