• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A memristive map with coexisting chaos and hyperchaos?

    2021-11-23 07:25:44SixiaoKong孔思曉ChunbiaoLi李春彪ShaoboHe賀少波
    Chinese Physics B 2021年11期

    Sixiao Kong(孔思曉) Chunbiao Li(李春彪) Shaobo He(賀少波)

    Serdar C?ic?ek4, and Qiang Lai(賴強(qiáng))5

    1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science&Technology,Nanjing 210044,China

    2School of Artificial Intelligence,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3School of Physics and Electronics,Central South University,Changsha 410083,China

    4Department of Electronic&Automation,Vocational School of Hac?bektas?,Nevs?ehir Hac? Bektas?Veli University,Hac?bektas?50800,Nevs?ehir,Turkey

    5School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China

    Keywords: memristor,hyperchaos,coexisting attractors,amplitude control,neural network

    1. Introduction

    The memristor[1]as the fourth component is used to construct the connection between magnetic flux and electric charge in circuits. Because of this special nonlinear function, memristor has become a research hot spot in fields of chaotic oscillation and computing applications.[2-6]In a continuous nonlinear dynamic system,multistable attractors[7-14]can be extracted via flexible selection of the initial state,which brings great convenience to applications of chaotic engineering. Liet al.[15,16]introduced trigonometric functions for constructing self-reproducing chaotic systems. Based on the Sprott B system[17]or the four-dimensional autonomous system,[18]various types of coexisting attractors are studied.Multistability can be identified through offset-boosting,[19]since multiple coexisting attractors can be visited by changing the offset accordingly.[20,21]For those circuits and systems with memristors,[22-28]complex chaotic behavior with extreme multistability can also be found. Even in discrete systems, the memristor still gives its nonlinearity for producing chaos.[29]Inspired by the continuous memristor, and discrete memristor in the literature,[30-33]discrete memristor and trigonometric functions are introduced in a discrete map for more possible hidden features. As a result, in this work, it is found that the introduction of discrete memristor and trigonometric functions can give complex dynamics including multistability in a discrete map. More regimes of coexistence, especially coexisting chaotic and hyperchaotic attractors,under different Lyapunov exponents are expected by this exaggerated nonlinear introduction.

    On the other hand, chaotic sequences also have great potential in radar and communication systems as continuous chaotic signals. For each application, the scale of a discrete sequence should meet the requirement of the integrated application system. Therefore, it is also important to control the discrete sequence accordingly. To the best of our knowledge,the amplitude control and offset-boosting of discrete mapping have not received enough attention even though they have been well studied in continuous systems. There is no related report on geometric control in discrete maps so far. For this reason,research of the control of amplitude and offset in chaotic maps is carried out.

    Furthermore, in the rapidly developing field of artificial intelligence, the research in this field has been gradually extended to nonlinear science including prediction of the solution from continuous chaotic systems and discrete maps. For predicting chaotic signal, Alataset al.introduced chaotic particle swarm optimization algorithm[34]and whale optimization algorithm.[35]In addition, the genetic algorithm is also introduced in chaotic systems.[36]Artificial neural network,[37-39]multistep neural network,[40]deep neural network,[41]and complex neural network[42]methods are also used for prediction of complex structures of nonlinear systems. Cryptography[43]and random number generators[44]further reflect the application of artificial intelligence in chaotic system engineering. It is often necessary to extract or recover the chaotic signal or sequences in a chaos application. The traditional approach for signal reconstruction is based on chaos synchronization.[45-47]As a new alternative way, here the prediction of hyperchaotic and chaotic sequences based on external factor input autoregressive neural network algorithm is technically realized for chaotic sequence reconstruction.

    Aim to reveal the coexistence of heterogeneous attractors related to periodic trigonometric functions,a memristive map with multistability is designed in this paper, where the initial state of the memristor cannot be ignored for picking out the present solution. In Section 2, the discrete memristor model and the constructed hyperchaotic map are given, and the stability of fixed points is also analyzed.In Section 3,the bifurcation property and typical phase trajectories are demonstrated.In Section 4, the multistability of the system is analyzed. In Section 5, the offset and amplitude control are discussed to further reveal the dynamic behavior of the system. In Section 6,the hyperchaos and other coexisting solutions are well predicted based on the NARX neural network(NARX:nonlinear auto-regressive model with exogenous inputs). Conclusions and discussions are given in the last section.

    2. A 2-D memristive hyperchaotic map

    2.1. A discrete memristor model

    The preliminary idea of discretization of continuous memristors was proposed in Refs. [29,30]. According to the relationship of voltagev(t) and currenti(t), a magnetic flux?(t)based on the forward Euler difference method,theni(t),?(t) andv(t) are changed to beim,?m,vm, the memristor mathematical model is defined as follows:

    where?m+1represents the(m+1)iteration of magnetic flux.For the following application, we leta= 1,b= 0.1 andk=0.4. In order to further prove the essential characteristics of the memristor,a discrete sinusoidal voltagevm=Asin(ωm)is selected as the terminal input. WhenA=0.1,ω=0.01,?0=0 the hysteresis loop shows up, as shown in Fig. 1(a).The hysteresis loop changes like the issue in the continuous system when the amplitude or frequency of the input signal increases, as shown in Figs. 1(b) and 1(c). More strikingly,whenA=0.1,ω=0.01, and?0=?0.5,?0=0,?0=0.5,the hysteresis loops that depend on initial condition are shown in Fig. 1(d). The numerical simulation proves the essential characteristics of a memristor.[1]

    Fig.1. The hysteresis loop of the discrete memristor(1)with sinusoidal input vm=Asin(ωm): (a)A=0.1,ω =0.01,?0=0,(b)ω =0.01,?0=0,(c)A=0.1,?0=0,(d)A=0.1,ω =0.01.

    2.2. A memristive hyperchaotic map

    Introducing trigonometric functions into a nonlinear system can produce infinitely many coexisting attractors, while the memristor as a new nonlinear element can promote the complexity. Here, by introducing the discrete memristor and trigonometric function,and a new two-dimensional map is obtained as

    The memristorWis applied for restraining the internal variableyrather than?in Eq. (1), and now correspondingly the state variablexcan be regarded as the voltagev. Heremis a natural number(0,1,2,3...),xmandymrepresents them-th state value,ais a system parameter,anda=0.

    2.3. Fixed point analysis

    In the discrete map, the stability characteristics are usually characterized by fixed points. The fixed points (x?,y?)satisfy the equation

    Therefore,

    whereβis an arbitrary constant,and the Jacobian matrix corresponding to Eq.(4)is

    Substituting Eq.(4)into Eq.(5),we have

    The eigenvalueλ1= 1 always lies on the unit circle.Becausea= 0 andβis any nonzero real number,λ2< 1,which is always in the unit circle, implying that the fixed point is stable. For the casea=1, whenβis in the range of [?20,?5.619]∪[?3.441,0], the eigenvalueλ2≤1, the fixed point is within the unit circle; whenβis in the range of (?5.619,?3.441), the eigenvalueλ2>1, the fixed point is unstable. For the casea= 2, whenβis in the range of [?20,?17.69]∪[?16.65,?11.87]∪[?9.913,?5.926]∪[?3.253,0], the eigenvalueλ2≤1, the fixed point is in the unit circle; whenβis in the range of (?17.69,?16.65)∪(?11.87,?9.913)∪(?5.926,?3.253), the eigenvalueλ2>1, the fixed point is unstable. For the casea= 4,whenβis in the range of [?20,?18.3]∪[?16.04,?12.18]∪[?9.552,?6.088]∪[?3.189,0], the eigenvalueλ2< 1, and the fixed point is in the unit circle; whenβis in the range of(?18.3,?16.04)∪(?12.18,?9.552)∪(?6.088,?3.189),the eigenvalueλ2>1, the fixed point is unstable. In conclusion,the fixed points of the hyperchaotic map are critically stable or unstable, depending on the values ofaandβ, as shown in Fig.2.

    Fig.2. The second eigenvalue of the fixed point swings with the parameter a.

    3. Bifurcation analysis

    Let initial condition (x0,y0)=(1,?2), when the system parameterachanges in the range of[1,4.2],the bifurcation diagram and corresponding Lyapunov exponents are shown in Fig.3.

    Fig. 3. Dynamical behavior of hyperchaotic map (2) under the initial condition (x0,y0)=(1,?2) when a varies in the range of [1,4.2]: (a)bifurcation diagram,(b)Lyapunov exponents.

    When the parameteraincreases,a period-doubling bifurcation shows up. Chaos and hyperchaos become the dominant oscillation with occasionally periodic windows, some typical phase trajectories are shown in Fig. 4. Lyapunov exponents and Kaplan-Yorke dimension are calculated based on Wolf’s algorithm,as listed in Table 1. We can see that for the hyperchaotic attractors,all Lyapunov exponents are positive.

    Fig.4. Typical phase trajectories of map(2)under the initial condition(x0,y0)=(1,?2): (a) a=3.00, closed quasi-periodic, (b) a=3.36,chaos,(c)a=3.40,discrete periodic points,(d)a=3.60,hyperchaos.

    Table 1. Detailed analysis of typical phase trajectories of the map (2)under the initial condition(x0,y0)=(1,?2).

    4. Coexisting chaos and hyperchaos

    In the memristive map, there are many coexisting solutions for the existence of trigonometric function and memristor. To find those coexisting attractors, the bifurcation diagram depending on the variation of the initial state is explored.Meanwhile, the corresponding Lyapunov exponents are obtained. As shown in Fig. 5, when the initial state varies in a certain range,various coexisting solutions are observed. Besides coexisting chaos and hyperchaos, more strikingly, here in fact,various chaotic attractors and different hyperchaotic attractors coexist together,which has not been reported in other systems.

    Typical phase portraits and the coexistence are displayed in Fig. 6 under the different parametersa. To get attractors more clearly, green, red, cyan and magenta, are selected to represent different phase trajectories. Four cases are considered in the following.

    Case 1a=3.00. As shown in Fig. 6(a), there are four classes of attractors, which are hyperchaotic attractor, quasiperiodic curve, chaotic attractor, and discrete periodic points when the initial conditions are(1,?8),(1,?6),(1,0),(1,10).

    Case 2a=3.36. As shown in Fig. 6(b), coexisting hyperchaotic attractors and chaotic attractors are seen when the initial conditions are(1,?18),(1,?12),(1,?5),(1,2).

    Fig.5. Dynamical behavior of map(2)under the initial condition(x0,y0)=(1,y0): (a)a=3.00,(b)a=3.36,(c)a=3.40,(d)a=3.60.

    Case 3a=3.40. As shown in Fig.6(c),there are discrete periodic points,hyperchaotic attractors,and chaotic attractors when the initial conditions are(1,?4),(1,3),(1,10),(1,13).

    Case 4a=3.60. As shown in Fig. 6(d), there are only coexisting chaotic attractors and hyperchaotic attractors when the initial conditions are(1,?10),(1,?6),(1,3),(1,9).

    Fig.6. Various regimes of multistability in map(2): (a)a=3.00,(b)a=3.36,(c)a=3.40,(d)a=3.60.

    All the above regimes of multistability can be indicated by the offset boosting under a fixed initial condition.[48]Suppose that the offset boosting is applied to the dimension ofy,

    In this case, the fixed initial point will pass by the moving basins of attraction induced by the offset boosting, consequently,various coexisting attractors show up leading to a couple of jumps among different Lyapunov exponents, as shown in Fig.7. The frequently happened switches of Lyapunov exponents confirm the coexistence of multiple dynamics.

    Fig.7. Multistability in map(9)detected by the offset boosting under the initial condition(x0,y0)=(1,?2), when q varies in[?10,10]: (a)a=3.00,(b)a=3.36,(c)a=3.40,(d)a=3.60.

    5. Offset-boosting and amplitude control

    The discrete map can be controlled in the offset and amplitude. Taking a substitution ofgx+p,hy+q(heregandhare for amplitude control,pandqare for offset boosting,g=0,h=0)in Eq.(2),

    Unlike those continuous systems, to realize the offsetboosting in a discrete map it is necessary to introduce two offset boosters at both sides of the equation. In particular,when the amplitude control is realized in Eq.(10),the offset boosterspandqget coupled with the amplitude controller. As a special case, wheng=h=1, offset boosting can be realized via

    As shown in Fig.8,whena=4.2 andp=q=0 are satisfied, the bipolar signal of the chaotic signalxandycan be obtained as shown in the green attractor. Due to the attracting domain of the system itself,adjusting the corresponding initial conditions (x0,y0) can help to get the offset of the attractor.Figure 8 gives the offset-boosting attractors in the dimension ofxandy. Corresponding waveforms are shown on the right,indicating that the offset can be switched flexibly from negative to positive. When the attractor is offset boosted,the corresponding basin of attraction shifts accordingly in phase space,as shown in Fig.9. Similarly,it can be seen from Fig.10 that the bifurcation diagram and Lyapunov exponents also illustrate the existence of offset-boosting.

    Fig.8. The offset-boosted attractors in map(11)under the initial condition(x0,y0)=(1?p, ?2?q):(a)x-dimension(cyan for p=8,q=0;green for p=0,q=0;magenta for p=?8,q=0),(b)y-dimension(red for p=0,q=4;green for p=0,q=0;blue for p=0,q=?4).

    Fig.9.Shifted basin of attraction in hyperchaotic map(11)with a=4.2 in[?12, 12](cyan for p=8;green for p=0;magenta for p=?8).

    Ignoring the offset constantsp,qand the amplitude controllerhin Eq.(10),a single amplitude control can be obtained in the dimension ofx,

    As shown in Fig. 11, in thex-dimension, the constantgcontrols the amplitude of the hyperchaotic attractor. There is a certain relation between offset-boosting and amplitude control,which influences the depth in offset boosting.

    Fig. 10. Independent bifurcations in map (11) under different offset boosting when the initial condition (x0,y0) = (1 ?p,?2) (cyan for p=8;green for p=0;magenta for p=?8): (a)bifurcation diagram,(b)Lyapunov exponents.

    Fig.11. The hyperchaotic map(12)with a=4.2 under the initial conditions (x0,y0)=(1,?2) (yellow for g=1; magenta for g=1.5; red for g=2;blue for g=2.5;green for g=3): (a)rescaled hyperchaotic attractors,(b)signal waveforms.

    6. System prediction with NARX neural network

    The NARX neural network essentially belongs to the category of artificial neural networks. In the NARX neural network structure, to achieve the desired effect, the number of layers, the number of neurons in each layer, the learning algorithm, and the activation function can be selected. Layers are connected via activation functions. We give the mathematical expression of the input-output relationship of the NARX model,revealing the relationship between the current value of the time series and the current and past values of external input,as follows:

    NARX neural networks show high performance in predicting the map based on the input and output of a dynamic system. The network model structure[49]is shown in Fig.12.Layer 1 represents the hidden layer,layer 2 represents the output layer,u(t) represents the input, and ?yrepresents the output,f1andf2activation functions, IW is the input weight,LW is the output weight,b1is the bias of the first layer(input bias),b2is the bias of the second layer (output bias), andtis the time step. The input and output data will be multiplied by the corresponding weights through the delay line (TDLtapped delay line),and the offset is added,the excitation function is used to further establish the connection so that the previous value of the independent input signalu(t) and the next value of the dependent output signaly(t) can establish a regression time-series relationship,thereby building a complete cyclic dynamic network. The specific mathematical expression of the NARX network model is given as follows:

    Fig.12. The structure diagram of the NARX neural network.

    The NARX neural network model predicts the memristive map as shown in Fig.13.

    Fig.13. The NARX neural network model.

    Table 2. The performance of the network with various learning algorithms and hidden layer neurons.

    Fig. 14. Performance of the network: (a) means square error of test network,(b)error histograms.

    Fig.15. The correlation of target and output.

    Fig. 16. The memristive map (2) with a = 3.00 for closed quasiperiodic, a=3.36 for chaos, a=3.40 for discrete periodic points and a=3.60 for hyperchaos: (a) phase trajectory of target attractors, (b)NARX neural network output.

    The network model has two inputs (x,y) and two outputs (x?,y?). The data obtained by the map in the simulation results under the given system parameters and initial conditions, where the data set 36000 data are used for training(60% of the data set), 12000 data are used for validation(20% of the data set) and 12000 data are used for testing(20% of the data set). The training set is used for training to optimize the model iteratively, while the validation set further optimizes the model by adjusting hyperparameters. The test sets further monitor the model effect without participating in the training process. Training, testing, and verification data are performed randomly. Provide 20000 sets of data to the network for testing, the hidden layer uses hyperbolic tangent as the activation function, and the output layer uses a linear function as the activation function.The network training uses three different learning algorithms,namely Levenberg-Marquardt, Bayesian regularization, and quantized conjugate gradient.By selecting the number of neurons in the hidden layer with different numbers of neurons,the performance of the three different training algorithms is compared. Table 2 shows the performance(mean square error)of the network under different learning algorithms and different numbers of hidden layer neurons. It can be seen that using the Levenberg-Marquardt learning algorithm and 15 neurons in the hidden layer gives the best results. The performance(mean square error)and error histogram of the tested network are shown in Fig.14. As shown in Fig.15,the correlation between the output data and the target data is measured, whereR=1 indicates that the output and target are closely related.In the experimental simulation process,the obtained mean square error value is 2.1712×10?9. Therefore, the trained network can predict the map based on this mean square error value.

    Table 3. Performance of the predicting of typical attractors.

    Fig.17. The memristive map(2)under different initial states: (a)phase trajectories of the target attractor,(b)NARX neural network output.

    Table 4. Performance of the predicting of coexisting attractors.

    Fig.18. The memristive map(11)under the initial conditions(x0,y0)=(1?p, ?2?q): (a)phase trajectories of target attractors,(b)output of NARX neural network prediction.

    Table 5. Performance of the predicting of offset-boosting attractors.

    Fig.19. The memristive map(12)with a=4.2 under the initial condition(x0,y0)=(1,?2): (a)phase trajectories of the target attractor with amplitude controlled,(b)NARX neural network prediction.

    Table 6. Performance of the predicting of amplitude controlled attractors.

    The algorithm is selected with the best training effect and the number of corresponding hidden layer neurons to predict the attractor phase trajectory of the map. Figure 16 gives the prediction comparison of the typical attractors’ phase trajectories; the multistability predictions are shown in Fig.17,the corresponding offset-boosting and amplitude modulation attractors’phase trajectories are shown in Figs.18 and 19. Tables 3-6 correspond to the predicted performance. Here, to better distinguish the phase trajectories,the real attractors(as the target)are marked in green and the predicted ones by the neural network are marked in red. From Figs. 16-19, the attractors’ phase trajectories are basically consistent with the corresponding NARX neural network prediction outputs, so the designed NARX neural network can successfully predict the hyperchaotic map.

    7. Conclusion

    When a discrete memristor and two trigonometric functions are applied in a discrete map, a novel map with coexisting chaos and hyperchaos is proposed, which also exhibits various regimes of multistability including the coexistence of quasi-periodic, chaotic, periodic, and hyperchaotic attractors.Numerical analysis shows that the emergence of multistability greatly depends on the initial conditions of the memristor.Furthermore,offset-boosting and amplitude control are discussed in detail by a linear transformation aiming at accelerating the application of chaotic sequences in radar and communication systems. The prediction based on NARX neural network verifies the consistency of numerical simulation and theoretical analysis. The application of memristive maps combined with image encryption algorithms[50-53]is expected soon.

    中文字幕制服av| 中文字幕最新亚洲高清| 精品福利观看| 久久亚洲精品不卡| 纵有疾风起免费观看全集完整版| 熟女少妇亚洲综合色aaa.| 色播在线永久视频| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久av网站| a在线观看视频网站| 婷婷丁香在线五月| 757午夜福利合集在线观看| 亚洲少妇的诱惑av| 99精国产麻豆久久婷婷| 99热网站在线观看| 亚洲专区字幕在线| 国产精品麻豆人妻色哟哟久久| 大陆偷拍与自拍| 99精品久久久久人妻精品| 伦理电影免费视频| av免费在线观看网站| 精品国产一区二区三区四区第35| 人成视频在线观看免费观看| 国产精品久久电影中文字幕 | 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 考比视频在线观看| 电影成人av| 一级片'在线观看视频| 日韩免费高清中文字幕av| 高清av免费在线| 在线观看舔阴道视频| 日韩免费av在线播放| 国产欧美亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文日韩欧美视频| 国产日韩欧美亚洲二区| 亚洲七黄色美女视频| 在线av久久热| 亚洲专区字幕在线| 国产主播在线观看一区二区| 交换朋友夫妻互换小说| 高清av免费在线| 美女国产高潮福利片在线看| 亚洲视频免费观看视频| 香蕉国产在线看| 精品第一国产精品| 久久久久久久大尺度免费视频| 亚洲久久久国产精品| 久久性视频一级片| 色视频在线一区二区三区| 欧美成人午夜精品| 亚洲精品美女久久久久99蜜臀| 亚洲五月婷婷丁香| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 免费观看人在逋| 成人国语在线视频| 黄色视频在线播放观看不卡| 深夜精品福利| tocl精华| 国产免费视频播放在线视频| 亚洲美女黄片视频| 国产福利在线免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 久久午夜亚洲精品久久| 黄色毛片三级朝国网站| 日韩成人在线观看一区二区三区| 麻豆av在线久日| 正在播放国产对白刺激| 国产欧美日韩一区二区三区在线| 久久人妻福利社区极品人妻图片| 国产亚洲欧美精品永久| 在线观看66精品国产| 考比视频在线观看| 99香蕉大伊视频| 9色porny在线观看| 一区二区三区乱码不卡18| 成人永久免费在线观看视频 | 色94色欧美一区二区| 中亚洲国语对白在线视频| 日本一区二区免费在线视频| 高清在线国产一区| 一区二区三区乱码不卡18| 精品国产超薄肉色丝袜足j| 国产又爽黄色视频| 91成年电影在线观看| 欧美日韩成人在线一区二区| 大码成人一级视频| 亚洲国产欧美网| 变态另类成人亚洲欧美熟女 | 亚洲午夜理论影院| 欧美黑人精品巨大| av福利片在线| 一本大道久久a久久精品| 国产xxxxx性猛交| 男女之事视频高清在线观看| 国产高清videossex| 亚洲精品在线美女| 丝袜美腿诱惑在线| 一级片'在线观看视频| 侵犯人妻中文字幕一二三四区| 国产一卡二卡三卡精品| 国产一区二区在线观看av| 午夜福利影视在线免费观看| 热99久久久久精品小说推荐| bbb黄色大片| 欧美乱码精品一区二区三区| 考比视频在线观看| 后天国语完整版免费观看| 一级毛片精品| 欧美在线黄色| 波多野结衣一区麻豆| 国产1区2区3区精品| 人人妻,人人澡人人爽秒播| 18禁美女被吸乳视频| √禁漫天堂资源中文www| 麻豆乱淫一区二区| 女人久久www免费人成看片| 极品人妻少妇av视频| 成人永久免费在线观看视频 | 久久青草综合色| 韩国精品一区二区三区| 电影成人av| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 亚洲一码二码三码区别大吗| 脱女人内裤的视频| 亚洲少妇的诱惑av| 这个男人来自地球电影免费观看| 午夜福利视频精品| 欧美变态另类bdsm刘玥| bbb黄色大片| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 人人妻人人澡人人看| 夜夜骑夜夜射夜夜干| 成年动漫av网址| 成人手机av| 少妇猛男粗大的猛烈进出视频| 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| 国产精品电影一区二区三区 | 亚洲精品中文字幕一二三四区 | 国产成人精品在线电影| 久久ye,这里只有精品| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久人妻精品电影 | 成人永久免费在线观看视频 | 丁香六月欧美| 欧美黑人精品巨大| 99久久精品国产亚洲精品| 热99国产精品久久久久久7| 1024香蕉在线观看| 桃花免费在线播放| 国产一区二区三区视频了| 99精国产麻豆久久婷婷| 丰满人妻熟妇乱又伦精品不卡| 悠悠久久av| 国产有黄有色有爽视频| 黄片播放在线免费| 日本五十路高清| 啪啪无遮挡十八禁网站| 日日夜夜操网爽| 亚洲欧美色中文字幕在线| 久久免费观看电影| 日日夜夜操网爽| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 午夜日韩欧美国产| 国产欧美日韩一区二区三| bbb黄色大片| 美女国产高潮福利片在线看| 人人妻人人澡人人爽人人夜夜| 亚洲avbb在线观看| 久久久久久久大尺度免费视频| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 丰满饥渴人妻一区二区三| 国产一区二区三区在线臀色熟女 | 在线av久久热| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 自拍欧美九色日韩亚洲蝌蚪91| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 久久人人爽av亚洲精品天堂| 亚洲第一av免费看| 国产国语露脸激情在线看| 成年人午夜在线观看视频| 亚洲成av片中文字幕在线观看| 国产成人免费观看mmmm| 黄色 视频免费看| 精品免费久久久久久久清纯 | 悠悠久久av| 国产免费福利视频在线观看| 中文字幕高清在线视频| 黄片小视频在线播放| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 叶爱在线成人免费视频播放| 黄片播放在线免费| 日韩精品免费视频一区二区三区| 亚洲成a人片在线一区二区| 国产亚洲av高清不卡| 亚洲av电影在线进入| 成人18禁在线播放| 午夜福利视频在线观看免费| 麻豆国产av国片精品| 在线十欧美十亚洲十日本专区| 精品少妇黑人巨大在线播放| 国产亚洲午夜精品一区二区久久| 在线观看人妻少妇| av福利片在线| 丰满饥渴人妻一区二区三| 少妇裸体淫交视频免费看高清 | 亚洲全国av大片| av在线播放免费不卡| 久久久久久久精品吃奶| 夫妻午夜视频| 精品福利观看| 他把我摸到了高潮在线观看 | 久热爱精品视频在线9| 精品人妻在线不人妻| 男女边摸边吃奶| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 午夜福利,免费看| tocl精华| 丰满少妇做爰视频| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 变态另类成人亚洲欧美熟女 | 女同久久另类99精品国产91| 日本a在线网址| 国产在线精品亚洲第一网站| av欧美777| 国产成人一区二区三区免费视频网站| 久久久精品区二区三区| 一级片免费观看大全| 午夜福利视频精品| 捣出白浆h1v1| 国产在线精品亚洲第一网站| 他把我摸到了高潮在线观看 | 久久中文看片网| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美日韩在线播放| 亚洲五月婷婷丁香| 一级a爱视频在线免费观看| 天天添夜夜摸| 一级毛片精品| 十八禁网站网址无遮挡| 精品第一国产精品| 热99久久久久精品小说推荐| 人妻久久中文字幕网| 在线亚洲精品国产二区图片欧美| 日本av免费视频播放| 激情在线观看视频在线高清 | 日韩大片免费观看网站| 超碰97精品在线观看| 亚洲黑人精品在线| 王馨瑶露胸无遮挡在线观看| 欧美日本中文国产一区发布| 国产精品一区二区在线不卡| 久久亚洲精品不卡| 成人三级做爰电影| 亚洲成人免费av在线播放| a在线观看视频网站| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 久久影院123| 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 国产成人影院久久av| 久久精品亚洲熟妇少妇任你| 午夜福利免费观看在线| 黄片播放在线免费| 欧美黄色片欧美黄色片| 成人影院久久| 国产不卡av网站在线观看| 欧美成人免费av一区二区三区 | avwww免费| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 精品一区二区三区四区五区乱码| 亚洲国产成人一精品久久久| 日本av免费视频播放| 久热爱精品视频在线9| 日本a在线网址| 9191精品国产免费久久| 亚洲人成77777在线视频| xxxhd国产人妻xxx| 欧美激情 高清一区二区三区| 亚洲avbb在线观看| 日韩精品免费视频一区二区三区| av网站在线播放免费| 新久久久久国产一级毛片| 午夜91福利影院| 精品人妻在线不人妻| 91麻豆av在线| 天天影视国产精品| 精品午夜福利视频在线观看一区 | 如日韩欧美国产精品一区二区三区| 一边摸一边抽搐一进一出视频| 丝袜美腿诱惑在线| 成人永久免费在线观看视频 | 国产精品一区二区精品视频观看| 久久久久久久精品吃奶| 老熟妇乱子伦视频在线观看| 精品福利永久在线观看| 国产精品国产高清国产av | 成年女人毛片免费观看观看9 | 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 亚洲欧美激情在线| 国产精品偷伦视频观看了| 黄色成人免费大全| 这个男人来自地球电影免费观看| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 九色亚洲精品在线播放| 男女边摸边吃奶| 成年版毛片免费区| 国产精品久久久久久人妻精品电影 | 日本精品一区二区三区蜜桃| 久久久久久久久免费视频了| 80岁老熟妇乱子伦牲交| 搡老乐熟女国产| 日韩欧美一区二区三区在线观看 | 国产av国产精品国产| 欧美黑人欧美精品刺激| 久久热在线av| 日韩精品免费视频一区二区三区| 国产精品免费大片| h视频一区二区三区| av网站在线播放免费| 丁香欧美五月| 精品午夜福利视频在线观看一区 | 亚洲人成伊人成综合网2020| 日本五十路高清| 午夜老司机福利片| 嫩草影视91久久| 99热国产这里只有精品6| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 丰满饥渴人妻一区二区三| 汤姆久久久久久久影院中文字幕| 丰满饥渴人妻一区二区三| 高清毛片免费观看视频网站 | 青青草视频在线视频观看| 国产91精品成人一区二区三区 | 五月开心婷婷网| 中文字幕av电影在线播放| 黄色视频不卡| 亚洲av片天天在线观看| 久久人妻福利社区极品人妻图片| 热99国产精品久久久久久7| 天堂中文最新版在线下载| 一本久久精品| 亚洲精品中文字幕一二三四区 | 欧美精品一区二区免费开放| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 好男人电影高清在线观看| 视频区图区小说| 欧美+亚洲+日韩+国产| 三级毛片av免费| 嫩草影视91久久| 久久这里只有精品19| 大型黄色视频在线免费观看| 亚洲成a人片在线一区二区| 新久久久久国产一级毛片| 久久这里只有精品19| 一区二区三区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 999久久久国产精品视频| 国产成人精品无人区| 精品国产乱子伦一区二区三区| 国产xxxxx性猛交| 99香蕉大伊视频| 国产精品99久久99久久久不卡| videosex国产| 多毛熟女@视频| 十八禁高潮呻吟视频| 成人手机av| 国产精品国产高清国产av | 欧美精品一区二区大全| 亚洲中文日韩欧美视频| 亚洲第一青青草原| av网站在线播放免费| 久久狼人影院| 制服人妻中文乱码| 99国产精品免费福利视频| 怎么达到女性高潮| 午夜福利在线免费观看网站| 欧美性长视频在线观看| 午夜福利在线观看吧| 亚洲中文字幕日韩| 在线观看免费午夜福利视频| 精品亚洲成国产av| 国产精品久久电影中文字幕 | 午夜福利在线免费观看网站| 99国产精品一区二区三区| cao死你这个sao货| 国产日韩欧美视频二区| 99香蕉大伊视频| 日韩欧美国产一区二区入口| 国产精品亚洲av一区麻豆| 国产xxxxx性猛交| 国产亚洲午夜精品一区二区久久| 深夜精品福利| 亚洲国产欧美网| 国产伦人伦偷精品视频| 国产精品98久久久久久宅男小说| 成年人黄色毛片网站| 国产欧美日韩一区二区三区在线| 夜夜夜夜夜久久久久| 在线观看一区二区三区激情| 多毛熟女@视频| 欧美黄色片欧美黄色片| 精品高清国产在线一区| 狠狠狠狠99中文字幕| 亚洲色图av天堂| 欧美日韩成人在线一区二区| 男人舔女人的私密视频| av又黄又爽大尺度在线免费看| 一区二区日韩欧美中文字幕| 高潮久久久久久久久久久不卡| 成人免费观看视频高清| 一本久久精品| 午夜福利在线观看吧| 亚洲精品国产区一区二| 99热网站在线观看| 欧美黑人精品巨大| xxxhd国产人妻xxx| 国产有黄有色有爽视频| 变态另类成人亚洲欧美熟女 | 久久国产精品男人的天堂亚洲| 国产成人啪精品午夜网站| 欧美老熟妇乱子伦牲交| 午夜福利视频精品| 亚洲一码二码三码区别大吗| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 99在线人妻在线中文字幕 | 国产成人系列免费观看| 男女高潮啪啪啪动态图| 欧美激情极品国产一区二区三区| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 亚洲av成人一区二区三| 欧美在线一区亚洲| 国产无遮挡羞羞视频在线观看| 99久久国产精品久久久| 久久狼人影院| 亚洲欧美日韩高清在线视频 | 亚洲专区国产一区二区| 亚洲人成电影免费在线| 欧美精品高潮呻吟av久久| 高清在线国产一区| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 欧美日韩视频精品一区| 丝袜喷水一区| 国产aⅴ精品一区二区三区波| 国产亚洲欧美在线一区二区| 成年人午夜在线观看视频| 国产精品偷伦视频观看了| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 国产不卡av网站在线观看| 免费一级毛片在线播放高清视频 | 999精品在线视频| 免费不卡黄色视频| 久久毛片免费看一区二区三区| 国精品久久久久久国模美| 肉色欧美久久久久久久蜜桃| 国产日韩欧美视频二区| 国产一区二区在线观看av| 精品一品国产午夜福利视频| 日日夜夜操网爽| 男女床上黄色一级片免费看| 在线观看舔阴道视频| 日韩人妻精品一区2区三区| 国产精品久久久久久精品古装| 女人精品久久久久毛片| 亚洲精品一二三| 男男h啪啪无遮挡| 亚洲欧美一区二区三区黑人| 999久久久精品免费观看国产| 老司机午夜十八禁免费视频| 国产免费av片在线观看野外av| 日日爽夜夜爽网站| 纵有疾风起免费观看全集完整版| 每晚都被弄得嗷嗷叫到高潮| 可以免费在线观看a视频的电影网站| 一进一出好大好爽视频| 亚洲午夜理论影院| 国产黄色免费在线视频| 日本五十路高清| 黄色丝袜av网址大全| 久久精品人人爽人人爽视色| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 日韩成人在线观看一区二区三区| 久久人妻av系列| 国产精品一区二区在线观看99| 下体分泌物呈黄色| 99香蕉大伊视频| 国产又色又爽无遮挡免费看| 国产av国产精品国产| 午夜两性在线视频| 国产麻豆69| 亚洲精品久久成人aⅴ小说| 国精品久久久久久国模美| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 午夜激情久久久久久久| 在线天堂中文资源库| 女性被躁到高潮视频| 如日韩欧美国产精品一区二区三区| 国产精品影院久久| 久久久久精品国产欧美久久久| 90打野战视频偷拍视频| 亚洲五月色婷婷综合| 日本vs欧美在线观看视频| kizo精华| 国产成+人综合+亚洲专区| 国产黄频视频在线观看| 色在线成人网| 色视频在线一区二区三区| 精品免费久久久久久久清纯 | 亚洲精品国产精品久久久不卡| 美女国产高潮福利片在线看| 国产欧美日韩综合在线一区二区| 国产高清激情床上av| 精品高清国产在线一区| 久久久久国内视频| 精品人妻1区二区| 成人18禁高潮啪啪吃奶动态图| 久久中文字幕一级| 亚洲精品国产区一区二| 一级片'在线观看视频| 国产午夜精品久久久久久| 手机成人av网站| 热99re8久久精品国产| 久久久欧美国产精品| 搡老熟女国产l中国老女人| 91国产中文字幕| 搡老岳熟女国产| 亚洲 欧美一区二区三区| 99国产精品一区二区蜜桃av | 日韩视频一区二区在线观看| 一边摸一边做爽爽视频免费| 18禁裸乳无遮挡动漫免费视频| 天堂动漫精品| 美女国产高潮福利片在线看| 国产成人一区二区三区免费视频网站| 一进一出好大好爽视频| av电影中文网址| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 99国产精品99久久久久| 最新的欧美精品一区二区| 亚洲美女黄片视频| 免费在线观看日本一区| av超薄肉色丝袜交足视频| 亚洲精品在线美女| 一进一出抽搐动态| 91成人精品电影| 成年女人毛片免费观看观看9 | 动漫黄色视频在线观看| 国产极品粉嫩免费观看在线| 亚洲黑人精品在线| 女同久久另类99精品国产91| 久久久国产成人免费| 精品亚洲成a人片在线观看| 高清av免费在线| 一本一本久久a久久精品综合妖精| 一区二区三区国产精品乱码| 国产免费福利视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产av又大| 免费看a级黄色片| 免费久久久久久久精品成人欧美视频| 国产91精品成人一区二区三区 | 免费女性裸体啪啪无遮挡网站| 12—13女人毛片做爰片一| 男女高潮啪啪啪动态图| 国产伦人伦偷精品视频| 国产欧美日韩一区二区三区在线| 国产人伦9x9x在线观看| 狠狠狠狠99中文字幕| 老熟女久久久| 我的亚洲天堂| 亚洲国产欧美一区二区综合| 十八禁高潮呻吟视频| 久久99热这里只频精品6学生| 最近最新免费中文字幕在线| 日韩成人在线观看一区二区三区| 中文字幕av电影在线播放| 亚洲人成电影观看| 国产又色又爽无遮挡免费看| 午夜91福利影院| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久欧美国产精品| 国产精品熟女久久久久浪|