• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ construction of amorphous/crystalline contact Bi2S3/Bi4O7 heterostructures for enhanced visible-light photocatalysis

    2021-11-19 05:40:32FeihuMuBenlinDiWeiZhoXiofnYngXiolongZhoXujingGuo
    Chinese Chemical Letters 2021年8期

    Feihu Mu,Benlin Di ,Wei Zho,Xiofn Yng,Xiolong Zho,Xujing Guo*

    a Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China

    b Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

    c College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China

    1 These authors contributed equally to this work.

    ABSTRACT Constructing a heterojunction photocatalyst is a significant method to enhance photocatalytic activity because it can promote the separation of photogenerated carriers.Herein,amorphous/crystalline contact Bi2S3/Bi4O7 heterostructure was successfully synthesized by in-situ sulfidation of Bi4O7.The amorphous Bi2S3 is diffused on the surface of Bi4O7 rod, enhancing the visible light response and improving the transport of photogenerated carriers.Various characterizations confirm that the rapid separation of photogenerated carriers leads to increased photocatalytic performance.The optimized Bi2S3/Bi4O7 heterostructure photocatalyst (BiS-0.15) exhibits the highest Cr(VI) reduction(0.01350 min-1) and RhB oxidation(0.08011 min-1)activity,which is much higher than that of pure Bi4O7 and Bi2S3/Bi4O7 mixture under visible light irradiation.This work provides new insights into the construction of efficient novel photocatalysts.

    Keywords:Photocatalysis Cr(VI) reduction Heterojunction Bismuth-based oxide Bismuth-based sulfide

    Nowadays,the discharge of wastewater containing heavy metal ions(such as Cr(VI),Hg(II),and Pb(II))and organic pollutants(such as toxic dyes,phenol,and naphthalene)is causing more and more environmental problems [1,2].Therefore, it is particularly important to remove these pollutants from wastewater.In the past few years, photocatalytic technology has been increasingly used in wastewater treatment [3-8].However, many semiconductor photocatalysts with wide bandgap (Eg) only absorb and utilize the ultraviolet region, which contributes 3%-5% to the solar spectrum[9-11].To use sunlight more efficiently,it is required to develop narrow Eg photocatalysts with a visible light response,because the visible light region accounts for about 43%of sunlight[12].Therefore,various new photocatalysts that can make full use of solar energy have been designed and explored [13-16].

    As a versatile photocatalyst, bismuth-based semiconductor materials, such as BiVO4, Bi2MoO6, BiOCl, BiOBr, BiOI, Bi2O2CO3,BiOIO3, and bismuth-based oxides, are widely used in photocatalytic processes [17-25].In particular, bismuth-based oxides(e.g.,α-Bi2O3,β-Bi2O3,γ-Bi2O3,δ-Bi2O3,Bi2O4,Bi2O2-x,Bi4O7,Bi6O7)have a strong visible light response, because the Bi-O system contains intermediate phases and the 6 s orbital of Bi3+can overlap the O 2p orbital [26-28].However, the recombination rate of carriers in these bismuth-based oxides is relatively fast, which hinders their photocatalytic activity.To solve this problem,constructing bismuth-based oxide heterojunction materials is an effective method [29-32].For example, Deng et al.synthesized BiOCl/Bi2O3/rGO heterojunction for photocatalytic treatment of real industrial wastewater.Due to the reasonable band gap match between BiOCl and Bi2O3, this Z-scheme BiOCl/Bi/Bi2O3/rGO heterojunction exhibited excellent photocatalytic performance[33].Hong et al.synthesized β-Bi2O3@g-C3N4heterojunction by self-assembly method.This Z-scheme heterojunction photocatalyst can significantly extend the lifetime of carriers and promote the separation of carriers.As a result,the sample containing 5 wt%g-C3N4(5% CN@BO) can efficiently degrade tetracycline (k =0.0311 min-1)[34].However,there are only a few studies on Bi4O7heterojunction [26,35-38], which need further exploration.

    Herein,amorphous/crystalline contact Bi2S3/Bi4O7heterostructure was constructed by in-situ sulfidation of Bi4O7(Fig.1a).Briefly,1.20 g NaBiO3?2H2O was dispersed into 40 mL water and put into a 50 mL autoclave, which was then heated at 180°C for 6 h.The resulting powders were collected, and taken into a crucible and heated at 250 ℃for 2 h with a heating rate of 2°C/min.After cooling,the Bi4O7product was prepared.Then,0.1 mmol Bi4O7was dispersed into 25 mL water and sonicated for 15 min.Subsequently, 10 mL thioacetamide solution (0.010 mmol) was added dropwise and reacted at 50°C for 5 h with stirring.Finally,the resulting Bi2S3/Bi4O7product was collected by centrifugation and labeled as BiS-0.10.In the case of other conditions unchanged,change the amount of thioacetamide solution to 15 mL(0.015 mmol) and 20 mL (0.020 mmol), the resulting products were labeled as BiS-0.15 and BiS-0.20, respectively.In this heterostructure, the amorphous Bi2S3boost the visible light response of Bi4O7and accelerate the photogenerated carrier transport.Under visible light irradiation, the amorphous/crystalline contact Bi2S3/Bi4O7exhibits excellent photocatalytic Cr(VI)reduction and rhodamine B (RhB) oxidation activity.

    Fig.1.(a) Schematic diagram of Bi2S3/Bi4O7 preparation.(b) XRD patterns of different photocatalysts.XPS spectra of Bi4O7 and BiS-0.15: (c) Bi 4f, (d) O 1s.

    Fig.2.FESEM images of(a)Bi4O7,(b)Bi2S3,(c)BiS-0.15,TEM(d)and HRTEM(e)images of BiS-0.15,(f)FESEM images of BiS-0.15 and SEM-EDS elemental mapping of(g)Bi element, (h) O element, and (i) S element.

    The crystal structures of different photocatalysts were studied by XRD.In Fig.1b,Bi4O7exhibits five characteristic XRD diffraction peaks at 27.4°,27.5°,28.1°,28.3°and 32.2°,which can be indexed to(22),(2),(22),(222)and(040)crystal planes of triclinic Bi4O7phase(JCPDS No.47-1058) [26,39], respectively.For Bi2S3, all peaks correspond to the orthorhombic Bi2S3phase (JCPDS No.17-0320)[40-42].In particular, the XRD patterns of the BiS-0.10, BiS-0.15,and BiS-0.20 composites show no characteristic peaks of Bi2S3,because Bi2S3is amorphous in these composites.Moreover, with the increase of Bi2S3content, the relative intensity of the Bi4O7diffraction peak in Bi2S3/Bi4O7composite decreases, and the relative intensity of the Bi4O7diffraction peak in BiS-0.20 is the lowest.

    The surface chemical state and composition of different photocatalysts were further detected by XPS.The survey spectra(Fig.S1 in Support information) indicate that only Bi and O elements are present in Bi4O7,while BiS-0.15 is composed of Bi,O,and S elements.In Fig.1c (Bi 4f spectra),both Bi 4f5/2and Bi 4f7/2can be divided into double peaks.For Bi4O7,the peaks at 158.3 and 163.7 eV are assigned to Bi3+,while the peaks at 158.8 and 164.2 eV are ascribed to Bi5+[36,43].However, the characteristic peaks of Bi3+are 158.7 and 164.1 eV, and the peaks of Bi5+are 159.5 and 164.9 eV over BiS-0.15.Noticeably,the peaks at 161.3 and 162.5 eV in BiS-0.15 are attributed to S 2p [44,45], which confirms the presence of Bi2S3in BiS-0.15.In Fig.1d,the O 1s peak of Bi4O7can be divided into three peaks, located at 529.7, 530.4, and 531.5 eV,respectively.The XPS peak at 529.7 eV belongs to lattice oxygen,while the peaks at 530.4 and 531.5 eV are ascribed to chemically adsorbed oxygen and physically adsorbed oxygen, respectively[26,46].However,these O 1s peaks are located at 529.9,530.6,and 531.8 eV in BiS-0.15,respectively.Therefore,compared with Bi4O7,the peaks of Bi 4f and O 1s in BiS-0.15 are shifted to high values,which demonstrates that there is a strong interaction between Bi4O7and Bi2S3.

    The morphologies of Bi4O7,Bi2S3,and BiS-0.15 were explored by field emission scanning electron microscopy (FESEM).Bi4O7exhibits a rod-like morphology (Fig.2a), while Bi2S3displays a needle-like morphology(Fig.2b).Fig.2c shows the typical FESEM image for BiS-0.15.Compared with the smooth surface of pure Bi4O7, the surface of BiS-0.15 becomes very rough, further indicating that Bi2S3is formed on the surface of Bi4O7after reaction with thioacetamide.Moreover,the microstructure of BiS-0.15 was further researched by TEM.In Fig.2d,a layer of Bi2S3is insitu formed on the surface of rod-like Bi4O7.In the HRTEM image of BiS-0.15 (Fig.2e), the fringe with a lattice spacing of 0.278 nm is characteristic to the(040)crystal plane of Bi4O7.This HRTEM image also confirms that Bi2S3is amorphous,which is in accordance with the XRD pattern.Additionally, in the scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS) elemental mapping(Figs.2f-i),the Bi,O,and S elements in BiS-0.15 are evenly dispersed,demonstrating that Bi2S3is uniformly dispersed on the surface of Bi4O7.

    The surface area of the obtained samples was evaluated by N2adsorption-desorption.In Fig.3a, all the samples exhibit type IV isotherms.The BET surface areas of Bi4O7, BiS-0.10, BiS-0.15, and BiS-0.20 are 2.94,7.95,8.76,and 9.32 m2/g,respectively.Therefore,the surface area of the Bi2S3/Bi4O7heterojunction is greater than that of Bi4O7, which is beneficial to the photocatalytic reaction.Moreover, the optical characteristic of as-prepared samples was studied by UV-vis diffuse reflectance spectroscopy(DRS)(Fig.3b).In the visible light region,Bi4O7has strong light absorption,and its absorption edge is estimated to be about 700 nm, while Bi2S3has stronger light absorption than that of Bi4O7.The light absorption properties of BiS-0.10,BiS-0.15,and BiS-0.20 are between Bi4O7and Bi2S3.Besides, the colors of Bi4O7and Bi2S3are brownish-red and black (Fig.3b, inset), respectively.With the increase of Bi2S3content,the color of Bi2S3/Bi4O7heterojunction gradually becomes darker.According to the curve of Fig.3c((αhv)2versus energy),the band gaps (Eg) of Bi4O7and Bi2S3are estimated to be 1.82 and 1.35 eV, respectively.

    Fig.3.(a)Nitrogen adsorption-desorption isotherms,(b)UV-vis DRS(the inset is the digital pictures),(c)the curve of(αhv)2 against energy(hv),the result of photocatalytic(d) Cr(VI) reduction and (e) RhB oxidation, (f) four recycling runs of BiS-0.15 for Cr(VI) reduction and RhB oxidation.

    The photocatalytic performance of Bi4O7, Bi2S3, BiS-0.10, BiS-0.15, BiS-0.20, and Bi2S3/Bi4O7physical mixture was studied by Cr(VI) reduction and RhB oxidation in water.To confirm the important roles of photocatalyst, blank experiments (in the absence of photocatalysts, self-degradation) were also performed under identical conditions.From Fig.3d,it can be observed that the self-degradation process of Cr(VI) can be neglected.Meanwhile,the Cr(VI) reduction rates of pristine Bi4O7and pristine Bi2S3are 51.3%and 45.8%,respectively.After the incorporation of Bi2S3,the degradation activity of BiS-0.10 increases significantly to 72.5%.Further increasing the amount of Bi2S3, the Cr(VI) reduction rates of BiS-0.15 and BIS-0.20 are 87.9% and 79.7%, respectively.In particular,BiS-0.15 exhibits the highest activity of Cr(VI)reduction.Noticeably, the photocatalytic activity of the Bi2S3/Bi4O7heterojunction is much higher than that of the Bi2S3/Bi4O7physical mixture (58.4%).These experimental results demonstrate that loading Bi2S3on the surface of Bi4O7can promote Cr(VI)reduction,and the optimal dosage of Bi2S3is 15%.In addition, this Cr(VI)reduction results conform to the pseudo-first-order dynamics model: ln(C0/Ct) = kappt [47].In Fig.S2 (Supporting information),the apparent reaction rate constants(kapp)of Bi4O7,Bi2S3,BiS-0.10,BiS-0.15, BiS-0.20 and Bi2S3/Bi4O7mixture are 0.00467, 0.00396,0.00819, 0.01350, 0.01023 and 0.00550 min-1, respectively.

    In Fig.3e,the self-degradation rate of RhB was only 4.3%,while the RhB oxidation rates of pristine Bi4O7and pristine Bi2S3are 51.8%and 45.5%,respectively.After the incorporation of Bi2S3,the RhB oxidation rate of BiS-0.10 increases significantly to 73.7%.In particular, BiS-0.15 exhibits the highest activity of photocatalytic RhB oxidation(99.2%).Further increasing the amount of Bi2S3,the oxidation rate of BIS-0.20 is reduced to 93.7%, which is similar to the result of Cr(VI) reduction.Noticeably, the photocatalytic RhB oxidation activity of the Bi2S3/Bi4O7heterojunction is much higher than that of the Bi2S3/Bi4O7physical mixture (59.1%).Moreover,these RhB oxidation results also conform to the pseudo-first-order dynamics model.In Fig.S3(Supporting information),the apparent reaction rate constants kappof Bi4O7, Bi2S3, BiS-0.10, BiS-0.15, BiS-0.20 and Bi2S3/Bi4O7mixture are 0.01154, 0.01009, 0.02124,0.08011, 0.04768 and 0.01531 min-1, respectively.

    In addition, the stability of the photocatalytic reaction on BiS-0.15 was evaluated.As shown in Fig.3f, after four cycles, the photocatalytic Cr(VI) reduction rate of BiS-0.15 is 81.4%, and the rate is 92.6%of the initial rate.This indicates that BiS-0.15 has good stability in photocatalytic Cr(VI)reduction.Moreover,BiS-0.15 also shows high stability in photocatalytic RhB oxidation since the oxidation rate is still up to 96.3%after four cycles.Besides,the XRD pattern (Fig.S4 in Supporting information) of BiS-0.15 shows no significant difference, demonstrating that the BiS-0.15 photocatalyst is structurally stable after photocatalytic cycles.

    The recombination rate of photogenerated carriers is an important parameter that affects the photocatalytic performance[48].The PL spectra can provide information about carrier recombination.Fig.4a exhibits the PL spectra of Bi4O7, BiS-0.10,BiS-0.15, and BiS-0.20 excited at 360 nm.The PL intensity of BiS-0.10, BiS-0.15, and BiS-0.20 is lower than that of Bi4O7, and BiS-0.15 has the lowest PL intensity.Therefore, the photogenerated carriers rapidly recombine over Bi4O7, while the photogenerated carriers over the Bi2S3/Bi4O7heterostructures are effectively separated due to interfacial charge transfer.

    In addition, photoelectrochemical techniques were employed to further study the interface charge separation of photocatalysts.As illustrated in Fig.4b (transient photocurrent responses), the photocurrent density of Bi4O7is low because of the rapid recombination of photogenerated carriers.The photocurrent intensity over BiS-0.15 is much higher than that over Bi4O7, BiS-0.10, and BiS-0.20, which indicates that the photogenerated carriers over BiS-0.15 can be separated rapidly.Fig.4c describes the electrochemical impedance spectroscopy (EIS) Nyquist plots for Bi4O7,BiS-0.10,BiS-0.15,and BiS-0.20.As an observation,the arc radius of BiS-0.15 is smaller than that of Bi4O7, BiS-0.10, and BiS-0.20,demonstrating that BiS-0.15 possesses a lower charge carrier transfer resistance.Noticeably, these EIS characterization results are consistent with the PL and transient photocurrent responses characterization results.In addition,these characterization results also agree with the results of photocatalytic Cr(VI) reduction experiments.

    Generally, reactive species are very important in the photocatalytic reaction process and directly determine the reaction mechanism.To study the reaction species of RhB oxidation, some trapping agents were added during the BiS-0.15 photocatalytic oxidation of RhB.Ammonium oxalate (AO), Benzoquinone (BQ),and isopropanol (IPA) were employed to trap h+, O2?-, and?OH,respectively,and the results are shown in Fig.4d.After the trapping agent is added,the photocatalytic oxidation is partially suppressed,and the photocatalytic oxidation efficiency value is reduced.The lower the photocatalytic oxidation efficiency value caused by the trapping agent,the more important the role of the corresponding reactive species in the photocatalytic oxidation.From Fig.4d,it is observed that with the addition of AO and BQ, the photocatalytic oxidation efficiency value of RhB is significantly decreased,indicating that h+and O2?-are the main reactive species.However,IPA has almost no effect on the photocatalytic oxidation efficiency value, demonstrating that?OH is not the main reactive species.

    Fig.4.(a)PL spectra,(b)transient photocurrent responses,(c)EIS Nyquist plots of Bi4O7,BiS-0.10,BiS-0.15,and BiS-0.20,(d)trapping experiments,(e)Mott-Schottky plots,(f)the proposed photocatalytic mechanism.

    Furthermore, the band structures of Bi4O7and Bi2S3were measured by Mott-Schottky plots.In Fig.4e, the flat band potentials (EFB) of Bi4O7and Bi2S3are 0.77 and -0.55 V vs.Ag/AgCl,that is,0.97 and-0.35 V vs.NHE,respectively.In general,the EFBof an n-type semiconductor is close to the conduction band potential(ECB)[49],so the conduction band potentials of Bi4O7and Bi2S3are estimated to be 0.97 and -0.35 V vs.NHE, respectively.Furthermore, the valence band potentials (EVB) of Bi4O7and Bi2S3can be calculated to be 2.79 and 1.00 V vs.NHE, respectively,because the Eg of Bi4O7and Bi2S3is 1.82 and 1.35 eV (Fig.3c),respectively.

    If the electrons are transported from the CB of Bi2S3to the CB of Bi4O7,while the holes are transported from the VB of Bi4O7to the VB of Bi2S3.Since the ECBof Bi4O7(0.97 V vs.NHE)is more positive than the potential of O2/O2?-(-0.33 V vs.NHE), the CB of Bi4O7cannot generate O2?-radicals, conflicting the above reactive species trapping experiments.Therefore, it is concluded that electrons are transferred from the CB of Bi4O7to the VB of Bi2S3.Based on the above analysis,a probable photocatalytic mechanism is proposed(Fig.4f).Under visible light irradiation,both Bi2S3and Bi4O7are excited,thereby generating photogenerated electrons in their CB and photogenerated holes in their VB.The electrons on the CB of Bi4O7tend to be transmitted to the VB of Bi2S3.The electrons in the CB of Bi2S3react with O2to form O2?-,while the holes in the VB of the Bi4O7react with the H2O to produce the?OH.Then, the formed O2?-,?OH,e-,and h+participate in the photocatalytic Cr(VI)reduction and RhB oxidation.

    In summary,amorphous/crystalline contact Bi2S3/Bi4O7photocatalyst was successfully constructed by the in-situ reaction of thioacetamide with Bi4O7.Compared with pure Bi4O7and Bi2S3/Bi4O7mixture, the amorphous/crystalline contact Bi2S3/Bi4O7heterostructure shows superior photocatalytic Cr(VI) reduction and RhB oxidation activity.In particular, BiS-0.15 exhibits the highest photocatalytic activity,and the kappof Cr(VI)reduction and RhB oxidation are 0.01350 and 0.08011 min-1, respectively.The boosted photocatalytic activity is attributed to the effective separation of photogenerated carriers.The photocatalytic process is further supported by PL spectra, transient photocurrent responses, and EIS experimental results.This work is expected to provide valuable insights into the preparation of effective novel photocatalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51808250, 51676082), the Natural Science Foundation of Jiangsu Province of China(Nos.BK20160430,BK20181070), the Jiangsu Planned Projects for Postdoctoral Research Funds of China (No.1601179C), the Project Funded by China Postdoctoral Science Foundation (Nos.2016M591757,2017M610336), and Jiangsu Key Research and Development(R&D) Projects (Social Development, No.BE2020772).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version, at doi:https://doi.org/10.1016/j.cclet.2020.12.016.

    亚洲丝袜综合中文字幕| 午夜免费激情av| 麻豆乱淫一区二区| 青春草视频在线免费观看| 亚洲中文日韩欧美视频| 1000部很黄的大片| 亚洲一级一片aⅴ在线观看| 综合色av麻豆| 精品一区二区三区视频在线| 又爽又黄无遮挡网站| 精品久久久久久久久久免费视频| 久久亚洲国产成人精品v| 中文亚洲av片在线观看爽| 亚洲精品一区av在线观看| 香蕉av资源在线| 超碰av人人做人人爽久久| 99久国产av精品国产电影| 性欧美人与动物交配| 精品久久久久久久久久免费视频| 国产亚洲精品久久久久久毛片| 日韩人妻高清精品专区| 哪里可以看免费的av片| 毛片女人毛片| 亚洲国产精品国产精品| 免费无遮挡裸体视频| 日韩一本色道免费dvd| 菩萨蛮人人尽说江南好唐韦庄 | 国产毛片a区久久久久| 久久久久久九九精品二区国产| 国产高清激情床上av| 国产一区二区激情短视频| 久久韩国三级中文字幕| 亚洲欧美精品综合久久99| 欧美潮喷喷水| 国产一级毛片七仙女欲春2| 欧美bdsm另类| 岛国在线免费视频观看| 亚洲欧美精品综合久久99| 久久久欧美国产精品| 中文亚洲av片在线观看爽| 亚洲成人中文字幕在线播放| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 天堂影院成人在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲真实伦在线观看| 国产男人的电影天堂91| 99久国产av精品国产电影| 亚洲不卡免费看| 少妇猛男粗大的猛烈进出视频 | 青春草视频在线免费观看| 波野结衣二区三区在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人av| 男人和女人高潮做爰伦理| 亚洲美女搞黄在线观看 | 一区二区三区免费毛片| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| 国产高清视频在线播放一区| 国内揄拍国产精品人妻在线| 成人漫画全彩无遮挡| 永久网站在线| 人人妻,人人澡人人爽秒播| 精品午夜福利在线看| 夜夜爽天天搞| 国产av一区在线观看免费| 久久久久久久久久成人| 欧美日韩在线观看h| 淫秽高清视频在线观看| 国产中年淑女户外野战色| 亚洲av成人精品一区久久| 欧美最新免费一区二区三区| 亚洲欧美日韩无卡精品| 亚洲av一区综合| 亚洲人与动物交配视频| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 日韩欧美三级三区| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| 亚洲在线观看片| 亚洲在线观看片| 免费观看精品视频网站| 久久精品国产亚洲av涩爱 | 亚洲国产精品合色在线| 国产精品久久久久久久电影| 久久精品91蜜桃| 成年女人看的毛片在线观看| 在线天堂最新版资源| 日本黄色视频三级网站网址| 国产一级毛片七仙女欲春2| 亚洲成人久久性| 久久久久久九九精品二区国产| 大型黄色视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 日本五十路高清| 深夜a级毛片| 少妇被粗大猛烈的视频| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 欧美一级a爱片免费观看看| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 国产精品伦人一区二区| 亚洲成人av在线免费| 香蕉av资源在线| 亚洲av免费高清在线观看| 国产精品电影一区二区三区| 又粗又爽又猛毛片免费看| 激情 狠狠 欧美| 美女高潮的动态| 又黄又爽又免费观看的视频| 热99在线观看视频| 男人的好看免费观看在线视频| 久久久a久久爽久久v久久| 两个人的视频大全免费| 乱人视频在线观看| 精品人妻一区二区三区麻豆 | 舔av片在线| 美女高潮的动态| 国产毛片a区久久久久| www.色视频.com| 免费观看的影片在线观看| 亚洲人成网站高清观看| 日本五十路高清| 亚洲av第一区精品v没综合| 极品教师在线视频| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 午夜精品在线福利| 亚洲国产日韩欧美精品在线观看| 久久国产乱子免费精品| 一本久久中文字幕| 在线国产一区二区在线| 国产不卡一卡二| 日日摸夜夜添夜夜爱| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕 | 久久午夜福利片| 99热这里只有是精品50| 免费看a级黄色片| 丝袜美腿在线中文| 青春草视频在线免费观看| 人人妻,人人澡人人爽秒播| 两个人视频免费观看高清| 天堂影院成人在线观看| 婷婷精品国产亚洲av在线| 在线观看美女被高潮喷水网站| 欧美另类亚洲清纯唯美| 寂寞人妻少妇视频99o| 亚洲精品国产成人久久av| 国产精品美女特级片免费视频播放器| 亚洲在线自拍视频| 亚洲中文字幕一区二区三区有码在线看| 五月伊人婷婷丁香| 超碰av人人做人人爽久久| 欧美色视频一区免费| 一卡2卡三卡四卡精品乱码亚洲| 国产欧美日韩精品一区二区| 三级经典国产精品| 精品久久久久久久久亚洲| 亚洲av成人av| 国内精品宾馆在线| 亚洲欧美日韩高清在线视频| 久久亚洲国产成人精品v| 亚洲一区二区三区色噜噜| 国内揄拍国产精品人妻在线| 激情 狠狠 欧美| 日韩高清综合在线| 亚洲图色成人| av福利片在线观看| 成人国产麻豆网| 成人特级av手机在线观看| 成人无遮挡网站| a级毛色黄片| 精品久久久久久久久久免费视频| 欧美激情久久久久久爽电影| 亚洲精品亚洲一区二区| 最近中文字幕高清免费大全6| 乱码一卡2卡4卡精品| 中文字幕av成人在线电影| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满| 成人毛片a级毛片在线播放| 深爱激情五月婷婷| 最近最新中文字幕大全电影3| 久久热精品热| 18禁裸乳无遮挡免费网站照片| 国产激情偷乱视频一区二区| 久久国产乱子免费精品| 人妻少妇偷人精品九色| av天堂中文字幕网| 狂野欧美激情性xxxx在线观看| 人妻久久中文字幕网| 亚洲电影在线观看av| 露出奶头的视频| 成年av动漫网址| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 亚洲人成网站高清观看| 一a级毛片在线观看| 国产精品嫩草影院av在线观看| 欧美日本视频| 精品午夜福利在线看| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 嫩草影院精品99| 久久久久精品国产欧美久久久| 嫩草影视91久久| 夜夜爽天天搞| a级一级毛片免费在线观看| 日韩欧美精品v在线| 中国美女看黄片| 成人综合一区亚洲| 欧美日本亚洲视频在线播放| 国模一区二区三区四区视频| 亚洲中文日韩欧美视频| 久久婷婷人人爽人人干人人爱| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 色哟哟·www| 欧美另类亚洲清纯唯美| 2021天堂中文幕一二区在线观| 性色avwww在线观看| 欧美日本视频| 有码 亚洲区| 免费黄网站久久成人精品| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 亚洲国产日韩欧美精品在线观看| 国产精品一及| 久久久国产成人精品二区| 精品熟女少妇av免费看| 免费人成视频x8x8入口观看| 日韩一区二区视频免费看| 夜夜夜夜夜久久久久| av福利片在线观看| 18禁在线播放成人免费| 青春草视频在线免费观看| 男人舔女人下体高潮全视频| 亚洲成人久久爱视频| 国语自产精品视频在线第100页| 久久久久久久午夜电影| 久久久精品大字幕| 久久99热这里只有精品18| 在线免费观看不下载黄p国产| 亚洲色图av天堂| 丰满乱子伦码专区| 天堂网av新在线| 婷婷色综合大香蕉| 99热全是精品| 一进一出抽搐gif免费好疼| 日日摸夜夜添夜夜爱| 国产在线男女| 高清日韩中文字幕在线| 成年av动漫网址| 日日啪夜夜撸| 国产精品一区www在线观看| 国产白丝娇喘喷水9色精品| 欧美性猛交黑人性爽| 尤物成人国产欧美一区二区三区| av中文乱码字幕在线| 日本一二三区视频观看| 网址你懂的国产日韩在线| 国产一区二区三区在线臀色熟女| 级片在线观看| 男女做爰动态图高潮gif福利片| 午夜激情欧美在线| 亚洲第一区二区三区不卡| 男女之事视频高清在线观看| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 欧美成人精品欧美一级黄| 成人av一区二区三区在线看| 嫩草影院入口| 搡老熟女国产l中国老女人| 午夜福利18| 美女xxoo啪啪120秒动态图| 极品教师在线视频| 变态另类成人亚洲欧美熟女| 欧美一区二区亚洲| 中文字幕av在线有码专区| 99久久精品热视频| 校园春色视频在线观看| 亚洲成人精品中文字幕电影| 久99久视频精品免费| 在线天堂最新版资源| 99国产精品一区二区蜜桃av| 欧美高清成人免费视频www| 在线免费观看的www视频| 国产一区二区激情短视频| 亚洲美女搞黄在线观看 | 午夜福利成人在线免费观看| 人人妻,人人澡人人爽秒播| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 一区二区三区四区激情视频 | 欧美日本亚洲视频在线播放| 亚洲国产精品成人久久小说 | 精品乱码久久久久久99久播| 中文字幕免费在线视频6| 人人妻,人人澡人人爽秒播| 久久久色成人| 日本黄大片高清| 欧美成人一区二区免费高清观看| 欧美绝顶高潮抽搐喷水| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 99热只有精品国产| 国产综合懂色| 国产精品久久久久久精品电影| 成人二区视频| 成人三级黄色视频| 成年免费大片在线观看| 国产乱人视频| 午夜精品在线福利| 寂寞人妻少妇视频99o| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 美女cb高潮喷水在线观看| 伦理电影大哥的女人| 99九九线精品视频在线观看视频| 美女被艹到高潮喷水动态| 黑人高潮一二区| 亚洲图色成人| 日韩欧美一区二区三区在线观看| 晚上一个人看的免费电影| 亚洲乱码一区二区免费版| 人妻少妇偷人精品九色| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 日韩在线高清观看一区二区三区| 国国产精品蜜臀av免费| 国产av麻豆久久久久久久| 亚洲一级一片aⅴ在线观看| 直男gayav资源| 国产一区二区在线观看日韩| 性欧美人与动物交配| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 亚洲欧美清纯卡通| 国产视频一区二区在线看| 亚洲av熟女| 欧美日韩国产亚洲二区| 日韩欧美免费精品| 免费看光身美女| 中国国产av一级| 亚洲av中文字字幕乱码综合| 欧美精品国产亚洲| 中文字幕久久专区| 国产精品,欧美在线| 国产av一区在线观看免费| 日韩精品有码人妻一区| 亚洲第一电影网av| 国产精品,欧美在线| 日韩欧美国产在线观看| 亚洲av美国av| 黄色欧美视频在线观看| 欧美精品国产亚洲| 免费一级毛片在线播放高清视频| 免费高清视频大片| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 看片在线看免费视频| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 在线a可以看的网站| av视频在线观看入口| 人妻制服诱惑在线中文字幕| 欧美日韩乱码在线| 黄色一级大片看看| 亚洲五月天丁香| .国产精品久久| 午夜福利在线观看吧| av天堂中文字幕网| 禁无遮挡网站| 精品一区二区三区人妻视频| 日本一二三区视频观看| 免费在线观看影片大全网站| 男人和女人高潮做爰伦理| 寂寞人妻少妇视频99o| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 久99久视频精品免费| 日韩一本色道免费dvd| 午夜激情福利司机影院| 午夜福利18| 又爽又黄无遮挡网站| 久久人人精品亚洲av| 免费看av在线观看网站| 少妇丰满av| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久| 国产乱人偷精品视频| 亚洲精品成人久久久久久| 好男人在线观看高清免费视频| 91在线观看av| 国产成人福利小说| 国产色爽女视频免费观看| 日韩欧美精品v在线| 最近在线观看免费完整版| 天天一区二区日本电影三级| 国产一区二区激情短视频| 亚洲国产精品国产精品| www日本黄色视频网| 99在线视频只有这里精品首页| 成年版毛片免费区| 校园人妻丝袜中文字幕| 少妇的逼水好多| 亚洲av.av天堂| 久久精品国产99精品国产亚洲性色| 精品一区二区三区人妻视频| 一区二区三区免费毛片| 少妇高潮的动态图| 岛国在线免费视频观看| 国产亚洲精品久久久久久毛片| 亚洲最大成人手机在线| 嫩草影视91久久| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 中文在线观看免费www的网站| 久久中文看片网| 午夜精品一区二区三区免费看| 精品久久国产蜜桃| 搞女人的毛片| 欧美成人一区二区免费高清观看| 不卡一级毛片| 99热全是精品| 最新中文字幕久久久久| 久久久久久久亚洲中文字幕| 亚洲精品粉嫩美女一区| 亚洲无线观看免费| 99久久无色码亚洲精品果冻| 日本黄色视频三级网站网址| 亚洲成人久久爱视频| 免费人成在线观看视频色| 97在线视频观看| 国产伦在线观看视频一区| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看 | 一边摸一边抽搐一进一小说| 国产高潮美女av| 午夜激情欧美在线| eeuss影院久久| 亚洲国产精品国产精品| 床上黄色一级片| 国产在线男女| 日本爱情动作片www.在线观看 | 人妻少妇偷人精品九色| 人人妻人人澡欧美一区二区| 女人被狂操c到高潮| 亚洲美女视频黄频| 国产aⅴ精品一区二区三区波| 日本精品一区二区三区蜜桃| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美| 亚洲无线观看免费| 国产精品久久视频播放| av.在线天堂| 最近2019中文字幕mv第一页| av国产免费在线观看| 国产亚洲欧美98| 搡女人真爽免费视频火全软件 | 亚洲成人中文字幕在线播放| 观看免费一级毛片| 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 亚洲国产精品成人综合色| 在线观看66精品国产| 1024手机看黄色片| 久久欧美精品欧美久久欧美| 欧美极品一区二区三区四区| 免费电影在线观看免费观看| 可以在线观看毛片的网站| 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 国产精品一区www在线观看| 精品人妻视频免费看| 亚洲图色成人| 国产精品日韩av在线免费观看| 国产免费男女视频| 最近手机中文字幕大全| 天天躁夜夜躁狠狠久久av| 欧美丝袜亚洲另类| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲高清免费不卡视频| 91久久精品电影网| 一级av片app| 香蕉av资源在线| 国产伦精品一区二区三区四那| 精品免费久久久久久久清纯| 久久精品91蜜桃| 久久久久性生活片| 国产蜜桃级精品一区二区三区| 国产欧美日韩精品一区二区| 成人午夜高清在线视频| 国产免费一级a男人的天堂| 最近的中文字幕免费完整| 97人妻精品一区二区三区麻豆| 国产又黄又爽又无遮挡在线| a级毛片免费高清观看在线播放| 日韩精品中文字幕看吧| 国产欧美日韩一区二区精品| 村上凉子中文字幕在线| 久久人妻av系列| 舔av片在线| 波野结衣二区三区在线| 午夜激情欧美在线| 99久久精品热视频| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久av不卡| 1000部很黄的大片| 欧美成人精品欧美一级黄| 国产一区亚洲一区在线观看| 日韩在线高清观看一区二区三区| videossex国产| 亚洲国产欧美人成| 色综合色国产| 能在线免费观看的黄片| 男人舔女人下体高潮全视频| 99热精品在线国产| 91在线精品国自产拍蜜月| 欧美不卡视频在线免费观看| 99国产精品一区二区蜜桃av| 小说图片视频综合网站| 美女 人体艺术 gogo| 亚洲成人中文字幕在线播放| 女的被弄到高潮叫床怎么办| 日本 av在线| 国产大屁股一区二区在线视频| 我要看日韩黄色一级片| 在线观看66精品国产| 久久精品夜色国产| 日韩制服骚丝袜av| 波多野结衣巨乳人妻| 一个人观看的视频www高清免费观看| 国产成人精品久久久久久| 国产单亲对白刺激| 国产成年人精品一区二区| 熟妇人妻久久中文字幕3abv| 亚洲四区av| 欧美日韩在线观看h| 国产精品一区二区免费欧美| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看| 国产精品一区www在线观看| avwww免费| 精品国内亚洲2022精品成人| 99国产精品一区二区蜜桃av| 韩国av在线不卡| 久久这里只有精品中国| 中文字幕av在线有码专区| 美女内射精品一级片tv| 亚洲激情五月婷婷啪啪| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 免费av不卡在线播放| 狂野欧美白嫩少妇大欣赏| 国产不卡一卡二| 免费一级毛片在线播放高清视频| 欧美一区二区亚洲| 永久网站在线| 欧美成人精品欧美一级黄| 床上黄色一级片| 99久久九九国产精品国产免费| 亚洲欧美中文字幕日韩二区| 国内揄拍国产精品人妻在线| 久久久欧美国产精品| 欧美成人一区二区免费高清观看| 2021天堂中文幕一二区在线观| 老女人水多毛片| 精品免费久久久久久久清纯| 身体一侧抽搐| 九九爱精品视频在线观看| 久久久久久国产a免费观看| 三级经典国产精品| 国产中年淑女户外野战色| 色吧在线观看| 亚洲无线观看免费| 好男人在线观看高清免费视频| 亚洲成人中文字幕在线播放| 国产激情偷乱视频一区二区| 久久午夜福利片| 2021天堂中文幕一二区在线观| 淫妇啪啪啪对白视频| 偷拍熟女少妇极品色| 亚洲一区二区三区色噜噜| 欧美极品一区二区三区四区| 91久久精品国产一区二区三区| 婷婷精品国产亚洲av| 久久久久性生活片| 精品国产三级普通话版| 亚洲国产日韩欧美精品在线观看| 日本欧美国产在线视频| 日韩中字成人| 午夜日韩欧美国产| 午夜福利视频1000在线观看| 亚洲精品日韩av片在线观看| 日日摸夜夜添夜夜添小说| 男女视频在线观看网站免费| 97碰自拍视频| 亚洲人成网站高清观看| 亚洲欧美日韩卡通动漫| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 狠狠狠狠99中文字幕| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 搡老妇女老女人老熟妇| 99久久久亚洲精品蜜臀av| 亚洲人成网站在线播| 亚洲最大成人av| 国产精品一区二区三区四区免费观看 |