• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visible-light-driven Cadogan reaction

    2021-11-19 05:40:52ZhonghuaQuPuWangXingChenGuoJunDengHuawenHuang
    Chinese Chemical Letters 2021年8期

    Zhonghua Qu,Pu Wang,Xing Chen,Guo-Jun Deng,Huawen Huang*

    Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China

    ABSTRACT Visible-light-driven photochemical Cadogan-type cyclization has been discovered.The organic D-A type photosensitizer 4CzIPN found to be an efficient mediator to transfer energy from photons to the transient intermediate that breaks the barriers of deoxygenation in Cadogan reaction and enables a mild metalfree access to carbazoles and related heterocycles.DFT calculation results indicate mildly endergonic formation of the intermediate complex of nitrobiarenes and PPh3,which corresponds with experimental findings regarding reaction temperature.The robust synthetic capacity of the photoredox Cadogan reaction systems has been demonstrated by the viable productivity of a broad range of carbazoles and related N-heterocycles with good tolerance of various functionalities.

    Keywords:Cadogan reaction o-Nitrobiarene Visible-light-driven Deoxygenation N-Heterocycles

    Nitrogen-containing heterocycles are ubiquitous structural units that appear in numerous naturally occurring products,pharmaceuticals, and functional materials, among others.Representatively, indoles and carbazoles are recognized as privileged architectures in biologically active compounds [1] and organic optoelectronic materials[2],respectively.Consequently,intensive attention has been continuously drawing upon their synthetic methodology [3].

    While some traditional name reactions provide viable access to these nitrogen heterocycles [4], in the last few decades, diverse strategies such as radical couplings [5], nitrene insertion [6], and transition-metal-catalyzed C-H amination [7] have been widely exploited to bring about bond formation/N-heterocyclization.Specifically,in qualitative complementary to the Sundberg method[8]for carbazole/indole formation,Cadogan reaction[9]represents an essential alternative for azacyclizations from stable and easily accessible feedstock reagents and has widespread applications in the preparation of carbazole-based functional materials(Scheme 1a).The common Cadogan transformations utilize stoichiometric amounts of phosphines at very high temperatures(150-220°C)[10].Milder catalytic protocols(80-120°C)based on transition-metal catalysis have also been developed [11].Intriguingly, Radosevich et al.recently designed a novel small-ring phosphacycloalkane that, combined with hydrosilane as the terminal electron acceptor, served as an efficient catalyst to enable scalable Cadogan-type azacyclizations with both C--N and N--N bond formation [12].Despite utilities, these methods still suffer from certain restrictions such as the indispensable transition metal catalysis,air-sensitive reagent,or thermal conditions at high temperature; thereby the development of mild and user-friendly strategies for the formation of carbazoles and related heterocycles remains highly desirable.

    Photoredox catalysis provides an attractive alternative approach for the valuable N-heterocycle synthesis[13],with yet few reports on carbazole construction using sustainable visible light[14].With primary insight into photolysis heterocyclization of oazido compounds[15]and recent photoredox reductive couplings[16], we speculate that photo-irradiation could activate the proposed intermediate of Cadogan reaction in the rate-determining deoxygenation process[9c],and thereby break the thermodynamic barriers inherent to the overall cyclization under mild conditions (Scheme 1b).Moreover, the electronically opposite properties of nitro biaryls and phosphines may lead to the transient generation of photosensitive electron donor-acceptor(EDA)complexes[17],thus probably averting the need for external photosensitizer.With our recent effort on this subject,herein,we describe the mild visible-light-mediated Cadogan reaction,which unexpectedly could be dramatically enhanced by an organic photocatalyst.Hence, the photoactivation process of the vital deoxygenation process in this protocol has been discovered.

    Scheme 1.Carbazole formation via intramolecular reductive amination of o-nitrobiphenyl.

    To commence our studies, we set up the Cadogan reaction by choosing o-nitrobiphenyl (1a) as the model substrate to optimize reaction conditions (Tables S1-S8 in Supporting information for details)and key parameters of screening the photoredox Cadogan reaction are shown in Table 1.The photochemical reaction of onitrobiphenyl 1a was initially treated with stoichiometric triphenylphosphine(PPh3)in the absence of any photosensitizer or other additive.Visible light stimulation upon this mixture with blue LEDs led to the formation of carbazole 2 in 14% yield within three days, with the majority of starting material and PPh3recovered (Table 1, entry 1).In order to improve the efficiency of this cyclization transformation, a pad of photocatalysts were screened.Among them, Ir or Ru complexes (PC-1 to PC-3)enhanced the cyclization to afford product in modest yields(Table 1, entries 2-4).Then, organophotocatalysts were used.While Rose Bengal featured moderate catalytic activity(49%yield,Table 1, entry 5), Eosin type photosensitizer gave a slightly increased yield than the catalyst-free conditions(22%yield,Table 1,entry 6).To our delight, the organic D-A type photosensitizer 4CzIPN was superior to others,furnishing the carbazole product in excellent yield with full conversion of 1a(90%yield,Table 1,entry 7).After screening different light sources(Table 1,entries 8-12),no desired product was detected when using orange LEDs or under the dark conditions.Further,green LEDs and white LEDs could enable this reaction, albeit in low yields.Notably, the reaction temperature dramatically affected the efficiency of reaction systems,where mild thermal condition was required (50-60°C) (Table 1, entries 13-14).Regarding phosphine reductants (Table 1, entries 15-17),among others P(4-FC6H4)3gave a good result with 4CzIPN.Tris(4-methoxyphenyl)phosphine[P(PMP)3]and tricyclohexylphosphine[P(Cy)3] featured moderate reactivities (Table S3 in Supporting information for details).We also used PPh3in a catalytic amount combined with stoichiometric PhSiH3(Table 1, entry 18), which generated 2-phenylaniline as the major product.

    Table 1 Optimization of reaction conditions. a

    With the catalytic capacity of 4CzIPN for the mild photochemcial Cadogan cyclization,we next probed the substrate scope of the current system.Generally,the 4CzIPN-based photochemical system featured high reactivities to afford the carbazole products in good to excellent yields (Scheme 2).A broad range of functionalities attached at the o-nitrobiphenyl motif such as methoxy(5),trifluoromethyl(6),halogen(7,17),nitrile(8),acetyl(9,15),ester(10),amide(11),formyl(12),free hydroxymethyl(13),and even alkenyl(14)were all smoothly accommodated(40%-89%yields).Among them,the substrates with electron-deficient groups generally found higher reactivity than those bearing electrondonating substituents, which in turn required prolonged reaction times.The model reaction on a gram-scale also proved highly effective and full conversion was observed within 4 d by the using two 35 W blue LEDs (7.5 mmol scale, 76% yield).Notably, the reaction could complete within 24 h when increasing catalyst loading to 10 mol%.

    Scheme 2.Substrate scope for carbazole formation.a 10 mol%of photocatalyst was used within 24 h.b Major isomer(rr=3:1 determined by GC).c On a 0.1 mmol scale.

    Moreover, 2-(2-nitrophenyl)naphthalene substrates found generally high reactivities and exclusive regioseletivities(Scheme 3).Hence, a number of benzo[a]carbazoles have been accessed in good to excellent yields(60%-98%yields),tolerating a pad of useful functional groups attached at the nitrophenyl moiety(18-27).Additionally, 1-(2-nitrophenyl)naphthalene and 9-(2-nitrophenyl)phenanthrene were successfully participated to afford the corresponding benzo[c]carbazole (28) and dibenzo[a,c]-carbazole (29), respectively.We also exploited aza-biheteroarene substrates such as those with pyridinyl (30, 33-36), pyrimidinyl(31),and quinolinyl(32)moieties(Scheme 4).All of them exhibited good efficiency to furnish azacarbazole and azabenzocarbazole products (71%-98% yields).In terms of o-nitrostyrene reactants(37-42), they worked with effectiveness highly dependent on the electron effect of substituents (Scheme 5).Among them, electron withdrawing acyl groups(enones)delivered 2-acylindole products with satisfactory conversions(39-42,62%-80%yields).Majority of reactants were recovered in the cases of substrates containing cyclohexanene and stilbene moieties.We also tried to improve the reactivity of these unactivated alkenes by modification of reaction conditions including solvent, photocatalyst loading and reaction time, but the yields of indoles 37 and 38 did not increase significantly.

    Scheme 3.Substrate scope for benzocarbazole formation.a On a 0.1 mmol scale.

    Scheme 4.Substrate scope for azacarbazole formation.a Major isomer (rr=10:1 determined by GC).

    Scheme 5.Substrate scope for indole formation.

    Scheme 6.Substrate scope for pyrido[1,2-b]indazole formation.a On a 0.1 mmol scale.

    The robust nature of our photocatalytic systems for Cadogan cyclization was further mirrored by the effective N--N bond formation (Scheme 6).Thereby, some functionalized 2-(2-nitrophenyl)pyridines transformed to the corresponding pyrido[1,2-b]-indazoles in high yields (43-48, 71%-90% yields), as well as 1-(2-nitrophenyl)isoquinoline (49, 82% yield) and 2-(2-nitrophenyl)quinoline (50, 84% yield).It is noted worth that there appears a substantial reactivity enhancement with smaller reaction scales in some cases that the starting materials did not convert completely on a larger scale even altering the reaction conditions with higher concentration.

    With the established reactivities of our mild visible-lightdriven Cadogan cyclization, we were attracted to depict its photoactivation model.To this end,some mechanistic experiments were carried out.First, the fluorescence quenching experiments disclosed that while both 2-nitrobiphenyl(1a)and PPh3displayed Stern-Volmer quenching effect with KSVto be 354 and 105,respectively [18], the combination of them obviously enhanced such effect upon the excited photocatalyst (KSV=670), suggesting formation of a complex of 1a and PPh3and superior energy transfer from the excited 4CzIPN to this complex (Scheme 7a) [19].Then,the independent and competition kinetic isotope effect (KIE) of carbazole formation was found to be kH/kD= 1.0 and 1.1,respectively, indicating a kinetically irrelevant C-H cleavage in the photochemical Cadogan cyclization(Scheme 7b).This result is in line with the nitrene insertion mechanism of traditional Cadogan reaction.To evaluate the electronic effect of substrates on the yield,we studied Hammett linear free energy relationship.A plot of log(kX/kH) versus constant σpof C5 functional groups attached at o-nitrobiphenyl (X=OMe, F, Cl, CF3) affords a good linear fit(ρ=1.075)in the present system.This result is in line with linear free energy relationships obtained by Cadogan and Radosevich (Scheme 7c) [12b].

    Scheme 7.Mechanistic studies.(a) Stern-Volmer quenching of 1a or/and PPh3 to 4CzIPN.(b) Kinetic isotope effect.(c) Hammett plot for carbazole formation, Equation:y=1.075x - 0.032; R2=0.9489.(d) DFT calculations for the initial deoxygenation step and proposed photoactivating models.

    Further,we did density functional theory(DFT)calculations to support the proposed photoactivation model (Scheme 7d).First,the electron-poor nitroarene 1a and the electron-rich PPh3interact via a coulombic attraction with a P-O distance of 3.57 ? and a π-π interaction with a shortest π-stacking distance of approximately 3.44 ?.This assembly leads to the formation of the atom transfer complex Int-1.It is calculated to be endergonic by 2.2 kcal/mol,which is much lower than the generation of the dioxazaphosphetane intermediate from trialkyl phosphines including Radosevich’s phosphacycloalkane [12b].Hence, in our method, the energy transfer from the excited 4CzIPN to Int-1 promotes it to its excited state, which then undergoes oxygen transfer to give nitrosobiphenyl and P(O)Ph3.These results could explain why the photocatalysis system work at mild thermal temperature but much lower than traditional Cadogan cyclization.Moreover, the timedependent DFT (TM-DFT) calculation (Fig.S12 in Supporting information) on the excited state of Int-1 assigned the S0-to-S2excitation with an excitation energy of 3.52 eV.This peak was predicted to be 352 nm and mainly contributed by local excitation(92%) involving the nitrobiphenyl π orbitals (HOMO-1 to LUMO).

    In summary, we have developed a mild visible-light-induced photoredox Cadogan cyclization for the synthesis of carbazoles and related heterocycles using 4CzIPN as photosensitizer.Hence, the photoacitivating action model based on energy transfer have been discovered to display unique kinetic characteristics.The mild photochemical protocol affords a scalable metal-free access to a broad range of azaheterocycles including carbazoles,benzocarbazoles, azacarbazole, azabenzocarbazoles, and indoles bearing various compatible functionalities.The versatile photoredox systems have also been demonstrated viable for intramoculelar reductive N--N couplings that enable a facile synthesis of structurally significant pyrido[1,2-b]indazoles.These findings may inspire other reactivity discovery of mild reductive aminations.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.22071211), the Science and Technology Planning Project of Hunan Province (No.2019RS2039), Hunan Provincial Natural Science Foundation of China (No.2020JJ3032),and the Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.02.047.

    国产日韩欧美亚洲二区| 成人美女网站在线观看视频| 97超碰精品成人国产| 高清黄色对白视频在线免费看 | 少妇丰满av| av一本久久久久| 日韩免费高清中文字幕av| 熟妇人妻不卡中文字幕| 亚洲欧美日韩东京热| 午夜福利在线在线| 男女国产视频网站| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 亚洲最大成人中文| 99热国产这里只有精品6| 99九九线精品视频在线观看视频| 韩国av在线不卡| h视频一区二区三区| 久久人妻熟女aⅴ| 亚洲欧洲国产日韩| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av涩爱| 欧美亚洲 丝袜 人妻 在线| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区国产| 联通29元200g的流量卡| 久久久亚洲精品成人影院| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区国产| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美在线一区| 国产淫片久久久久久久久| tube8黄色片| 插逼视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 97在线视频观看| 久久6这里有精品| 日韩av免费高清视频| 国产成人精品婷婷| 国产国拍精品亚洲av在线观看| 99久久中文字幕三级久久日本| av一本久久久久| 天天躁日日操中文字幕| 少妇 在线观看| 欧美成人午夜免费资源| 中文字幕久久专区| 一个人看视频在线观看www免费| av.在线天堂| 久久久午夜欧美精品| 日韩精品有码人妻一区| 免费久久久久久久精品成人欧美视频 | 中国美白少妇内射xxxbb| 男女边摸边吃奶| 色哟哟·www| av女优亚洲男人天堂| 欧美97在线视频| 男女免费视频国产| 国产亚洲91精品色在线| 少妇 在线观看| 蜜桃在线观看..| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 欧美3d第一页| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| av在线播放精品| 极品教师在线视频| 久久久久国产网址| 99热网站在线观看| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 国产精品福利在线免费观看| 嫩草影院入口| 国产色婷婷99| 日日啪夜夜撸| 91在线精品国自产拍蜜月| 嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区| 国产高潮美女av| 国产精品秋霞免费鲁丝片| 大片免费播放器 马上看| 亚洲av在线观看美女高潮| 黄色日韩在线| 又粗又硬又长又爽又黄的视频| 国产片特级美女逼逼视频| 99久久精品一区二区三区| 久久热精品热| 嫩草影院新地址| 如何舔出高潮| 日本免费在线观看一区| 亚洲精品乱久久久久久| 91精品国产国语对白视频| 韩国av在线不卡| 秋霞在线观看毛片| 成人二区视频| 亚洲av不卡在线观看| 亚洲av成人精品一区久久| 免费看光身美女| 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| 成人影院久久| 久久久久网色| 亚洲不卡免费看| 国产精品不卡视频一区二区| 寂寞人妻少妇视频99o| 日韩中字成人| 男女国产视频网站| 老司机影院成人| 精品人妻一区二区三区麻豆| 在线看a的网站| 九色成人免费人妻av| 97精品久久久久久久久久精品| 日韩成人伦理影院| 26uuu在线亚洲综合色| 嫩草影院入口| 国产免费又黄又爽又色| 亚洲av国产av综合av卡| 伦理电影免费视频| 久久久久久久国产电影| 高清黄色对白视频在线免费看 | 久久久久国产精品人妻一区二区| 国产伦在线观看视频一区| 精品久久久久久久久亚洲| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 高清黄色对白视频在线免费看 | 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 亚州av有码| 人妻少妇偷人精品九色| 精品少妇黑人巨大在线播放| 亚洲综合色惰| 99热6这里只有精品| 久久鲁丝午夜福利片| 久久久成人免费电影| 国产片特级美女逼逼视频| 欧美日本视频| 精品久久久久久电影网| av女优亚洲男人天堂| 91狼人影院| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 99久国产av精品国产电影| 国产午夜精品一二区理论片| 国内揄拍国产精品人妻在线| 国产黄色视频一区二区在线观看| 国产在线免费精品| 国产精品免费大片| 中文字幕亚洲精品专区| 成人毛片60女人毛片免费| 噜噜噜噜噜久久久久久91| 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 欧美另类一区| 直男gayav资源| 国产成人精品久久久久久| 丰满乱子伦码专区| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 久久97久久精品| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| videossex国产| 日韩欧美一区视频在线观看 | 亚洲色图综合在线观看| 亚洲第一av免费看| 国产 一区精品| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 免费播放大片免费观看视频在线观看| 国产人妻一区二区三区在| 精品少妇黑人巨大在线播放| 爱豆传媒免费全集在线观看| 91精品国产九色| 国产精品久久久久久久电影| 久久人人爽av亚洲精品天堂 | 97在线视频观看| 欧美极品一区二区三区四区| 成人毛片a级毛片在线播放| 视频中文字幕在线观看| 联通29元200g的流量卡| 精品国产三级普通话版| 少妇熟女欧美另类| 最近中文字幕2019免费版| 国产精品欧美亚洲77777| 欧美成人精品欧美一级黄| 久久人妻熟女aⅴ| 国产精品女同一区二区软件| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 亚洲欧美中文字幕日韩二区| 亚洲国产日韩一区二区| 激情五月婷婷亚洲| 97在线人人人人妻| 一区二区三区精品91| 成人无遮挡网站| 午夜免费男女啪啪视频观看| 18禁裸乳无遮挡动漫免费视频| 少妇熟女欧美另类| 久久人妻熟女aⅴ| 少妇裸体淫交视频免费看高清| 国产色爽女视频免费观看| 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| 蜜桃在线观看..| 亚洲综合色惰| 嘟嘟电影网在线观看| 人妻夜夜爽99麻豆av| 免费观看性生交大片5| 亚洲第一av免费看| 日本wwww免费看| 欧美xxxx性猛交bbbb| h日本视频在线播放| 亚洲国产欧美人成| 丝瓜视频免费看黄片| 久久精品人妻少妇| 插阴视频在线观看视频| 日韩,欧美,国产一区二区三区| 大片电影免费在线观看免费| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 观看av在线不卡| 国产淫片久久久久久久久| 精品酒店卫生间| 国产精品欧美亚洲77777| av线在线观看网站| 国产真实伦视频高清在线观看| 毛片女人毛片| 黄色日韩在线| 午夜免费鲁丝| 精品一品国产午夜福利视频| 中国三级夫妇交换| 亚洲精品乱码久久久v下载方式| 亚洲一区二区三区欧美精品| 亚洲婷婷狠狠爱综合网| 最近最新中文字幕大全电影3| 女人久久www免费人成看片| 男女免费视频国产| 亚洲精品色激情综合| 天天躁日日操中文字幕| 亚洲国产精品国产精品| 久久久久久久久久人人人人人人| 七月丁香在线播放| 日本一二三区视频观看| 中文字幕久久专区| 中文字幕av成人在线电影| 国产精品精品国产色婷婷| 男人狂女人下面高潮的视频| 成人高潮视频无遮挡免费网站| 一区二区av电影网| 午夜福利影视在线免费观看| 联通29元200g的流量卡| 免费人妻精品一区二区三区视频| 91久久精品国产一区二区成人| 久久久精品免费免费高清| 国产精品一及| 久久久久久人妻| 2022亚洲国产成人精品| 国产精品99久久99久久久不卡 | 亚洲,欧美,日韩| 大片电影免费在线观看免费| 久久久a久久爽久久v久久| 亚洲精品日韩av片在线观看| 久久99热6这里只有精品| av在线蜜桃| 天天躁日日操中文字幕| 成人高潮视频无遮挡免费网站| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看 | 99久国产av精品国产电影| 看十八女毛片水多多多| 欧美zozozo另类| 97超碰精品成人国产| 亚洲av福利一区| 中文字幕免费在线视频6| 日产精品乱码卡一卡2卡三| 大香蕉97超碰在线| 在线天堂最新版资源| 国精品久久久久久国模美| 蜜桃在线观看..| 中文精品一卡2卡3卡4更新| 九九爱精品视频在线观看| 亚洲真实伦在线观看| 久久久久网色| 肉色欧美久久久久久久蜜桃| 国模一区二区三区四区视频| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 精华霜和精华液先用哪个| 久久精品国产亚洲网站| 国产永久视频网站| 欧美精品亚洲一区二区| 边亲边吃奶的免费视频| 久久久久网色| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 国产av精品麻豆| 国产高清有码在线观看视频| 欧美人与善性xxx| 成人影院久久| 亚洲欧美成人精品一区二区| 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看 | h视频一区二区三区| 国产一区亚洲一区在线观看| 国产精品麻豆人妻色哟哟久久| 精品一区二区免费观看| 高清在线视频一区二区三区| 久久久久精品久久久久真实原创| 晚上一个人看的免费电影| 黄片无遮挡物在线观看| 干丝袜人妻中文字幕| 男人舔奶头视频| 国产淫片久久久久久久久| 精品熟女少妇av免费看| av不卡在线播放| 九九在线视频观看精品| 一本久久精品| 一级毛片黄色毛片免费观看视频| 亚洲综合精品二区| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 欧美激情极品国产一区二区三区 | 大陆偷拍与自拍| 美女福利国产在线 | 久久ye,这里只有精品| 一级毛片aaaaaa免费看小| 爱豆传媒免费全集在线观看| 黄色欧美视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产女主播在线喷水免费视频网站| 夜夜骑夜夜射夜夜干| 国产av精品麻豆| 一区二区三区免费毛片| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 在线精品无人区一区二区三 | 99视频精品全部免费 在线| 99久久综合免费| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 岛国毛片在线播放| 卡戴珊不雅视频在线播放| 人妻制服诱惑在线中文字幕| 久久韩国三级中文字幕| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 九草在线视频观看| 99久久综合免费| 黄色日韩在线| 最近手机中文字幕大全| 亚洲欧美一区二区三区黑人 | 黄色欧美视频在线观看| 精品久久国产蜜桃| kizo精华| 校园人妻丝袜中文字幕| 女人久久www免费人成看片| 久久 成人 亚洲| 伦理电影大哥的女人| 国产成人免费无遮挡视频| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 成人免费观看视频高清| 午夜福利影视在线免费观看| av在线蜜桃| av女优亚洲男人天堂| 欧美精品一区二区大全| 久久精品国产亚洲网站| 亚洲天堂av无毛| 欧美 日韩 精品 国产| 欧美日韩精品成人综合77777| 在线亚洲精品国产二区图片欧美 | 日本av免费视频播放| 性色av一级| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看| 丰满人妻一区二区三区视频av| 日本午夜av视频| 国产精品蜜桃在线观看| 亚洲国产av新网站| 极品少妇高潮喷水抽搐| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| 精品一区二区三卡| 亚洲国产欧美人成| 亚洲性久久影院| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 男男h啪啪无遮挡| 欧美日韩综合久久久久久| 夜夜骑夜夜射夜夜干| 在线看a的网站| 国产美女午夜福利| 国产女主播在线喷水免费视频网站| 黄色视频在线播放观看不卡| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 国产伦精品一区二区三区四那| 午夜日本视频在线| 激情 狠狠 欧美| 在线观看一区二区三区激情| 国产乱人视频| 成人无遮挡网站| 免费看光身美女| 国产视频首页在线观看| 久久久a久久爽久久v久久| 3wmmmm亚洲av在线观看| 天堂俺去俺来也www色官网| 国产免费一级a男人的天堂| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 特大巨黑吊av在线直播| 久久99精品国语久久久| 男人爽女人下面视频在线观看| 亚洲成人av在线免费| 高清不卡的av网站| 人妻一区二区av| 成人影院久久| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 国产在线视频一区二区| 亚洲va在线va天堂va国产| 国产女主播在线喷水免费视频网站| 免费黄色在线免费观看| 国产一区二区在线观看日韩| 久久久a久久爽久久v久久| 色哟哟·www| 人妻一区二区av| 国产成人免费无遮挡视频| 99视频精品全部免费 在线| 在线 av 中文字幕| 只有这里有精品99| av线在线观看网站| 国产精品免费大片| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 边亲边吃奶的免费视频| 婷婷色av中文字幕| 高清日韩中文字幕在线| 国产av一区二区精品久久 | 久久婷婷青草| 午夜免费鲁丝| 人体艺术视频欧美日本| 简卡轻食公司| 观看av在线不卡| 老师上课跳d突然被开到最大视频| 一级毛片我不卡| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 深夜a级毛片| 99久久人妻综合| av又黄又爽大尺度在线免费看| 另类亚洲欧美激情| 免费观看无遮挡的男女| 欧美xxⅹ黑人| 热re99久久精品国产66热6| 99热国产这里只有精品6| tube8黄色片| 久久ye,这里只有精品| 色综合色国产| 老司机影院成人| 久久99精品国语久久久| 精品亚洲乱码少妇综合久久| 少妇的逼好多水| 国产精品99久久久久久久久| 一本久久精品| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 日韩中文字幕视频在线看片 | 嫩草影院入口| 国产永久视频网站| 久久久久久久国产电影| 2018国产大陆天天弄谢| 亚洲欧美日韩东京热| 我要看黄色一级片免费的| 男人舔奶头视频| 内地一区二区视频在线| 一级片'在线观看视频| 日日摸夜夜添夜夜添av毛片| 美女内射精品一级片tv| 国内少妇人妻偷人精品xxx网站| 嘟嘟电影网在线观看| 各种免费的搞黄视频| 另类亚洲欧美激情| 18禁在线无遮挡免费观看视频| 高清黄色对白视频在线免费看 | 免费大片黄手机在线观看| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 亚洲国产精品国产精品| 亚洲精品国产色婷婷电影| 久久久久久久久久久免费av| 熟女人妻精品中文字幕| 免费播放大片免费观看视频在线观看| 亚洲丝袜综合中文字幕| 亚洲欧美日韩卡通动漫| 人妻夜夜爽99麻豆av| 国产精品伦人一区二区| 在线观看三级黄色| 国产一区二区三区综合在线观看 | 久久99蜜桃精品久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品国产成人久久av| 国产成人精品福利久久| 国产精品一区www在线观看| 亚洲天堂av无毛| 成人美女网站在线观看视频| 久久久久久久精品精品| 人妻夜夜爽99麻豆av| 蜜桃亚洲精品一区二区三区| 五月玫瑰六月丁香| 一个人看视频在线观看www免费| 久久国内精品自在自线图片| 深夜a级毛片| 在线观看一区二区三区激情| 日本爱情动作片www.在线观看| 制服丝袜香蕉在线| 99热这里只有是精品在线观看| 美女国产视频在线观看| 亚洲av中文字字幕乱码综合| 大片免费播放器 马上看| 亚洲精品亚洲一区二区| 又爽又黄a免费视频| 高清av免费在线| 欧美变态另类bdsm刘玥| 国产综合精华液| 熟女电影av网| 超碰97精品在线观看| 精品国产乱码久久久久久小说| 久久精品国产亚洲av天美| xxx大片免费视频| 久久久久国产网址| 亚洲欧美一区二区三区国产| 精品一区二区免费观看| 尾随美女入室| 亚洲精品国产av成人精品| 国产精品无大码| videos熟女内射| 超碰av人人做人人爽久久| av.在线天堂| 国产精品久久久久久久久免| 精品久久久久久久久av| 久久久久久久久久久免费av| 久久人人爽人人片av| 亚洲综合色惰| 伦精品一区二区三区| 老司机影院成人| 男女下面进入的视频免费午夜| 精品一品国产午夜福利视频| 美女内射精品一级片tv| 日本与韩国留学比较| 日本欧美视频一区| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| 涩涩av久久男人的天堂| 欧美日韩视频高清一区二区三区二| 精品熟女少妇av免费看| 久久久久久久大尺度免费视频| 日本猛色少妇xxxxx猛交久久| 亚洲成色77777| 99热这里只有是精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产欧美亚洲国产| 在线免费观看不下载黄p国产| 国产成人免费观看mmmm| 久久精品国产亚洲av涩爱| 国产精品一区www在线观看| 亚洲国产精品专区欧美| 在线精品无人区一区二区三 | 黄片wwwwww| 在线观看免费视频网站a站| 久久午夜福利片| 免费人妻精品一区二区三区视频| 欧美一级a爱片免费观看看| 久久韩国三级中文字幕| 只有这里有精品99| 大又大粗又爽又黄少妇毛片口| 嫩草影院入口| 91aial.com中文字幕在线观看| 免费人成在线观看视频色| 欧美成人一区二区免费高清观看| 国产精品福利在线免费观看| 久久精品熟女亚洲av麻豆精品| av国产久精品久网站免费入址| av播播在线观看一区| h视频一区二区三区| 日韩欧美精品免费久久| 亚洲成人中文字幕在线播放| 少妇的逼水好多| 日韩免费高清中文字幕av| 看非洲黑人一级黄片| 国产精品国产av在线观看| 春色校园在线视频观看| 久久久久精品久久久久真实原创| 在线播放无遮挡| 麻豆成人午夜福利视频| 久久久久久伊人网av| 免费大片黄手机在线观看| 亚洲国产av新网站| 亚洲,欧美,日韩|