• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A composite micromotor driven by self-thermophoresis and Brownian rectification*

    2021-11-23 07:28:44XinLou婁辛NanYu余楠KeChen陳科XinZhou周昕RudolfPodgornikandMingchengYang楊明成
    Chinese Physics B 2021年11期

    Xin Lou(婁辛) Nan Yu(余楠) Ke Chen(陳科) Xin Zhou(周昕)Rudolf Podgornik and Mingcheng Yang(楊明成)

    1University of Chinese Academy of Sciences,Beijing 100049,China

    2Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3Institute for Advanced Study,Shenzhen University,Shenzhen 518060,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    5Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325001,China

    Keywords: Brownian motors,self-phoretic microswimmers,thermal noise,hydrodynamic effect

    1. Introduction

    Active matter consists of units that individually convert environmental or stored energy into self-propulsion or mechanical force[1]- as is the case for motor proteins,bacteria and artificial active colloidal particles - becoming a fascinating subject of nonequilibrium physics and micro-/nanotechnology. Due to intrinsically out-of-equilibrium features, active matter often exhibits exotic phenomena that are unattainable in equilibrium systems, including the motilityinduced phase transition,abnormal rheology as well as emergent collective behavior.[2-7]Generally, microscale active units are also called micromotors in order to highlight their similarities with macroscopic motors. In terms of the inevitable thermal and/or other types of noise, micromotors can be roughly classified into Brownian motor type and selfpropelled active particle type,for whose performances the effect of the noise is positive and negative,respectively.

    Brownian motors refer to submicron-scale machines,which can utilize - but do not necessarily have to - noise combined with unbiased external input signals to achieve a directed motion in asymmetric rachet potentials,[8-13]such as biological ion pumps and bio-molecular motors.[14-19]When the external ratchet potential is time-modulated to alternately switch on and off, such microdevices are termed pulsatedratchet-type Brownian motors.[12]The interplay between the time-modulated ratchet potential and noise generates a directed drift without any net external force. On the other hand, self-propelled active particles generate a driving force along their inherent axis through different physical and chemical effects such as non-reciprocal shape change, bubble release or self-phoresis. Prominent examples would include biological microorganisms[20,21]and artificial active Janus colloids.[22-28]In these cases the external ratchet potential is absent and the noise only disturbs the persistent directed swimming motion of the active particle, randomizing its trajectory. Consequently,the self-propelled particles behave like effective Brownian particles at long timescales. The thermal noise is in this case thus not conducive to the operation of the self-propelled active particles,demanding an extra steering strategy to achieve a directed transport on large length scales.

    Given the negative effect of thermal fluctuations on the self-propelled particle, an interesting issue emerges, whether the self-propelled particle can actively exploit thermal noise to improve its performance? Inspired by the Brownian motor,a possible and straightforward scheme would be to construct a composite micromotor by combining the self-propelled particle with the Brownian ratchet. Such a composite motor could possess features of both, the self-propelled particle as well as the Brownian motor. Recently, static asymmetric external fields or boundary walls have been employed to regulate the motion of the self-propelled particles,[29-31]although these designs still correspond to a Brownian motor,in which the active motion acts like an input signal. More recently, rectification of active Brownian particles by a time-oscillating potential has been numerically investigated,[32]with the self-propulsion artificially imposed rather than arising naturally from a physical process. In addition, the hydrodynamic effects have not been taken into account in this case.

    In the present work,based upon the mesoscale fluid simulations, we investigate the transport of a two-dimensional self-thermophoretic Janus particle in a time-modulated dynamic ratchet potential, amounting to a composite motor formed from the pulsated-ratchet Brownian motor and the selfphoretic active particle. This composite motor exhibits a directed transport,where thermal noise is actively exploited due to the time-modulated ratchet potential.By extensively exploring the parameter space,we show that the transport velocity of the Janus particle depends sensitively on the modulated frequency of the external potential. Furthermore, the mesoscale simulation method used in the work allows us to study the hydrodynamic effects on the orientation of the active Janus particle and hence its transport,exhibiting a significant polarization of the self-thermophoretic Janus particle in direct contrast to the case of the active Brownian particle.

    2. Simulation method and systems

    2.1. Solvent

    2.2. Self-thermophoretic Janus particle

    The colloidal particle is modeled by a single bead that interacts with the solvent via a Lennard-Jones (LJ)-type potential

    with the potential intensityε=1,the colloidal particle radiusσ=4.0, and the positive integerk=14, which controls the potential stiffness. Here,ris the distance from the bead center to the solvent,withrc=5.3 the cutoff distance.The Janus particle is constructed by defining a body-fixed orientation vectorn(symmetry axis), with its two hemispheres having different physical properties. The forward hemisphere(with the polar angleθ ≤π/2 with respect ton, Fig. 1(a)) is modeled as the heated hemisphere by using local thermostats to heat its surrounding solvent.[38-40]Briefly, the thin layer of fluid around the forward hemisphere is divided into several small areas. For each area, the thermal kinetic energy of solvent is improved by rescaling their velocities relative to the center-ofmass velocity of the element. Outside the thin layer, the energy is locally conserved so that the heat conduction process is physically correct. Experimentally, the Janus particle can heat the surronding solvent under an illumination by coating a light-absorbing material on its heated hemisphere.[26]The input energy is drained from the system by fixing the mean temperature of the solution to a lower value,which is realized by uniformly rescaling the velocities of all the fluid particles relative to the solvent center-of-mass velocity. Since the system is large, this operation hardly affects the particle dynamics. The resulting temperature field is consequently compatible with the heat diffusion equation.

    The MPC solvent has an ideal gas equation of state, so the solvent density is lower around the heated hemisphere than the non-heated one. The larger number of particles on the non-heated side produces a stronger attraction. Consequently, the Janus particle self-propels towards the low temperature area, namely, against thenaxis. Moreover, in order to model the rotational diffusion of the colloidal particle, a sticky boundary condition is implemented on the particle surface through a revised bounce-back collision rule.[40]With the system parameters employed in the mesoscale simulation, the self-thermophoretic Janus particle has the selfpropelled velocityvs= 0.018, the rotational diffusion coefficientDr=0.0038,and the translational diffusion coefficientDt=0.015.The simulation box is a rectangle with dimensionsLx×Ly=102×40,where the periodic boundary condition and the stick wall are applied in thexandydirections,respectively.

    Fig. 1. (a) Schematic diagram of a self-thermophoretic Janus particle in an asymmetric external ratchet potential characterized by two length scales L1 and L2. The self-thermophoretic Janus particle selfpropells against its heated side (yellow hemisphere). The red curves sketch the spatial probability distribution of the active particle with the ratchet potential off or on. (b),(c)Hydrodynamic alignment of the selfthermophoretic Janus particles, moving in the x-direction, induced by asymmetric surface friction(red arrows): (b)corresponds to the case of the stick boundary for the whole particle surface,while(c)corresponds to the slip boundary at the nonheated surface(blue line).

    2.3. External ratchet potential

    In order to model the pulsated Brownian ratchet that utilizes thermal noise, an external sawtooth-like potentialV(x)is applied to the active Janus particle, with a spatial periodL=5.1 that is comparable to the persistent length of the selfthermophoretic particle. The external potential is spatially asymmetric by skewing the barriers to the right with different ratchet lengthsL1=0.71 andL2=4.39, as sketched in Fig. 1(a). The ratchet potential is constructed in a piecewise manner, with both the potential and its first-order derivative being continuous. Within a repeated unit,the force applied on the colloidal particle due to the ratchet potential has the form

    The ratchet potential is time modulated by periodically turning it on and off, with residence timeTonin the on state andToffin the off state (Ttot=Ton+Toffthe modulation period). The strength of the external ratchet force is stronger than the selfthermophoretic force on the Janus particle,Fs=kBTvs/Dt,so that the active Janus particle stays in a close vicinity of the potential minima when the ratchet potential is on.

    3. Results and discussion

    3.1. Brownian motor with a passive colloidal particle

    We first use the mesoscale fluid method to simulate a traditional Brownian motor,with a passive colloidal particle subjected to a periodically varying ratchet potential. Figure 2(a)displays the contour plot of the transport velocity of the Brownian motor, showing that the passive colloidal particle moves to the left(i.e.,toward the steeper potential side)in the range of parameters under study. This result is consistent with the standard pulsated-type Brownian motor[41-43]and can be well understood accordingly. Briefly,when the ratchet potential is on,the passive colloidal particle basically stays in close vicinity of potential minima because the depth of the potential well is much larger thankBT. When the ratchet potential is off,the particle can diffuse freely with a relatively larger probability, crossing the area corresponding to its left-side barrier(the short edge of the sawtooth potential). Consequently, the passive colloidal particle drifts with a negative velocity. The transport velocity is found to sensitively depend on the modulation periodTtotand the residence timeTon.Within an optimal range ofTonandTtot,the Brownian motor can achieve a maximum transport velocity around?0.018. This optimal performance can be easily understood by noticing that for smallTtotor largeTonthe passive particle is difficult to diffuse across the barrier region, while for longTtotor shortTonthe ratchet potential hardly plays a role.

    For comparison,we also performed overdamped Brownian dynamics simulations to calculate the contour plot of the Brownian motor transport velocity (Fig. 2(b)), in which the particle diffusion coefficients are imposed to be the same as those in the mesoscale fluid simulation. It is found that the absence of hydrodynamic effects can largely change the transport velocity map of the Brownian micromotor. Particularly,in this case,the optimal transport parameters(TonandTtot)are different from those in the case of the mesoscale fluid simulation.

    3.2. Composite micromotor with a self-thermophoretic particle

    In this section, we model a composite micromotor by replacing the passive Brownian motor particle with a selfthermophoretic Janus particle, as sketched in Fig. 1. Figure 2(c)depicts the contour plot of the transport velocity of the composite motor. In a wide range of parameters,the composite micromotor drifts along the negativex-direction,similar to the pure Brownian motor. Nevertheless, the maximum transport velocity of the composite micromotor(vtran=?0.021)is larger than that of the Brownian motor. This is mainly because the self-propelled Janus particle can cross more easily the potential barrier region than the passive particle,when the ratchet potential is off.

    Interestingly, for smallTtotandTon, the composite micromotor reverses its transport velocity and drifts toward the slanted edge of the ratchet potential. This reversed transport can be understood based on the following fact: the selfthermophoretic force of the Janus particle(Fs=1.2)is much smaller than the external force produced by the steep side of the ratchet potential, but comparable to the strength of the slanted side. Thus the composite micromotor self-propelling along the slanted side of the ratchet potential is dragged back toward the potential minimum only slightly by the short-lived ratchet potential during each on-state. In this case,the persistence length of the active Janus particle(vs/Dr?4.74),which is hardly affected due to the weak slanted-side force and the shortTon,is beyond the length of the slanted side(L2=4.39).Thus, the Janus particle has a non-vanishing probability to cross its right-side barrier. In contrast, the active Janus particle cannot surmount its left-side barrier,since the strong force produced by the steep side of the ratchet potential can rapidly drag the Janus particle back to the potential well during each on-state. As a consequence, the composite micromotor displays a weak positive transport in the narrow range of the modulation parameters.

    For comparison, we also determine the transport velocity distribution of the active Brownian particle in a timemodulated ratchet potential by Brownian dynamics simulations with the samevs,DtandDras the composite micromotor in the hydrodynamics simulation, as shown in Fig.2(d). It is found that for smallTtotandTonthe active Brownian particle can also experience a weak transport along thex-direction,although its transport contour plot is different from that of the composite micromotor.

    Fig.2. Contour plots of the micromotor transport velocity in the x-direction as a function of the modulation period Ttot and Ton/Ttot. Brownian motor with a passive particle with(a),and without(b)hydrodynamics,(c)composite motor composed of the self-thermophoretic Janus particle,(d)an active Brownian particle moving in a ratchet potential,(e)composite motor with the self-thermophoretic Janus particle having a slip boundary on its non-heated hemisphere. The results in(a), (c), (e)are all obtained by the hybrid mesoscale simulation,while those in(b),(d)are obtained through the Brownian dynamics simulation without explicit solvent.

    An important difference between the composite micromotor and the active Brownian particle is reflected by their orientational distributions. The active Brownian particle has a uniform orientational distribution(Fig.3), as the alignment effect is lacking, while the self-thermophoretic Janus paricle tends to align its heated part towards the steep side of the ratchet potential, as shown in Fig. 3, displaying an inhomogeneous orientational distribution. This alignment is hydrodynamic in its origin. Compared to the non-heated part of the Janus particle, the heat part feels a lower fluid viscosity(weaker friction with the solvent)due to the enhanced temperature. As a result of this asymmetric friction the composite micromotor that transports against thex-direction experiences a (restoring) frictional torque that orients the Janus particle against thex-direction, as sketched in Fig. 1(b). In this situation, the self-thermophoretic direction of the Janus particle is opposite to the transport direction of the composite micromotor.

    A natural question thus arises whether we can change the hydrodynamic alignment of the self-thermophoretic Janus particle so as to improve the performance of the composite micromotor.This can be in fact easily achieved by modifying the surface properties of the Janus particle. For instance, when the non-heated surface of the Janus particle is a slip boundary,the anisotropic hydrodynamic friction experienced by the composite micromotor drifting against thex-direction will result in a restoring frictional torque[Fig.1(c)],with the stable orientation of the Janus particle pointing along thex-axis, as confirmed by the mesoscale fluid simulation(Fig.3).

    For the Janus particle with its non-heated part having a slip boundary, its stable orientation is thus consistent with the transport direction of the composite micromotor. In this case therefore the hydrodynamic alignment effect will enhance the transport of the composite micromotor. Figure 2(e)plots the transport velocity distribution of such a composite micromotor, displaying a higher maximum transport velocityvtran=?0.026. In addition, this maximum transport velocity is close to the superposition of the self-propelling speed of the pure self-thermophoretic particle and the drift speed of the pure Browmian motor under the same ratchet potential.

    Fig.3.Orientational probability distribution of different active particles in a ratchet potential, with φ the angle between the n and x axes. The simulations are perfomed with Ttot =80 and Ton/Ttot =0.4, for which the particle drifts against the x-direction. The circle refers to the active Brownian particle simulated by the Brownian dynamics method,the cross to the self-thermophoretic particle with the stick surface,and the triangle to the self-thermophoretic particle with the slip boundary for its non-heated part.

    4. Conclusion

    In this paper, we perform mesoscale dynamics simulations to investigate the transport behaviors of the composite micromotor composed of a self-thermophoretic colloidal particle in a time-modulated ratchet potential. It is found that the composite micromotor exhibits a unidirectional transport,whose direction can be reversed by tuning the modulation frequency of the ratchet potential. Moreover, due to anisotropic surface friction,the active Janus particle exhibits a significant hydrodynamic alignment, in stark contrast to the traditional active Brownian particle. With the alignment effect,the composite motor is able to achieve a maximum transport velocity even close to the superposition of the self-propelling speed of the pure self-thermophoretic particle and the drift speed of the pure Browmian motor.Given the potential applications of selfpropelled microswimmers and the ubiquity of thermal fluctuation, our work provides an interesting attempt to actively utilize thermal fluctuations in the performance of microswimmers.

    国产免费视频播放在线视频 | 国产成年人精品一区二区| 一级二级三级毛片免费看| 亚洲四区av| 直男gayav资源| 色5月婷婷丁香| 亚洲人成网站高清观看| 精品酒店卫生间| 汤姆久久久久久久影院中文字幕 | 91精品国产九色| 在线播放无遮挡| 22中文网久久字幕| 精品久久久久久久久av| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 午夜福利在线观看免费完整高清在| 热99在线观看视频| 欧美成人a在线观看| 美女高潮的动态| 国产又色又爽无遮挡免| 午夜福利在线在线| 听说在线观看完整版免费高清| 国产人妻一区二区三区在| 国产高清三级在线| 两个人的视频大全免费| 久久久久久久午夜电影| 午夜激情福利司机影院| 日日摸夜夜添夜夜添av毛片| 黄片无遮挡物在线观看| 偷拍熟女少妇极品色| 久久精品夜色国产| 尾随美女入室| 美女主播在线视频| 久久97久久精品| 亚洲精品中文字幕在线视频 | 国产一区亚洲一区在线观看| 国产淫片久久久久久久久| 国产综合懂色| 身体一侧抽搐| 亚洲最大成人av| 亚洲人与动物交配视频| 中文资源天堂在线| 3wmmmm亚洲av在线观看| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 伦精品一区二区三区| 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| 欧美成人精品欧美一级黄| 国产精品99久久久久久久久| 亚洲欧洲国产日韩| 丝袜美腿在线中文| 国产大屁股一区二区在线视频| 黄色日韩在线| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 国产欧美日韩精品一区二区| 亚洲欧美精品专区久久| 久久97久久精品| 欧美极品一区二区三区四区| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 女人十人毛片免费观看3o分钟| 中文字幕制服av| 久久鲁丝午夜福利片| 少妇人妻一区二区三区视频| 久久午夜福利片| 国产在线一区二区三区精| 一个人看的www免费观看视频| 亚洲欧美成人综合另类久久久| 色播亚洲综合网| 日本三级黄在线观看| 免费av不卡在线播放| 日本wwww免费看| 国产成人a∨麻豆精品| 亚洲精品乱码久久久v下载方式| 国内精品一区二区在线观看| 亚洲精品日韩在线中文字幕| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 水蜜桃什么品种好| 91精品一卡2卡3卡4卡| 国产av在哪里看| 欧美性感艳星| 欧美成人午夜免费资源| 国产免费福利视频在线观看| or卡值多少钱| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花 | 久久久久精品性色| 极品教师在线视频| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 成人毛片60女人毛片免费| 午夜日本视频在线| 国产成年人精品一区二区| 成人漫画全彩无遮挡| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 婷婷色av中文字幕| 人妻少妇偷人精品九色| 久久久色成人| 91精品国产九色| 国产成人午夜福利电影在线观看| 97热精品久久久久久| 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美一区二区三区国产| 欧美xxxx性猛交bbbb| 99热这里只有精品一区| 久久草成人影院| 九色成人免费人妻av| 在线观看美女被高潮喷水网站| 最近手机中文字幕大全| 极品教师在线视频| 国产精品麻豆人妻色哟哟久久 | 3wmmmm亚洲av在线观看| 国产成年人精品一区二区| 欧美性感艳星| 中文乱码字字幕精品一区二区三区 | 国产欧美日韩精品一区二区| 最近最新中文字幕大全电影3| 有码 亚洲区| 国产精品一区www在线观看| 国产麻豆成人av免费视频| 成人综合一区亚洲| 日韩av在线免费看完整版不卡| 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久久久按摩| 我的老师免费观看完整版| av在线蜜桃| 3wmmmm亚洲av在线观看| 亚洲精品日本国产第一区| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄| 久久久色成人| 91狼人影院| 国产一区二区在线观看日韩| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 国产麻豆成人av免费视频| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 欧美日韩一区二区视频在线观看视频在线 | 日本-黄色视频高清免费观看| 麻豆国产97在线/欧美| 99热这里只有是精品在线观看| 亚洲精品一二三| 男女边摸边吃奶| 极品教师在线视频| 秋霞在线观看毛片| 精品国内亚洲2022精品成人| 国内精品美女久久久久久| 色综合站精品国产| 国产人妻一区二区三区在| 亚洲精品一区蜜桃| 亚洲成色77777| www.色视频.com| 久久久久久国产a免费观看| 国产黄片视频在线免费观看| 亚洲国产色片| 国产成人a区在线观看| 波野结衣二区三区在线| 男人舔女人下体高潮全视频| 国产综合精华液| 久久精品国产亚洲网站| 免费观看精品视频网站| 插逼视频在线观看| 日韩制服骚丝袜av| 日日摸夜夜添夜夜爱| 免费看日本二区| 亚洲,欧美,日韩| 自拍偷自拍亚洲精品老妇| 精品一区在线观看国产| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 好男人视频免费观看在线| 欧美潮喷喷水| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网 | 免费电影在线观看免费观看| 青春草国产在线视频| av天堂中文字幕网| or卡值多少钱| 天堂网av新在线| 深夜a级毛片| 性色avwww在线观看| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 日韩国内少妇激情av| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 在线 av 中文字幕| 国产黄片美女视频| 噜噜噜噜噜久久久久久91| 久久精品国产鲁丝片午夜精品| 国产精品综合久久久久久久免费| 一级毛片我不卡| kizo精华| 又粗又硬又长又爽又黄的视频| 麻豆av噜噜一区二区三区| 国产精品1区2区在线观看.| 97在线视频观看| 久久精品国产亚洲av天美| 国产乱人视频| 一区二区三区乱码不卡18| 亚洲欧美成人精品一区二区| 又粗又硬又长又爽又黄的视频| 如何舔出高潮| 精品人妻偷拍中文字幕| 国产亚洲av嫩草精品影院| 尾随美女入室| 国产精品日韩av在线免费观看| 亚洲av不卡在线观看| 国产精品一区二区性色av| 一区二区三区四区激情视频| 日韩电影二区| 色吧在线观看| 亚洲精品国产av蜜桃| 成人毛片60女人毛片免费| 亚洲欧美日韩卡通动漫| 国产伦一二天堂av在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品中文字幕在线视频 | 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美在线一区| 亚洲精品一区蜜桃| 欧美bdsm另类| 国产69精品久久久久777片| 国产午夜福利久久久久久| 国产综合精华液| 欧美97在线视频| 美女主播在线视频| 色视频www国产| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 特级一级黄色大片| 精品一区在线观看国产| 成人综合一区亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产麻豆成人av免费视频| 国产精品人妻久久久久久| 九九爱精品视频在线观看| 免费黄频网站在线观看国产| av天堂中文字幕网| 亚洲国产av新网站| 亚洲高清免费不卡视频| 乱码一卡2卡4卡精品| 欧美xxⅹ黑人| 亚洲国产欧美人成| 非洲黑人性xxxx精品又粗又长| 人妻一区二区av| 日韩精品有码人妻一区| 18禁裸乳无遮挡免费网站照片| 夜夜爽夜夜爽视频| 精品人妻偷拍中文字幕| av在线天堂中文字幕| 一级av片app| 午夜日本视频在线| 青青草视频在线视频观看| 99热全是精品| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 国产精品人妻久久久久久| 国产一区亚洲一区在线观看| 国产综合懂色| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 人妻夜夜爽99麻豆av| 国产精品久久久久久av不卡| 久久久久国产网址| 欧美一区二区亚洲| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热全是精品| 久久久亚洲精品成人影院| 禁无遮挡网站| 网址你懂的国产日韩在线| av在线天堂中文字幕| 成人欧美大片| 欧美精品国产亚洲| 丝袜喷水一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费又黄又爽又色| 日韩欧美三级三区| 中文在线观看免费www的网站| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看| 国产精品无大码| 午夜激情欧美在线| 男女边摸边吃奶| 日韩亚洲欧美综合| av.在线天堂| 好男人视频免费观看在线| 国产一区二区三区综合在线观看 | 国产黄a三级三级三级人| 午夜久久久久精精品| 男人舔女人下体高潮全视频| 干丝袜人妻中文字幕| av网站免费在线观看视频 | www.av在线官网国产| 一级二级三级毛片免费看| 啦啦啦韩国在线观看视频| 一级毛片 在线播放| 免费黄网站久久成人精品| 美女大奶头视频| 麻豆精品久久久久久蜜桃| 国产精品综合久久久久久久免费| 国产人妻一区二区三区在| 午夜福利在线观看免费完整高清在| 好男人视频免费观看在线| 久久久久国产网址| 69人妻影院| 久久久久免费精品人妻一区二区| 国产精品爽爽va在线观看网站| 成年女人在线观看亚洲视频 | 亚洲欧美清纯卡通| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添av毛片| 一级毛片久久久久久久久女| 熟妇人妻久久中文字幕3abv| 久久精品久久精品一区二区三区| 熟妇人妻久久中文字幕3abv| 国产黄片视频在线免费观看| www.av在线官网国产| 午夜亚洲福利在线播放| 十八禁网站网址无遮挡 | 国产有黄有色有爽视频| 好男人视频免费观看在线| 欧美不卡视频在线免费观看| av卡一久久| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 国产伦一二天堂av在线观看| 亚洲精品久久午夜乱码| 欧美激情久久久久久爽电影| av卡一久久| 大香蕉久久网| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 六月丁香七月| 三级男女做爰猛烈吃奶摸视频| 欧美成人a在线观看| 色综合色国产| 嫩草影院入口| 国产高清不卡午夜福利| 一区二区三区乱码不卡18| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 日韩,欧美,国产一区二区三区| 一级二级三级毛片免费看| 久久亚洲国产成人精品v| 我要看日韩黄色一级片| 搞女人的毛片| 一二三四中文在线观看免费高清| 网址你懂的国产日韩在线| 在线观看免费高清a一片| 伦理电影大哥的女人| 一二三四中文在线观看免费高清| 免费av不卡在线播放| 18禁在线无遮挡免费观看视频| 亚洲av二区三区四区| 国产成人a∨麻豆精品| 久久久久久久久久久免费av| 97热精品久久久久久| 国产老妇女一区| 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 精品欧美国产一区二区三| 色网站视频免费| 一区二区三区乱码不卡18| 国产熟女欧美一区二区| 国内精品宾馆在线| av网站免费在线观看视频 | 精品熟女少妇av免费看| 在线免费十八禁| 久久久久久九九精品二区国产| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| 亚洲欧美中文字幕日韩二区| 日韩av不卡免费在线播放| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 国产精品一二三区在线看| 亚洲真实伦在线观看| 国产69精品久久久久777片| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 99热网站在线观看| 精品一区二区三卡| 激情 狠狠 欧美| 亚洲性久久影院| 天美传媒精品一区二区| 亚洲av二区三区四区| 一级毛片我不卡| 天堂中文最新版在线下载 | 99久国产av精品| 最新中文字幕久久久久| 天堂影院成人在线观看| xxx大片免费视频| 亚洲丝袜综合中文字幕| 欧美性感艳星| 亚洲色图av天堂| 97热精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 91在线精品国自产拍蜜月| 精品酒店卫生间| 欧美xxxx黑人xx丫x性爽| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 亚洲精华国产精华液的使用体验| 我的女老师完整版在线观看| 非洲黑人性xxxx精品又粗又长| 全区人妻精品视频| 国产综合精华液| 一级毛片aaaaaa免费看小| 亚洲美女视频黄频| 人妻系列 视频| 肉色欧美久久久久久久蜜桃 | 亚洲欧美清纯卡通| 国产成人freesex在线| 色综合站精品国产| av在线老鸭窝| 免费播放大片免费观看视频在线观看| 久久久久性生活片| 国产精品一区二区性色av| 亚洲精品影视一区二区三区av| 搞女人的毛片| 国产视频首页在线观看| 欧美97在线视频| 街头女战士在线观看网站| 国产精品久久久久久精品电影小说 | 秋霞伦理黄片| 听说在线观看完整版免费高清| 亚洲最大成人中文| 欧美日韩国产mv在线观看视频 | av天堂中文字幕网| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 一级av片app| 菩萨蛮人人尽说江南好唐韦庄| 亚洲在线观看片| 综合色av麻豆| 女人久久www免费人成看片| 午夜免费激情av| 精品人妻偷拍中文字幕| 蜜桃亚洲精品一区二区三区| 我的女老师完整版在线观看| 少妇的逼水好多| 青青草视频在线视频观看| 国产精品av视频在线免费观看| 亚洲精品中文字幕在线视频 | 亚洲精品456在线播放app| 精品久久久久久久久亚洲| 高清在线视频一区二区三区| 亚洲内射少妇av| 国产精品不卡视频一区二区| 欧美成人a在线观看| 寂寞人妻少妇视频99o| 韩国av在线不卡| 看非洲黑人一级黄片| 国产色爽女视频免费观看| a级毛片免费高清观看在线播放| 伊人久久精品亚洲午夜| 99久久精品国产国产毛片| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 国产精品国产三级国产av玫瑰| 午夜视频国产福利| 69av精品久久久久久| 你懂的网址亚洲精品在线观看| 国产黄色视频一区二区在线观看| 日韩中字成人| 又黄又爽又刺激的免费视频.| 亚洲精品国产成人久久av| 免费大片黄手机在线观看| 99久久精品国产国产毛片| 日日啪夜夜撸| 久久久久久久久久久丰满| 床上黄色一级片| 久久亚洲国产成人精品v| 国产成人a∨麻豆精品| 人妻夜夜爽99麻豆av| 亚洲成人一二三区av| 亚洲av.av天堂| a级一级毛片免费在线观看| 啦啦啦中文免费视频观看日本| 一级毛片黄色毛片免费观看视频| 韩国av在线不卡| 亚洲美女视频黄频| 天堂av国产一区二区熟女人妻| 少妇裸体淫交视频免费看高清| 国产男女超爽视频在线观看| 午夜激情欧美在线| 日本wwww免费看| 亚洲丝袜综合中文字幕| 欧美zozozo另类| 三级国产精品欧美在线观看| 国产一级毛片在线| 国产一区亚洲一区在线观看| 特级一级黄色大片| 99久久精品国产国产毛片| 蜜臀久久99精品久久宅男| 别揉我奶头 嗯啊视频| 国产一区二区亚洲精品在线观看| 欧美不卡视频在线免费观看| 国产精品一区www在线观看| 日韩中字成人| 免费人成在线观看视频色| 久久精品久久精品一区二区三区| 国产成人精品久久久久久| 欧美3d第一页| 亚洲自偷自拍三级| 国产探花极品一区二区| 老司机影院成人| 久久99蜜桃精品久久| 国产亚洲av片在线观看秒播厂 | 午夜精品一区二区三区免费看| 在线观看美女被高潮喷水网站| 日本免费在线观看一区| 色视频www国产| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜添av毛片| 男插女下体视频免费在线播放| 亚洲欧美精品专区久久| 男女那种视频在线观看| 18禁在线播放成人免费| 99视频精品全部免费 在线| 少妇人妻精品综合一区二区| www.色视频.com| kizo精华| 亚洲精品国产av成人精品| 国产av在哪里看| 乱码一卡2卡4卡精品| av在线天堂中文字幕| 日本免费在线观看一区| 国产精品伦人一区二区| 中文精品一卡2卡3卡4更新| 欧美激情国产日韩精品一区| 日韩亚洲欧美综合| 欧美bdsm另类| 午夜视频国产福利| 欧美xxxx黑人xx丫x性爽| 午夜福利在线在线| 久久久a久久爽久久v久久| 国产综合精华液| 日本黄大片高清| 久久久久久久大尺度免费视频| 777米奇影视久久| 九草在线视频观看| 国产人妻一区二区三区在| 久久精品夜夜夜夜夜久久蜜豆| 国产在线男女| 国语对白做爰xxxⅹ性视频网站| 久久99蜜桃精品久久| 国产成人精品一,二区| 久久精品久久精品一区二区三区| 久久久久久九九精品二区国产| 国产久久久一区二区三区| 久久久精品欧美日韩精品| 国产熟女欧美一区二区| 男人狂女人下面高潮的视频| 日韩av免费高清视频| 国产毛片a区久久久久| 亚洲欧美一区二区三区国产| 久久久久久久久大av| 欧美+日韩+精品| 国产片特级美女逼逼视频| 日韩不卡一区二区三区视频在线| 免费av观看视频| 99久久精品国产国产毛片| 亚洲精品成人久久久久久| 日韩欧美一区视频在线观看 | 久久久久久九九精品二区国产| 99久久人妻综合| av在线天堂中文字幕| 日本黄大片高清| 蜜桃久久精品国产亚洲av| 最近视频中文字幕2019在线8| 欧美xxⅹ黑人| 成年av动漫网址| 听说在线观看完整版免费高清| 永久网站在线| 免费看av在线观看网站| 精品久久久久久久久av| 色网站视频免费| 男人狂女人下面高潮的视频| 一级a做视频免费观看| 老司机影院毛片| 男人狂女人下面高潮的视频| 色哟哟·www| 在线天堂最新版资源| 国产精品伦人一区二区| 国产精品日韩av在线免费观看| 99视频精品全部免费 在线| 极品教师在线视频| 久久久精品94久久精品| 亚洲电影在线观看av| 日本黄色片子视频| 日本猛色少妇xxxxx猛交久久| 大陆偷拍与自拍| 国产精品久久久久久久久免| 成人特级av手机在线观看| 免费观看av网站的网址| 免费黄网站久久成人精品| 美女xxoo啪啪120秒动态图| 91久久精品电影网| 直男gayav资源| 嫩草影院新地址|