• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber*

    2021-11-23 07:32:22XuCheng程旭XuZhou周旭ChenHuang黃琛CanLiu劉燦ChaojieMa馬超杰HaoHong洪浩WentaoYu于文韜KaihuiLiu劉開輝andZhongfanLiu劉忠范
    Chinese Physics B 2021年11期

    Xu Cheng(程旭) Xu Zhou(周旭) Chen Huang(黃琛) Can Liu(劉燦) Chaojie Ma(馬超杰)Hao Hong(洪浩) Wentao Yu(于文韜) Kaihui Liu(劉開輝) and Zhongfan Liu(劉忠范)

    1State Key Laboratory for Mesoscopic Physics,Frontiers Science Center for Nano-optoelectronics,School of Physics,Peking University,Beijing 100871,China

    2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,

    School of Physics and Telecommunication Engineering,South China Normal University,Guangzhou 510006,China

    3Beijing Graphene Institute(BGI),Beijing 100095,China

    4International Centre for Quantum Materials,Collaborative Innovation Center of Quantum Matter,Beijing 100871,China

    5Center for Nanochemistry,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China

    Keywords: graphene,photonic crystal fiber,temperature sensor,high sensitivity,Fermi level

    Optical fiber,as one of the most remarkable waveguides,possesses many intrinsic excellent features such as ultralow transmission loss, perfect single-mode transmission ability,anti-electromagnetic interference capacity and the compatibility for complex environments.[1-4]These characteristics have made it an attractive platform for all-fiber temperature sensors,which are widely used in applications such as fire monitoring, temperature distribution of engines, and magnetic resonance imaging.[5-7]Traditional optical fiber temperature sensors are mainly based on fiber gratings or interferometers, in which the environment temperature change leads to the variation of the grating pitch or the optical path difference in interferometers, and results in the change of the detecting signal.However,these fiber temperature sensors suffer from complicated structural design and wavelength resolved measurement system.[8-10]To break through this dilemma, some strategies have been developed, including combining optical fiber with functional thermo-sensitive materials.[11-13]

    Originating from the atom-scale hexagonal lattice structure and unique Dirac band, graphene has exhibited exceptional electrical,optical and thermal properties.[14-23]Herein,the tunable light absorption ability under different environment temperatures endows graphene with the potential to sense temperature via simple sensor construction and direct power detecting system.[24-27]Considering atomic thickness of graphene and light-matter interaction enhancement capacity of optical fiber, it is mutually beneficial to integrate both for all-fiber temperature sensors. In the current manufacture technologies,side-polished and tapered optical fibers are most commonly used platforms to combine with graphene due to the evanescent wave coupling. However, these temperature sensors based on transfer techniques conventionally suffer from the distortion of the propagation mode or short interaction length with relatively low sensitivity,[28-33]which limit their practical applications. Besides, the influences of the Fermi level(EF)variation on light absorbance of graphene and the consequent sensor performance are still unclear,which may be a key point to further improve the sensitivity of the temperature sensors.[34]

    Here, we propose a highly sensitive temperature sensor based on graphene photonic crystal fiber(Gr-PCF)(Fig.1(a)),in which the transmission mode is kept intact and the intensity of the transmitted light changes with temperature. Technically, the Gr-PCF can be massively fabricated by direct chemical vapor deposition method,[35]which endows it with the great potential in the practical application as a temperature sensor. This all-fiber temperature sensor theoretically exhibits a tunable sensitivity by modulating grapheneEF,and the highest sensitivity can reach~3.34×10?3dB/(cm·°C) withEF=0.435 eV under 1550 nm incident photon (~0.8 eV),dramatically enhanced compared with that at charge neutral point. Through optimizing the PCF structure, the sensitivity can be further enhanced by 10 times to 0.036 dB/(cm·°C).Our results provide a promising new way for high-performance allfiber temperature sensors based on Gr-PCF.

    Fig. 1. Schematic illustration of Gr-PCF temperature sensor. (a) The configuration of Gr-PCF temperature sensor,in which the change of environment temperature can be monitored by the change of output light power. (b)Schematic of Gr-PCF cross-section,where graphene film is fully covered on the inner surface of air holes in PCF cladding(the hole diameter Φ and pitch Λ are both at micron scale).

    In the as-designed Gr-PCF temperature sensor, a graphene film is attached tightly on the hole surface in PCF,where the PCF structure is selected according to the commercial one based on the total internal reflection theory for the practical application potential. In the cross-section of Gr-PCF,six circles of air holes are arranged periodically in the PCF cladding with the hole diameter(Φ)of 2.22μm and pitch(Λ)of 5.4μm(Fig.1(b),3 circles of air holes just for schematic diagram). Besides,the diameters of the solid core and the whole optical fiber are~8.6 and~125 μm, respectively. The selected PCF structure guarantees the endless single-mode property and low insertion loss with commercial single-mode fiber at the operating wavelength near 1550 nm.[36]The characterizations of the light distribution and transmission attenuation in the Gr-PCF at different temperatures are obtained by full-vector finite element simulation method.[37-40]As shown in the electric field distribution of the fundamental mode in Gr-PCF and the bare fiber, the addition of atomic thickness graphene film does not distort the propagation mode, which indicates the perfect integration ability of graphene and photonic crystal fiber (Figs. S1(a) and S1(b)). The propagating light in this fiber can continuously interact with the graphene film along the axis of the fiber via the evanescent wave coupling(Fig.S1(c)),which leads to the strong light-matter interaction.

    The mechanism of this Gr-PCF temperature sensor is directly related to the Fermi-Dirac distribution change of the electrons in graphene with temperature at a givenEFsuch as the charge neutral point(Fig.2(a)). At the temperature of 0 K,the electrons are entirely distributed underEF(Fig. 2(a), left panel). Then with the temperature arising (T>0 K), some electrons possess larger kinetic energy and occupy higher energy levels aboveEF[41](Fig. 2(a), right panel). Hence, the temperature change contributes to the electron redistribution in the Dirac-cone energy band of graphene and further results in the variation of its conductivity(σGr)according to the Kubo formula,which is directly related to the complex refractive index(nGr):[25-27]

    wherenF(ε)=1/{1+exp[(ε ?EF)/(kBT)]}is Fermi-Dirac distribution,εis the electron energy,kBis the Boltzmann constant,Tis the temperature,ωis the radian frequency,Γ is the scattering rate, ˉhis the reduced Planck’s constant,ε0is the vacuum permittivity, anddGris the graphene thickness. At the condition ofEF=0 eV and 1550 nm incident light, the imaginary part(k)ofnGrshows a decreasing trend with temperature rising from?100°C to 100°C, leading to the decrease of graphene absorption(Fig.2(b)). Meanwhile,the real part(n)ofnGrincreases with temperature(Fig.2(c)),bringing about the increase of the refractive index in fiber cladding and consequent enhancement of the normalized light intensityI(ratio of intensity at the innermost graphene position to that at the fiber core center) in Gr-PCF (Fig. 2(d)). Taking the combined influences ofkandninto account, the change of transmission attenuation in Gr-PCF with the temperature from?100°C to 100°C is demonstrated as~6.4×10?5dB for one-centimeter-long fiber (Fig. 2(e)), which shows the enormous potential to monitor temperature through light intensity change.

    Considering the unique and adjustableEFcharacteristic of graphene,it is significant to modulate theEFfor optimizing the transmission attenuation and the sensitivity of the sensor.Therefore,we systematically investigate the influence ofEFon the performance of Gr-PCF temperature sensor, and find that the sensitivity can be highly improved whenEFis adjusted at a suitable level around 0.4 eV (half energy of the incident photon of 1550 nm, Fig. 3(a)). In this case, the transmission attenuation is much lower than that at the charge neutral point(EF=0 eV)and the difference of attenuations between?100°C and 100°C(|?A|)drastically changes withEFtuned around 0.4 eV, which indicates the possibility to enhance the sensitivity via tuningEF(Fig. S2). This attenuation change with temperature results from the combined effects ofkandn,which are related to the absorption of graphene and the light distribution at the innermost graphene film respectively and show an obvious change withEFadjusted around 0.4 eV at different temperatures(Figs.3(b)and 3(c)). In detail,the light transmission attenuation in Gr-PCF shows a decreasing trend with temperature from?100°C to 100°C withEFin the range of 0.35 eV to 0.40 eV, but an increasing trend withEFin the range of 0.40 eV to 0.45 eV(Fig.3(d)). Besides, whenEFis adjusted from 0.3 eV to 0.45 eV,kandnvary from~2.6 to~0.4 and~3.2 to~2.2 at a constant temperature of 0°C,respectively(Fig.S3),contributing the decreasing trend of the total transmission attenuation of Gr-PCF.For the practical sensor applications, it is important to obtain the high sensitivity with low total transmission attenuation by setting a suitableEF. As a result, the|?A| shows a maximum~0.668 dB/cm atEF=0.435 eV(four orders of magnitude improvement than that at 0 eV) with a relatively low attenuation compared to that at another peak position ofEF=0.365 eV(Figs.3(d)and 3(e)). This result also indicates~3.34×10?3dB/(cm·°C)sensitivity for temperature sensing,where the unit dB/(cm·°C)is used to describe temperature sensing ability of Gr-PCF for the unit fiber length. In principle, the absorption of graphene is directly dependent on the electron distribution at the energy level of half the incident photon energy(±0.4 eV for 1550 nm incident light). Hence, for the case ofEF=0.4 eV, the distribution probability at 0.4 eV (the same asEF) is always a constant 0.5, and that at?0.4 eV changes very slightly with temperature due to the large energy difference fromEF,which results in a very small attenuation fluctuation with temperature atEF=0.4 eV compared to that atEF=0.435 eV(Fig.3(e)).

    Fig.2.Temperature sensing property of Gr-PCF with EF=0 eV.(a)Fermi-Dirac distributions of electrons in graphene at different temperatures,resulting in the changes of the conductivity and complex refractive index of graphene. (b)-(e)The relative changes of the imaginary part ?k(b) and real part ?n (c) of graphene complex refractive index, the relative normalized intensity (ratio of intensity at the innermost graphene position to that at the fiber core center)?I(d),and the relative attenuation ?A(e)with temperatures from ?100°C to 100°C.Here ?represents difference between values at a given temperature and that at 0 °C,where k,n,I and A are 2.8326,2.9340,11.37467%and 4.04843 dB/cm at 0 °C,respectively.

    Fig.3. Sensitivity enhancement of the Gr-PCF temperature sensor by modulating EF. (a)The simplified electrical band diagram of graphene with EF adjusted around 0.4 eV and 1550 nm input light. The imaginary part(b)and the real part(c)of graphene complex refractive index with different EF and temperatures. (d)Transmission attenuation in Gr-PCF with temperature under different EF around 0.4 eV region. (e)The|?A|(difference of light attenuations between temperatures of ?100 °C and 100 °C)change with different EF around 0.4 eV,showing a dip value at EF=0.4 eV and two peak values at EF=0.365 eV and EF=0.435 eV.The transmission attenuation at EF=0.435 eV is much lower than that at EF=0.365 eV(d).

    Fig.4. Sensitivity enhancement by optimizing Gr-PCF structure. (a),(b)The dependence of normalized intensity I at graphene film regime(a)and transmission attenuation A(b)on air-hole diameter at EF=0.435 eV and 0°C.Both I and A show an obvious decreasing with hole diameter increasing. (c)The change of|?A|with different hole diameters,exhibiting an evident change from ~7.2 dB/cm to ~0.07 dB/cm with hole diameter increasing and the sensitivity of ~0.036 dB/(cm·°C)for 1μm hole diameter. The endless single mode transmission property is kept at different hole diameters and pitches.

    In addition, the sensor sensitivity is also related to the strength of light-matter interaction in Gr-PCF, which can be improved by optimizing the PCF structure.[42]The performance of sensitivity with different PCF structures is studied on the condition ofEF=0.435 eV,meanwhile,the endless single mode transmission property is kept by elaborately designing the sizes of the hole diameter and pitch.[36]With theΦreduced from 5μm to 1μm and the temperature of 0°C,the normalized intensityIat graphene film regime of Gr-PCF shows a strong enhancement from~4.9% to~24.2% (Fig. 4(a)).Considering influences of both the light intensity change at the innermost graphene position and the given graphene absorption, the transmission attenuation also shows an increasing trend withΦchanging from 5 μm to 1 μm (Fig. 4(b)).Furthermore,the difference of attenuations(|?A|,between the temperatures of?100°C and 100°C) demonstrates an obvious enhancement with reducingΦ(Fig. 4(c)), which indicates temperature sensitivity of~3.6×10?2dB/(cm·°C)withΦ=1μm,~10 times improvement than that of conventional PCF withΦ=2.22 μm (Fig. 3(e)). Overall, the decrease of hole diameter in PCF leads to the enhanced light-graphene interaction,and results in dramatically increased sensitivity.

    In summary, a highly sensitive temperature fiber sensor based on Gr-PCF with the intact transmission mode is proposed theoretically by modulatingEFand optimizing the PCF structure. WithEF~0.435 eV (35 meV higher than the half energy of the incident photon),the sensitivity can be enhanced by four orders of magnitudes to~3.34×10?3dB/(cm·°C)with a relatively low transmission attenuation. Furthermore,with the hole diameter optimized to 1μm,the sensitivity can be improved to~0.036 dB/(cm·°C), which demonstrates a huge potential in highly sensitive temperature sensors. Our strategy provides a new way for the design of high performance all-fiber temperature sensors targeting next-generation optical fiber applications. Furthermore,considering the excellent properties of various nanomaterials such as sufficient volume, high catalytic activity, specific adsorption capacity and remarkable electrocatalytic property,[43-45]these nanomaterials have demonstrated enormous potential to make up for the shortages of intrinsic graphene in the mentioned aspects and be integrated with PCF to target for broadening types or functions of sensors with high performance.

    中文字幕高清在线视频| www.自偷自拍.com| 国产精品免费一区二区三区在线| 性色av乱码一区二区三区2| 美女 人体艺术 gogo| 国内精品久久久久精免费| 精品少妇一区二区三区视频日本电影| 亚洲精品中文字幕在线视频| 99re在线观看精品视频| 欧美激情高清一区二区三区| 国产真实乱freesex| 天堂影院成人在线观看| 亚洲av五月六月丁香网| 啦啦啦免费观看视频1| 国产精品精品国产色婷婷| 99在线视频只有这里精品首页| www.熟女人妻精品国产| 少妇熟女aⅴ在线视频| 最好的美女福利视频网| 露出奶头的视频| 午夜福利一区二区在线看| 欧美午夜高清在线| 国产精品 国内视频| 亚洲欧美精品综合久久99| 色播在线永久视频| 自线自在国产av| 一二三四社区在线视频社区8| www.www免费av| 久久精品91无色码中文字幕| 日韩三级视频一区二区三区| 成年版毛片免费区| 97超级碰碰碰精品色视频在线观看| 色综合站精品国产| 国产一卡二卡三卡精品| 午夜福利欧美成人| 久久人人精品亚洲av| 一级a爱视频在线免费观看| 国产精品乱码一区二三区的特点| 成人一区二区视频在线观看| www.熟女人妻精品国产| 国产精品永久免费网站| 亚洲第一欧美日韩一区二区三区| 99久久综合精品五月天人人| 国产片内射在线| 亚洲在线自拍视频| 久久久久国产精品人妻aⅴ院| 亚洲五月色婷婷综合| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 国内精品久久久久久久电影| 亚洲av片天天在线观看| 大型黄色视频在线免费观看| 99在线人妻在线中文字幕| 国产av又大| 国产精品一区二区免费欧美| 黄网站色视频无遮挡免费观看| 在线永久观看黄色视频| 亚洲国产精品成人综合色| 男人操女人黄网站| 国产在线精品亚洲第一网站| 999久久久精品免费观看国产| 亚洲av美国av| 久久性视频一级片| 九色国产91popny在线| 成人特级黄色片久久久久久久| 国产精品,欧美在线| 午夜福利在线观看吧| 国产av一区在线观看免费| 又黄又爽又免费观看的视频| 亚洲第一av免费看| 亚洲成av片中文字幕在线观看| 午夜福利18| 午夜激情av网站| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 国产成人欧美| 草草在线视频免费看| 色综合站精品国产| 久久精品国产清高在天天线| 日本精品一区二区三区蜜桃| 国产精品久久视频播放| 操出白浆在线播放| 成人18禁高潮啪啪吃奶动态图| 变态另类成人亚洲欧美熟女| 美女大奶头视频| 国产精品免费一区二区三区在线| 久久久久久大精品| 午夜免费激情av| 久99久视频精品免费| 亚洲第一欧美日韩一区二区三区| 成人亚洲精品av一区二区| 国产精品久久电影中文字幕| 成人精品一区二区免费| 亚洲中文字幕日韩| 欧美激情 高清一区二区三区| 久久久久久国产a免费观看| 久久久久久久精品吃奶| 亚洲av第一区精品v没综合| 成人午夜高清在线视频 | 成人18禁在线播放| 久久国产精品人妻蜜桃| 亚洲无线在线观看| 在线永久观看黄色视频| 国产一卡二卡三卡精品| 国产精品影院久久| 男女下面进入的视频免费午夜 | 欧美成人性av电影在线观看| 18禁美女被吸乳视频| 两个人视频免费观看高清| 视频在线观看一区二区三区| 精品久久久久久久末码| 一级片免费观看大全| 麻豆av在线久日| 欧美日韩福利视频一区二区| 国产av一区在线观看免费| 老熟妇乱子伦视频在线观看| 精品国产美女av久久久久小说| 成人手机av| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 免费女性裸体啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区四区五区乱码| 不卡av一区二区三区| 两个人免费观看高清视频| 一区二区三区精品91| 日日夜夜操网爽| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 久久天堂一区二区三区四区| 亚洲精品中文字幕一二三四区| 欧洲精品卡2卡3卡4卡5卡区| 妹子高潮喷水视频| 90打野战视频偷拍视频| 国产单亲对白刺激| 在线观看免费视频日本深夜| 国产av不卡久久| 日韩一卡2卡3卡4卡2021年| 久久国产亚洲av麻豆专区| 在线观看免费视频日本深夜| 高清毛片免费观看视频网站| 99久久无色码亚洲精品果冻| 亚洲美女黄片视频| 国产男靠女视频免费网站| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 国产av又大| 亚洲av电影不卡..在线观看| 9191精品国产免费久久| 好男人电影高清在线观看| 国产欧美日韩一区二区三| 日本 欧美在线| 亚洲成av人片免费观看| 免费av毛片视频| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 99热这里只有精品一区 | 欧美性猛交╳xxx乱大交人| 国产av又大| 欧美色欧美亚洲另类二区| 国产亚洲精品一区二区www| 国产精品免费视频内射| 久久狼人影院| 午夜福利在线观看吧| 国内久久婷婷六月综合欲色啪| 美国免费a级毛片| 成人特级黄色片久久久久久久| 国产成人系列免费观看| 欧美激情 高清一区二区三区| 精品免费久久久久久久清纯| aaaaa片日本免费| 欧美色欧美亚洲另类二区| 午夜成年电影在线免费观看| 亚洲av中文字字幕乱码综合 | 99久久无色码亚洲精品果冻| 午夜成年电影在线免费观看| 国产黄片美女视频| 国产在线观看jvid| 岛国视频午夜一区免费看| 一本久久中文字幕| 亚洲 欧美一区二区三区| 欧美亚洲日本最大视频资源| 一区二区日韩欧美中文字幕| 大型av网站在线播放| 中国美女看黄片| 亚洲国产中文字幕在线视频| 777久久人妻少妇嫩草av网站| 好看av亚洲va欧美ⅴa在| 18禁观看日本| 在线永久观看黄色视频| 国产一区二区三区在线臀色熟女| 亚洲国产欧美一区二区综合| 成人国语在线视频| 欧美久久黑人一区二区| 亚洲电影在线观看av| 99热6这里只有精品| 午夜日韩欧美国产| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 日本 欧美在线| 国产一区二区在线av高清观看| 97碰自拍视频| 激情在线观看视频在线高清| 窝窝影院91人妻| 日韩欧美在线二视频| 欧美日韩一级在线毛片| 嫁个100分男人电影在线观看| av有码第一页| 村上凉子中文字幕在线| 在线播放国产精品三级| 黄片大片在线免费观看| 一区二区日韩欧美中文字幕| 国产黄片美女视频| 日韩一卡2卡3卡4卡2021年| 精品久久久久久久毛片微露脸| 日韩精品中文字幕看吧| 午夜久久久在线观看| 99久久无色码亚洲精品果冻| 国产主播在线观看一区二区| 波多野结衣高清无吗| 激情在线观看视频在线高清| 欧美 亚洲 国产 日韩一| 看免费av毛片| 成人18禁高潮啪啪吃奶动态图| 亚洲成人久久爱视频| 成人欧美大片| 美女午夜性视频免费| www.www免费av| 丁香六月欧美| 男女做爰动态图高潮gif福利片| 国产精华一区二区三区| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 午夜老司机福利片| 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 欧美黄色淫秽网站| 国产亚洲精品久久久久久毛片| videosex国产| √禁漫天堂资源中文www| 免费在线观看影片大全网站| 一级毛片女人18水好多| 变态另类成人亚洲欧美熟女| 欧美丝袜亚洲另类 | 婷婷六月久久综合丁香| 国产av一区二区精品久久| 久久精品国产清高在天天线| 精品国产美女av久久久久小说| 国产真人三级小视频在线观看| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 久久性视频一级片| 国内揄拍国产精品人妻在线 | 日韩欧美一区视频在线观看| www日本在线高清视频| 99久久无色码亚洲精品果冻| 精品乱码久久久久久99久播| 少妇被粗大的猛进出69影院| 久久99热这里只有精品18| 欧美av亚洲av综合av国产av| 久久国产乱子伦精品免费另类| 亚洲精品一区av在线观看| 大型黄色视频在线免费观看| 亚洲全国av大片| 亚洲专区中文字幕在线| av天堂在线播放| 国内少妇人妻偷人精品xxx网站 | 久久99热这里只有精品18| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 美女高潮到喷水免费观看| 国产精品永久免费网站| 国产男靠女视频免费网站| 久久精品成人免费网站| 一本综合久久免费| 在线观看66精品国产| 黄色成人免费大全| 精品少妇一区二区三区视频日本电影| 岛国在线观看网站| 欧美绝顶高潮抽搐喷水| 国产视频一区二区在线看| 成人特级黄色片久久久久久久| 国产精品综合久久久久久久免费| 美女大奶头视频| 国产一卡二卡三卡精品| 久久久国产精品麻豆| 国产一区二区三区在线臀色熟女| av有码第一页| 性色av乱码一区二区三区2| 国产午夜精品久久久久久| 在线视频色国产色| av在线播放免费不卡| 国产三级黄色录像| 久久天躁狠狠躁夜夜2o2o| 在线观看午夜福利视频| 啪啪无遮挡十八禁网站| 母亲3免费完整高清在线观看| 好男人在线观看高清免费视频 | xxxwww97欧美| 99热6这里只有精品| 香蕉国产在线看| 亚洲欧美激情综合另类| 亚洲avbb在线观看| √禁漫天堂资源中文www| 欧美中文综合在线视频| 男女视频在线观看网站免费 | 国产成人系列免费观看| 国产精品久久久久久精品电影 | 亚洲第一欧美日韩一区二区三区| 亚洲成国产人片在线观看| 美女扒开内裤让男人捅视频| 精品久久久久久久久久久久久 | 免费在线观看视频国产中文字幕亚洲| 身体一侧抽搐| 悠悠久久av| 精品少妇一区二区三区视频日本电影| 久久久久久久久中文| 丰满人妻熟妇乱又伦精品不卡| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久人妻精品电影| 欧美黑人巨大hd| a在线观看视频网站| 香蕉国产在线看| av片东京热男人的天堂| 国产一区在线观看成人免费| 亚洲五月天丁香| 一级毛片高清免费大全| 日韩欧美三级三区| 美女扒开内裤让男人捅视频| 美女免费视频网站| 97超级碰碰碰精品色视频在线观看| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 久久天躁狠狠躁夜夜2o2o| 制服诱惑二区| 99久久久亚洲精品蜜臀av| 精品午夜福利视频在线观看一区| 成人免费观看视频高清| 国产精品久久久久久精品电影 | 欧美日韩一级在线毛片| 成人三级做爰电影| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 非洲黑人性xxxx精品又粗又长| 香蕉久久夜色| 亚洲国产精品999在线| 人成视频在线观看免费观看| 黄色a级毛片大全视频| 国产蜜桃级精品一区二区三区| 国产单亲对白刺激| 色在线成人网| 久久久久久亚洲精品国产蜜桃av| av中文乱码字幕在线| 一级作爱视频免费观看| 亚洲中文字幕一区二区三区有码在线看 | 不卡av一区二区三区| 日韩三级视频一区二区三区| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 国产高清videossex| 久久精品夜夜夜夜夜久久蜜豆 | 国产又黄又爽又无遮挡在线| 午夜免费观看网址| 日韩一卡2卡3卡4卡2021年| 色婷婷久久久亚洲欧美| 欧美一级毛片孕妇| 午夜成年电影在线免费观看| 亚洲午夜精品一区,二区,三区| 美女午夜性视频免费| 久久久久国内视频| 精品国产国语对白av| 欧美一区二区精品小视频在线| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区蜜桃av| 99久久精品国产亚洲精品| 欧美一级a爱片免费观看看 | 我的亚洲天堂| 男人舔奶头视频| 精品国产乱码久久久久久男人| 亚洲男人的天堂狠狠| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕一二三四区| 午夜日韩欧美国产| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 国产av不卡久久| 精品第一国产精品| 99在线人妻在线中文字幕| 午夜免费鲁丝| 久久久水蜜桃国产精品网| 精品一区二区三区av网在线观看| 亚洲av美国av| 一级毛片女人18水好多| 女生性感内裤真人,穿戴方法视频| 日日爽夜夜爽网站| 国产一区二区激情短视频| 一级毛片精品| 成人亚洲精品一区在线观看| 欧美日本视频| 国内毛片毛片毛片毛片毛片| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 熟妇人妻久久中文字幕3abv| 免费搜索国产男女视频| 国产乱人伦免费视频| 欧美黑人巨大hd| 黑人巨大精品欧美一区二区mp4| 欧美黑人巨大hd| 老司机在亚洲福利影院| 久久亚洲真实| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 侵犯人妻中文字幕一二三四区| 欧美黑人巨大hd| 色婷婷久久久亚洲欧美| 一级片免费观看大全| 午夜激情av网站| 色播亚洲综合网| 亚洲av五月六月丁香网| 91成年电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 1024香蕉在线观看| 夜夜躁狠狠躁天天躁| 日韩精品免费视频一区二区三区| 亚洲成a人片在线一区二区| 久久欧美精品欧美久久欧美| 最新在线观看一区二区三区| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 最好的美女福利视频网| 可以免费在线观看a视频的电影网站| 男人舔女人下体高潮全视频| 久久天躁狠狠躁夜夜2o2o| 久久久久久久精品吃奶| 我的亚洲天堂| 午夜a级毛片| 无人区码免费观看不卡| 黄色成人免费大全| 淫秽高清视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 婷婷精品国产亚洲av在线| 1024视频免费在线观看| 无限看片的www在线观看| 岛国视频午夜一区免费看| 老司机午夜福利在线观看视频| 久久久久久九九精品二区国产 | 在线看三级毛片| 国产亚洲精品第一综合不卡| 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久精品国产欧美久久久| 国产蜜桃级精品一区二区三区| 美女高潮到喷水免费观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一青青草原| 免费在线观看亚洲国产| 老汉色∧v一级毛片| 久久精品91无色码中文字幕| 好看av亚洲va欧美ⅴa在| 美女高潮喷水抽搐中文字幕| 日本在线视频免费播放| 一级a爱片免费观看的视频| 人妻久久中文字幕网| 久久精品aⅴ一区二区三区四区| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 亚洲午夜理论影院| 黄频高清免费视频| 国产精品亚洲美女久久久| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 久久久久久人人人人人| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| www.www免费av| 欧美日本视频| 国产亚洲欧美在线一区二区| 欧美大码av| 久久精品夜夜夜夜夜久久蜜豆 | 最近在线观看免费完整版| 好男人电影高清在线观看| 亚洲一区高清亚洲精品| 国产高清激情床上av| 伦理电影免费视频| 亚洲中文av在线| av电影中文网址| 日韩av在线大香蕉| 精品国产亚洲在线| 免费在线观看亚洲国产| 婷婷精品国产亚洲av在线| 国产成人av教育| 国产久久久一区二区三区| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 亚洲天堂国产精品一区在线| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 免费电影在线观看免费观看| 婷婷丁香在线五月| 精品久久久久久,| 国产亚洲av嫩草精品影院| 国产成+人综合+亚洲专区| 草草在线视频免费看| 欧美成狂野欧美在线观看| 看片在线看免费视频| 91成人精品电影| 丝袜人妻中文字幕| 成人欧美大片| 亚洲国产看品久久| 俺也久久电影网| 亚洲av中文字字幕乱码综合 | 国产成人影院久久av| 男男h啪啪无遮挡| 亚洲片人在线观看| 久久性视频一级片| 色播在线永久视频| 国产主播在线观看一区二区| 后天国语完整版免费观看| 久久久久免费精品人妻一区二区 | 久热这里只有精品99| 国产色视频综合| 国产免费男女视频| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 白带黄色成豆腐渣| 亚洲熟妇熟女久久| 日韩一卡2卡3卡4卡2021年| 欧美一区二区精品小视频在线| 精品欧美国产一区二区三| 亚洲中文字幕一区二区三区有码在线看 | 亚洲五月婷婷丁香| 91在线观看av| 欧美黄色片欧美黄色片| 午夜福利成人在线免费观看| 无遮挡黄片免费观看| 精品久久蜜臀av无| 丁香欧美五月| 欧美成人免费av一区二区三区| 国产在线观看jvid| 免费在线观看成人毛片| 男人舔奶头视频| 欧美人与性动交α欧美精品济南到| 韩国精品一区二区三区| 热99re8久久精品国产| 国内少妇人妻偷人精品xxx网站 | 欧美日韩瑟瑟在线播放| а√天堂www在线а√下载| 两性午夜刺激爽爽歪歪视频在线观看 | ponron亚洲| tocl精华| 一区二区三区高清视频在线| 午夜福利视频1000在线观看| 精品国产亚洲在线| 最近在线观看免费完整版| 国产午夜福利久久久久久| 欧美色视频一区免费| 日韩欧美 国产精品| 久9热在线精品视频| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久中文| 19禁男女啪啪无遮挡网站| 国产99久久九九免费精品| 琪琪午夜伦伦电影理论片6080| 国产99久久九九免费精品| 一二三四社区在线视频社区8| 久久人妻av系列| 久久中文看片网| 中文字幕最新亚洲高清| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 97人妻精品一区二区三区麻豆 | 欧美乱色亚洲激情| 亚洲国产欧美一区二区综合| 亚洲人成网站在线播放欧美日韩| 成年人黄色毛片网站| 国产成人欧美| 精品一区二区三区四区五区乱码| 午夜影院日韩av| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 欧美一级a爱片免费观看看 | 在线天堂中文资源库| 国产人伦9x9x在线观看| 国产一区在线观看成人免费| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 国内精品久久久久久久电影| 日本五十路高清| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久 | 一进一出抽搐gif免费好疼| 操出白浆在线播放| 午夜福利在线在线| 法律面前人人平等表现在哪些方面| 一区福利在线观看| 日韩欧美国产在线观看| 国产av不卡久久| 精品卡一卡二卡四卡免费| 人成视频在线观看免费观看| 成人特级黄色片久久久久久久| 99在线视频只有这里精品首页|