• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots*

    2021-11-23 07:23:02GuoFengWu武國峰JunWang王俊WeiRongChen陳維榮LiNaZhu祝麗娜YuanQingYang楊苑青JiaChenLi李家琛ChunYangXiao肖春陽YongQingHuang黃永清XiaoMinRen任曉敏HaiMingJi季海銘andShuaiLuo羅帥
    Chinese Physics B 2021年11期

    Guo-Feng Wu(武國峰) Jun Wang(王俊) Wei-Rong Chen(陳維榮) Li-Na Zhu(祝麗娜)Yuan-Qing Yang(楊苑青) Jia-Chen Li(李家琛) Chun-Yang Xiao(肖春陽)Yong-Qing Huang(黃永清) Xiao-Min Ren(任曉敏) Hai-Ming Ji(季海銘) and Shuai Luo(羅帥)

    1State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: InAs/GaAs quantum dots,threading dislocation,finite element method,bending area

    1. Introduction

    With the advent of the era of big data and the rapid growth of internet information,communication networks are required to develop towards the high speed and large capacity.[1,2]Owing to the limitation of transmission bandwidth and power consumption, the traditional electrical interconnection cannot meet the development requirements for high-performance chips, and integrated optical interconnection on Si platform is considered as one of the effective ways to solve these problems.[3,4]As the core device of optoelectronic integration,heteroepitaxial laser on GaAs/Si template can integrate the advantages of the two materials to realize the Si-based monolithic integration of microelectronic devices and the GaAsbased optoelectronic devices,and it is widely used in the high bandwidth optical interconnection field.[5,6]

    However, the GaAs/Si heteroepitaxy encounters many difficulties, in which the major bottleneck problem required to be solved is the high-density threading dislocations (TDs)due to the substantial difference in lattice constants between the two materials. If there are a large number of dislocations in the epitaxial layer, the minority carriers will form non-radiation recombination before the population inversion,which will seriously affect the performance of laser.[7]Therefore, it is necessary to take measures to reduce the density of TDs.In the past 40 years,various methods have been proposed for TD bending, such as thermal cyclic annealing, patterning substrates, and using strained-layer superlattices (SLS) and QDs.[8-14]Compared with SLS, QDs have strong stress field as three-dimensional stress structures. A very strong Peach-Koehlor force will bend the dislocation energetically when a TD propagates close to a QD.[15-18]

    To reduce the TD density, the design of QD dislocation filters has attracted extensive attention. Experimentally,Wanget al. measured the dislocation density to be about 2×106cm?2by inserting five-layer InAs QDs dislocation filters into GaAs/Si film while the the dislocation density is 5×107cm?2in the sample without QDs.[19]By the theoretical analysis and further optimizing the experimental condition,Huet al. reduced dislocation density from 3×106cm?2to 9×105cm?2by combining the insertion of three-layer InAs QDs dislocation filters with the three-step growth method.[20]Theoretically,Yeet al.analyzed the TD bending in GaN/AlN QDs by using the finite element method(FEM),in which the misfit strain introduced by the edge dislocation is modeled by feeding Eshelby strain into this system.[21]Yanget al. used the position independent model (PIM) to calculate the bending area ratio of single InxGa1?xAs/GaAs QD.[18]Zhouet al.investigated the effect of InxGa1?xAs/GaAs QDs component on the obstruction of TDs by adopting FEM model.[22]

    In short, the dislocation density is reduced with using the embedded QDs dislocation filter, and the TD bending is observed by transmission electron microscopy (TEM). However,the effect of dislocation filters cannot be anticipated before the crystal growth. Evaluating the bending capability can not only help us to improve the performance of QD dislocation filters thereby avoiding the poor effect in experiment,but also shorten the experiment time and reduce cost. Whereas according to the reports,the theoretical study about edge dislocation is unsuitable for the analysis of TD bending in a GaAs/Si epitaxial system. The position of TD is ignored by the PIM method,but its position plays an important role in determining the elastic strain energy.[23]More importantly,these researches are limited to single QD, which cannot provide enough help for the design of dislocation filters in experiment.

    From what has been discussed above, in this study, the full consideration is devoted to the influence of dislocation position, and the finite element method (FEM) is used to establish the three-dimensional (3D) model of 60°TD, and the critical condition for TD inclination is studied. What is more,the method to evaluate the bending capability of single-layer QDs and multi-layer QDs is proposed.

    In the first part of this paper, the critical position for TD bending is determined by the FEM calculation.Next,the influence of cap layer thickness and QD base width are discussed,and the results indicate that the increase of them makes positive contribution to TD bending. Finally, the bending area ratio of single-layer QDs and the dislocation blocking ratio of multi-layer QDs (TDs impeded by QDs dislocation filter divide by the initial TDs)are predicted.

    2. Model and methods

    The previous researches show that the boundary effect can be effectively avoided if the volume of the substrate is much larger than QD,and the initial stress in the substrate can also be considered to be zero.[24-26]Therefore,we establish a cubic GaAs substrate with a size of 100 nm×100 nm×100 nm including 0.3-nm wetting layer(usually 1~2 monolayers[24]).A 4-nm-high tapered InAs QD is located in the center above the substrate. The width of the QD ranges from 8 nm-24 nm,and the thickness of cap layer is 5 nm. Note that the effect of cap layer thickness will be studied in the later section,in which the different thickness is also analyzed. In our work,Cartesian coordinates are adopted and the origin is seated the center of the substrate bottom. TheXaxis,Yaxis, andZaxis represent[110],[-110],and[001]directions,respectively,whereZdirection is the growth direction of QD as shown in Fig.1.

    Fig.1. Geometrical model of InAs/GaAs QD.

    Assume that there are two cases (1: TD enters into QD,2: TD inclination occurs), as shown in Fig. 2. The elastic strain energy of the whole structure is calculated by varying the arrival position of TD in QD base width. Then the critical position and the bending area ratio of single QD can be obtained when the energy of the two systems is equal.

    Fig.2. Two cases when TD arrives at base of QD.

    There is the stress caused by lattice mismatch and the stress induced by TD when TD enters into QD. The wellknown equation is adopted to calculate the elastic strain energy of the system.[22,27,31]In addition to the above two kinds of stress sources, the stress induced by MD should be taken into consideration,and thus the equation needs adjusting appropriately[22,31]and the corresponding elastic strain energy in this system can be computed. To make the solution convergent,the appropriate boundary conditions are imposed,and a reasonable numerical value is obtained.

    Through the calculation of the critical condition, we can obtain the bending area ratioAof single QD and the bending area ratio of single-layer QDM1is inferred to be

    whereSis the base area of single QD, andρis the density of QDs. Assuming that the TDs are uniformly distributed in the GaAs substrate and TD inclination occurs only when it reaches close to QD (neglecting the stress released by QDs formation[24]and the interaction between TDs), the dislocation blocking ratio ofn-layer QDs dislocation filterMncan be calculated from the following equations:

    Based on the above equations, the relationship between the number of the QDs layer and the blocking dislocation ratio can be speculated.

    3. Results and discussion

    In this section, the relationship between dislocation position and the elastic strain energy of InAs/GaAs QDs in the two isolated systems is explored. Then the effects of the cap layer thickness and the base width are investigated. Finally,the bending capability of the single-layer QDs and the multilayer QDs are discussed.

    As shown in Fig. 3, the corresponding elastic strain energyEthr(the elastic strained energy of the system when TD enters into QD)andEmis(the elastic strained energy of the system when TD inclination occurs) for a QD with 20-nm base width are calculated by changing the arrival position of TD from center to the boundary of the QD along theX-axis direction. When the TD enters into the QD without MD formation(the black curve as shown in Fig.3),it can be seen that the energy is significantly affected by the position TD reaching and it decreases as TD approaches to the edge of the QD. While the energy tends to fluctuate up and down slightly when TD inclination occurs (the red curve as shown in Fig. 3). Two curves intersect at 9 nm,which is considered to be the critical position. The left side of the intersection represents QD bending TD into interfacial MD, and then the bending area ratio(about 81%) can be further obtained. It is found that the TD bending occurs more easily when it reaches the center region of the QD.We speculate that this is due to the force QD loading on TD in the central region is stronger than that in the edge region,and MD is energetically favorable in this region.

    Fig.3. The relationship of the stain energies Ethr and Emis with the dislocation position.

    In order to explore the influence of cap layer thickness for TD bending,we fix the critical position in a range from 9 nm to 9.8 nm,then the cap layer thickness is adjusted to makeEthrandEmisequal.It is indicated in Fig.4 that the thickness of cap layer needs increasing with the critical position moving rightward. With the bending area ratio of single QD raised from 81%to 96%,the required thickness must increase from an initial value of 5 nm to 9.2 nm. And the computations show thatEthris much larger thanEmisin the whole range of QD base when the thickness of cap layer exceeds 10 nm. The result shows that heightening the thickness of cap layer can benefit the inclination of TD energetically,and this thickness selected in experiment to be almost more than 20 nm[18-20]is perfect enough.

    Fig.4. Relationship between cap layer thickness and critical position.

    Varying the base width from 8 nm to 24 nm and considering the 5-nm cap layer thickness, theEthrandEmisare calculated,and the results show that the relationship between the base width of QD and the bending area ratio of single QD is obtained. It can be seen from Fig.5 that the bending area ratio shows an overall upward trend in this interval,but a slight decrease at 14 nm. This ratio increases rapidly from 8 nm to 12 nm, and it goes up steadily from 14 nm to 20 nm. Within the range of the base width, the maximum bending area ratio reaches 85.56%. The changing pattern is well consistent with the analytical results[20](red points in the figure). However,there are some differences in quantitative value since we take TD position and cap layer into consideration.

    Fig. 5. The relationship between bending area ratio and base width of the single QD.

    By using Eq.(1)and taking the density of 1011cm?2into account, the bending area ratioversusbase width of singlelayer QDs is calculated and shown in Fig.6. The result shows that the bending area ratio keeps an upward tendency when the base width increases from 8 nm to 24 nm, and it rises up first slowly then rapidly in this range. The bending area ratio reaches its maximum value at 24 nm,i.e., roughly 38.71%.This is similar to the calculation result reported previously[20](red points in the figure).

    Fig. 6. Relationship between bending area ratio and base width of QD of single-layer QD.

    Also following Eqs.(2)-(5), the dislocation blocking ratio is predicted with taking a base width of 24 nm. The results are shown in Fig. 7, indicating that the dislocation blocking ratio increases with the layer number of QDs rising from one to five.But unlike the bending area ratio of single layer,the increase is gradually slow down and tends to be saturated.When the number of the layers is five, the blocking dislocation ratio rises up to 91.35%. This regular pattern demonstrates that about 3-5 embedded QD layers can reduce the QDs density sufficiently, which can be proven by the previous experimental results.[19,20]

    Fig.7. The relationship between blocking dislocation ratio and layer number of QD.

    4. Conclusions

    In this work, the TD bending with InAs/GaAs QDs is studied.The results show that TD bending is more likely to occur in the central area of QDs,and its critical position is about 9 nm,corresponding to the height and width of the QD of 4 nm and 20 nm, respectively. The TD bending can be strengthened by increasing the cap layer thickness and the base width.In addition, the method to calculate the bending area ratio of single-layer QDs and the blocking dislocation ratio of multilayers QDs are proposed.For QDs with a density of 1011cm?2and a base width of 24 nm, the bending area ratio of singlelayer QDs reaches 38.71%,and the blocking dislocation ratio rises up to 91.35%when using the five-layer embedded QDs.This research can accurately evaluate the bending effect at the beginning of the experiment, and thus providing reasonable guidance for designing the QD dislocation filter.Although this study is about 60°TD with InAs/GaAs QD,its method is also applicable to other systems with reasonable modification.

    中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 久久久久久久午夜电影| 在线观看午夜福利视频| 中文在线观看免费www的网站 | 欧美黄色片欧美黄色片| 日本一二三区视频观看| 男女那种视频在线观看| 亚洲专区国产一区二区| 国产一区二区在线观看日韩 | av中文乱码字幕在线| 天堂动漫精品| 丝袜人妻中文字幕| 日本一本二区三区精品| 色哟哟哟哟哟哟| 欧美午夜高清在线| a在线观看视频网站| 久久伊人香网站| 欧美性长视频在线观看| 国产成人系列免费观看| 叶爱在线成人免费视频播放| 亚洲人成伊人成综合网2020| 99精品在免费线老司机午夜| 午夜视频精品福利| 久久久久久久久久黄片| 一边摸一边抽搐一进一小说| 国产高清videossex| 一本大道久久a久久精品| 日韩欧美 国产精品| 久久精品国产清高在天天线| 99riav亚洲国产免费| 特大巨黑吊av在线直播| 精品福利观看| 午夜福利欧美成人| 男女视频在线观看网站免费 | 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 国产日本99.免费观看| 99精品在免费线老司机午夜| 18禁观看日本| 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 亚洲av成人精品一区久久| 国产乱人伦免费视频| 亚洲国产精品999在线| 午夜福利免费观看在线| 99热6这里只有精品| 可以在线观看毛片的网站| 亚洲电影在线观看av| 国产精品久久久久久精品电影| 亚洲av熟女| 成人国语在线视频| 欧美日韩国产亚洲二区| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放 | 国产不卡一卡二| 丝袜美腿诱惑在线| 欧美人与性动交α欧美精品济南到| 天堂影院成人在线观看| 中文资源天堂在线| 身体一侧抽搐| 久久亚洲精品不卡| 国产黄a三级三级三级人| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 成人特级黄色片久久久久久久| 国产av一区二区精品久久| 日韩av在线大香蕉| svipshipincom国产片| 日本熟妇午夜| av欧美777| 国产成人精品无人区| 可以免费在线观看a视频的电影网站| 亚洲国产日韩欧美精品在线观看 | 亚洲av成人精品一区久久| 中文亚洲av片在线观看爽| 一进一出好大好爽视频| 男插女下体视频免费在线播放| 正在播放国产对白刺激| 老司机靠b影院| 久久精品影院6| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 亚洲人成伊人成综合网2020| 曰老女人黄片| 五月玫瑰六月丁香| 久久久久性生活片| 日日夜夜操网爽| 久久精品人妻少妇| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 色尼玛亚洲综合影院| 一级毛片女人18水好多| 国产亚洲精品av在线| 国产精品99久久99久久久不卡| 亚洲全国av大片| av在线播放免费不卡| 亚洲av日韩精品久久久久久密| 麻豆av在线久日| 欧美丝袜亚洲另类 | 国产精品美女特级片免费视频播放器 | 极品教师在线免费播放| 亚洲国产中文字幕在线视频| 不卡一级毛片| 叶爱在线成人免费视频播放| 制服人妻中文乱码| 两个人的视频大全免费| 我要搜黄色片| 国产精品久久电影中文字幕| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 中文字幕最新亚洲高清| 色哟哟哟哟哟哟| 90打野战视频偷拍视频| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站| 国产亚洲欧美98| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| 老司机深夜福利视频在线观看| av欧美777| 禁无遮挡网站| 国产免费男女视频| 在线免费观看的www视频| 99精品久久久久人妻精品| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 日韩高清综合在线| 亚洲成av人片在线播放无| 丁香欧美五月| 久久午夜亚洲精品久久| 超碰成人久久| 在线永久观看黄色视频| 热99re8久久精品国产| 超碰成人久久| 国产av不卡久久| xxxwww97欧美| 国产亚洲av高清不卡| 老汉色av国产亚洲站长工具| 国产v大片淫在线免费观看| 亚洲专区国产一区二区| 久久久精品欧美日韩精品| 亚洲avbb在线观看| 好男人电影高清在线观看| 在线观看美女被高潮喷水网站 | 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 亚洲欧美精品综合久久99| 在线a可以看的网站| 亚洲精品色激情综合| 午夜激情福利司机影院| 777久久人妻少妇嫩草av网站| 欧美黄色片欧美黄色片| 欧美一级毛片孕妇| 一进一出抽搐gif免费好疼| 舔av片在线| 亚洲avbb在线观看| 久久久久久人人人人人| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 欧美午夜高清在线| 国产单亲对白刺激| 精品国产超薄肉色丝袜足j| 九九热线精品视视频播放| 婷婷丁香在线五月| 日本免费一区二区三区高清不卡| 亚洲黑人精品在线| 国产亚洲精品综合一区在线观看 | 国内精品久久久久精免费| 久久人人精品亚洲av| 夜夜爽天天搞| 亚洲av成人一区二区三| 国产精品香港三级国产av潘金莲| 热99re8久久精品国产| 老熟妇乱子伦视频在线观看| or卡值多少钱| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 午夜免费激情av| 在线国产一区二区在线| 88av欧美| 熟女少妇亚洲综合色aaa.| 久久精品91蜜桃| 亚洲狠狠婷婷综合久久图片| 欧美久久黑人一区二区| av国产免费在线观看| 毛片女人毛片| www日本在线高清视频| 亚洲av美国av| 一卡2卡三卡四卡精品乱码亚洲| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品第一综合不卡| 成人av在线播放网站| 不卡av一区二区三区| 国产成年人精品一区二区| 99久久精品国产亚洲精品| 婷婷精品国产亚洲av| 亚洲精品美女久久av网站| 首页视频小说图片口味搜索| 老司机靠b影院| 欧美成人性av电影在线观看| 亚洲成av人片在线播放无| 久久天堂一区二区三区四区| 国产成人欧美在线观看| 成人国产一区最新在线观看| 日本一二三区视频观看| 特级一级黄色大片| 亚洲国产欧美人成| 亚洲avbb在线观看| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 亚洲av日韩精品久久久久久密| 午夜成年电影在线免费观看| 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 老司机在亚洲福利影院| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久久久久久久| 国产精品影院久久| 在线观看免费日韩欧美大片| 亚洲色图av天堂| 免费高清视频大片| 国产精品永久免费网站| 一级a爱片免费观看的视频| 国产欧美日韩一区二区精品| 一边摸一边做爽爽视频免费| 亚洲七黄色美女视频| 脱女人内裤的视频| 91麻豆精品激情在线观看国产| av片东京热男人的天堂| 99久久久亚洲精品蜜臀av| 一个人免费在线观看的高清视频| 国产成人av教育| 正在播放国产对白刺激| 免费在线观看视频国产中文字幕亚洲| 欧美+亚洲+日韩+国产| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区四区五区乱码| 9191精品国产免费久久| 亚洲真实伦在线观看| 一a级毛片在线观看| 国产主播在线观看一区二区| 两个人视频免费观看高清| 欧美丝袜亚洲另类 | 免费搜索国产男女视频| 成人18禁在线播放| 亚洲成人免费电影在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲一卡2卡3卡4卡5卡精品中文| 可以在线观看毛片的网站| 日韩欧美国产一区二区入口| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器 | 首页视频小说图片口味搜索| 黄色成人免费大全| 床上黄色一级片| 在线看三级毛片| 少妇熟女aⅴ在线视频| 免费av毛片视频| 99热6这里只有精品| 婷婷精品国产亚洲av| 午夜福利免费观看在线| 在线播放国产精品三级| 大型黄色视频在线免费观看| 国产伦人伦偷精品视频| 国产精品永久免费网站| 每晚都被弄得嗷嗷叫到高潮| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 国产私拍福利视频在线观看| 国产久久久一区二区三区| 午夜影院日韩av| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 国产成人精品无人区| 久久久久久久久中文| 国产成年人精品一区二区| 亚洲国产精品久久男人天堂| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| 国产乱人伦免费视频| 最近视频中文字幕2019在线8| 免费观看精品视频网站| 久久精品国产清高在天天线| 精品久久久久久久久久久久久| 丁香欧美五月| 91麻豆av在线| 国产在线观看jvid| 首页视频小说图片口味搜索| 亚洲成人精品中文字幕电影| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av在线| 欧美乱妇无乱码| 黄色成人免费大全| 两个人视频免费观看高清| 亚洲国产日韩欧美精品在线观看 | 日韩欧美三级三区| xxx96com| 男女床上黄色一级片免费看| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 欧美在线黄色| 校园春色视频在线观看| 在线视频色国产色| 免费看日本二区| av天堂在线播放| 欧美日韩福利视频一区二区| 久久久久久九九精品二区国产 | 人人妻人人澡欧美一区二区| 成年免费大片在线观看| 欧美日本亚洲视频在线播放| 亚洲免费av在线视频| 神马国产精品三级电影在线观看 | 一级a爱片免费观看的视频| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 成人手机av| 午夜激情av网站| 亚洲七黄色美女视频| 亚洲专区字幕在线| 国产一区二区三区在线臀色熟女| 韩国av一区二区三区四区| 久久香蕉国产精品| 精品国内亚洲2022精品成人| 麻豆国产97在线/欧美 | 免费在线观看完整版高清| 色尼玛亚洲综合影院| avwww免费| 精品欧美一区二区三区在线| 国产一区在线观看成人免费| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 亚洲成人久久性| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 亚洲男人天堂网一区| 精品久久久久久久久久久久久| 久久精品人妻少妇| 国产精华一区二区三区| 黄色 视频免费看| 制服诱惑二区| 我的老师免费观看完整版| 欧美乱妇无乱码| 国产99白浆流出| 久久性视频一级片| 人妻夜夜爽99麻豆av| tocl精华| 亚洲全国av大片| 国产成人av教育| 伊人久久大香线蕉亚洲五| 亚洲人与动物交配视频| 精品人妻1区二区| 中文字幕精品亚洲无线码一区| 国产高清视频在线播放一区| 久久久精品国产亚洲av高清涩受| 婷婷精品国产亚洲av在线| 久久久久性生活片| 国产精品久久久av美女十八| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 最新美女视频免费是黄的| 久久中文看片网| 欧美大码av| 欧美日韩国产亚洲二区| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 51午夜福利影视在线观看| 国产精品乱码一区二三区的特点| 母亲3免费完整高清在线观看| 手机成人av网站| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 亚洲 国产 在线| bbb黄色大片| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| av国产免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 欧美一级a爱片免费观看看 | 亚洲专区字幕在线| 人成视频在线观看免费观看| 国产精品亚洲一级av第二区| 亚洲色图 男人天堂 中文字幕| 欧美日韩黄片免| 国产真实乱freesex| 日韩免费av在线播放| 午夜激情福利司机影院| 成人三级黄色视频| 99热这里只有精品一区 | 久久亚洲精品不卡| av片东京热男人的天堂| 欧美成人午夜精品| 99国产综合亚洲精品| 亚洲av电影不卡..在线观看| 少妇粗大呻吟视频| av超薄肉色丝袜交足视频| 成人精品一区二区免费| 国产精品久久久人人做人人爽| 国产v大片淫在线免费观看| 999久久久国产精品视频| a在线观看视频网站| 国产精品乱码一区二三区的特点| 国产精品九九99| 久久国产精品人妻蜜桃| 国产不卡一卡二| 亚洲欧美激情综合另类| 亚洲成人久久性| 十八禁人妻一区二区| 亚洲色图av天堂| 男女之事视频高清在线观看| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 国产激情久久老熟女| 亚洲专区中文字幕在线| 禁无遮挡网站| 嫩草影视91久久| 亚洲免费av在线视频| 国产又色又爽无遮挡免费看| 中文在线观看免费www的网站 | 香蕉久久夜色| a级毛片在线看网站| 在线观看www视频免费| 后天国语完整版免费观看| 国产三级中文精品| 91麻豆av在线| 精品乱码久久久久久99久播| 久久久久久久久中文| 午夜亚洲福利在线播放| 精品少妇一区二区三区视频日本电影| 国产av又大| 午夜福利在线在线| 国产精品久久电影中文字幕| 亚洲精品美女久久久久99蜜臀| 久久久久久久久中文| 亚洲精品中文字幕一二三四区| 一二三四在线观看免费中文在| 给我免费播放毛片高清在线观看| 99国产极品粉嫩在线观看| 老司机福利观看| 久久中文看片网| 色综合婷婷激情| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 午夜久久久久精精品| 色在线成人网| 男插女下体视频免费在线播放| 日韩精品中文字幕看吧| 亚洲精品中文字幕一二三四区| 亚洲av片天天在线观看| 国产三级黄色录像| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 亚洲成人久久爱视频| 悠悠久久av| 最近在线观看免费完整版| 亚洲精品在线美女| 俺也久久电影网| 国产精品亚洲一级av第二区| av超薄肉色丝袜交足视频| 岛国在线观看网站| 少妇裸体淫交视频免费看高清 | 日韩中文字幕欧美一区二区| cao死你这个sao货| 又黄又爽又免费观看的视频| 搡老妇女老女人老熟妇| 一级毛片高清免费大全| 久久久水蜜桃国产精品网| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 欧美最黄视频在线播放免费| 黄色视频不卡| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 国产伦在线观看视频一区| 久久人妻福利社区极品人妻图片| 国产成人精品久久二区二区免费| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 99久久精品热视频| 一卡2卡三卡四卡精品乱码亚洲| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 国产一区在线观看成人免费| 午夜福利成人在线免费观看| av在线播放免费不卡| 欧美另类亚洲清纯唯美| 亚洲美女视频黄频| 欧美国产日韩亚洲一区| 国产不卡一卡二| 亚洲男人的天堂狠狠| 国产主播在线观看一区二区| 欧洲精品卡2卡3卡4卡5卡区| 色综合亚洲欧美另类图片| 天堂影院成人在线观看| 国产91精品成人一区二区三区| 天堂影院成人在线观看| 国产精品,欧美在线| 91大片在线观看| 十八禁网站免费在线| 脱女人内裤的视频| 久久久久久国产a免费观看| 看黄色毛片网站| 听说在线观看完整版免费高清| 久久国产精品人妻蜜桃| 一二三四社区在线视频社区8| 免费在线观看日本一区| 天堂动漫精品| 欧美久久黑人一区二区| 亚洲av美国av| 亚洲欧美日韩高清在线视频| 亚洲精品美女久久久久99蜜臀| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 国产成人精品久久二区二区免费| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 国产成人精品久久二区二区91| 亚洲一区中文字幕在线| 色播亚洲综合网| 小说图片视频综合网站| 久久精品91无色码中文字幕| 熟女电影av网| 亚洲色图 男人天堂 中文字幕| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 精品电影一区二区在线| 成人av在线播放网站| 波多野结衣高清无吗| 99久久精品国产亚洲精品| 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 日本免费一区二区三区高清不卡| 久久这里只有精品19| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 美女免费视频网站| 日韩欧美在线二视频| 一a级毛片在线观看| 在线播放国产精品三级| 99久久精品热视频| 国产成人av激情在线播放| 变态另类丝袜制服| 一级毛片精品| 黄色视频,在线免费观看| 亚洲欧美日韩东京热| 国产精品久久视频播放| 身体一侧抽搐| 亚洲人成电影免费在线| 男女午夜视频在线观看| 人妻久久中文字幕网| 他把我摸到了高潮在线观看| 黄色a级毛片大全视频| 黄色视频不卡| 国产午夜精品论理片| 免费人成视频x8x8入口观看| 日本成人三级电影网站| 香蕉国产在线看| 亚洲av成人不卡在线观看播放网| 成年免费大片在线观看| av欧美777| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 人妻夜夜爽99麻豆av| 国产视频内射| 国内揄拍国产精品人妻在线| 两个人看的免费小视频| 九九热线精品视视频播放| 亚洲专区字幕在线| 大型av网站在线播放| 全区人妻精品视频| 后天国语完整版免费观看| 日本五十路高清| 精品日产1卡2卡| 国产91精品成人一区二区三区| 黄色a级毛片大全视频| 久久久久久国产a免费观看| 女人爽到高潮嗷嗷叫在线视频| 日韩av在线大香蕉| 999久久久精品免费观看国产| bbb黄色大片| 美女免费视频网站| 最新美女视频免费是黄的| 琪琪午夜伦伦电影理论片6080| 搞女人的毛片| www.www免费av| 日本免费一区二区三区高清不卡| 老司机午夜十八禁免费视频| 99re在线观看精品视频| 级片在线观看| 亚洲无线在线观看| 激情在线观看视频在线高清| 午夜福利视频1000在线观看|