• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facile defect engineering in ZnIn2S4 coupled with carbon dots for rapid diclofenac degradation

    2021-11-19 05:40:30DongxuYangJialiangLiangLiangLuoRuoyuDengGuoLiQiangHeYiChen
    Chinese Chemical Letters 2021年8期

    Dongxu Yang,Jialiang Liang,Liang Luo,Ruoyu Deng,Guo Li,Qiang He,Yi Chen,*

    a Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China

    b College of Environment and Ecology, Chongqing University, Chongqing 400045, China

    ABSTRACT Semiconductor-mediated photocatalysis is a promising photochemical process for harvesting inexhaustible solar energy to address the energy crisis and environmental issues.However, the low solar-light response and poor carrier migration are severe drawbacks that limit its practical application.Herein, we propose a convenient pathway for improving electron-hole separation and solar energy utilisation by engineering defective ZnIn2S4 with doping of carbon dots.The optimum ZnIn2S4/CD200 nanosheet exhibited 100%diclofenac(DCF)degradation within 12 min under visible-light.The estimated photocatalytic efficiency under natural sunlight was 98.2%.Scavenging experiments and electron spin resonance (ESR) analysis indicated that the superoxide radical (O2?- ), photoelectron (e-),hole (h+) and hydroxyl radical (? OH) were the predominant contributions in the ZnIn2S4/CD200/DCF/visible light system.Furthermore,ZnIn2S4/CD200 exhibited excellent reusability and stability after 4 times recycling.The photodegradation routes mainly involved hydroxylation, decarboxylation, C--N bond cleavage,dechlorination,ring closure,and ring-opening.The ecological risk assessment and total organic carbon(TOC)tests exhibited desirable toxicity reduction and mineralization results.These observations not only offer a facile strategy for the construction of defective ZnIn2S4,but also pioneer the direct utilisation of natural light for highly efficient environmental remediation.

    Keywords:Photocatalysis Diclofenac degradation Defect engineering ZnIn2S4nanosheet Carbon dots

    In recent decades,pharmaceuticals,which have saved countless lives, have evolved into a new category of environmental pollutants [1].Diclofenac (DCF) has been extensively employed for relieving pain, inflammation, and rheumatism and received consistent attention [2,3].However, DCF enters various aqueous matrixes (such as surface water, groundwater, and even potable water) due to its recalcitrant chemical structure, and limited removal efficiency [4,5].As a result, DCF poses a risk to human health and aquatic organisms,even at trace levels[6,7].Therefore,it is vital that efficient and environmentally benign techniques for the practical remediation of resident DCF in wastewater.

    Many strategies, including advanced oxidation processes [8],filtration [9], adsorption [10], plasma technique [11] and photocatalysis[12],have been developed for DCF removal.Among these excellent means, semiconductor-mediated photocatalysis has been developed as a promising chemical approach that converts solar energy into chemical energy to resolve the energy shortage and deteriorative environmental issues [13,14].Nevertheless, the practical application of this process is hindered by its low photocatalytic activity due to the poor light-harvesting response and slow charge-hole migration[15].Fortunately,the prosperity of two-dimensional materials offers new opportunities for the photocatalytic process.Recently, impressive two-dimensional g-C3N4/CQDs[3],Cd0.9Zn0.1S/MoS2[2],CQDs/BiOCOOH[4],Ag-BiOIrGO [16], have received increasing attention for DCF degradation.However,the limited photodegradation efficiency could not meet practical requirements.The direct conversion of natural sunlight for efficiently degrading DCF has not yet been explored.Therefore,developing a highly efficient photocatalyst with facile preparation and rapid carrier migration that directly uses natural light should receive more attention.

    As a ternary metal chalcogenide semiconductor, layered ZnIn2S4, which has a desirable bandgap and can adsorb visible light, has received ongoing attention [17,18].However, narrowband-gap metal sulfide-photocatalysts are susceptible to photocorrosion under solar light illumination, which is ubiquitous in most semiconductors[19].Therefore,considerable effort has been devoted to suppressing the photo-induced instability of semiconductor materials.On one hand, defects engineering presents a promising platform for improving carrier separation and enhancing the performance of photocatalysis [20].For example, the sulphur vacancy( Vs)-mediated defect behaviour in ZnIn2S4can act as a trap for photo-generated electrons, which would accelerate the carrier transmission and improve H2production by 11 times[21].Similar results were also reported by Du et al.[22],Li et al.[23]and He et al.[24].It is thus reasonable to utilize ZnIn2S4with defects as a photocatalyst matrix.At present, most studies employed the solvothermal route (temperature of approximately 180°C for 12 or 24 h) to achieve ZnIn2S4with defects [20-22].However, information is scarce low-temperature (oil bath 80°C)and rapid (2 h) defective ZnIn2S4preparation.On the other hand,carbon dots (CD), which are quasi-spherical, zero-dimension nanoparticles (smaller than 10 nm), are a new generation of carbon nanomaterials for photocatalysis with unique physicochemical and optical properties [25].Additionally, CD exhibit prominent electron migration and reservoir behaviours.Consequently,CD can be embedded in semiconductors to enhance their photocatalytic efficiency and the utilisation of sunlight, such as TiO2[7],WO3[26],ZnFe2O4[27],BiOCOOH[4],BiPO4[28],UiO-66[29],Bi:TiO2[30]and CuWO4/CdS[31].However,few studies have been conducted on CD implanted with defective ZnIn2S4and their application for highly-efficient DCF photo-degradation under visible light and natural sunlight.

    In this study,we present a simple strategy for improving carrier migration and solar energy utilization by engineering ZnIn2S4with defects and simultaneously incorporating CD.The composites exhibit excellent photocatalytic performance during the degradation of DCF under visible light and natural sunlight.This work aims to (1) develop a defective ZnIn2S4composite via a facile method,(2) characterize and confirm the physicochemical and optical properties of photocatalysts, (3) explore the photo-degradation performance, mechanism, and (4) estimate the stability of the photocatalyst.

    The profile and microstructure of the CD and ZnIn2S4/CD200 were determined by transmission electron microscopy(TEM).The high-resolution TEM (HRTEM) image of CD exhibits a quasispherical zero-dimensional nanostructure with an interplanar spacing of 0.219 nm(Fig.1a and inset),which consistent with the(100)diffraction facets of graphite[25].From the scanning electron microscopy (SEM) pattern in Fig.S1 (Supporting information),ZnIn2S4/CD200 exhibited a porous and complicated flake structure.Furthermore, Fig.1b shows interconnected geometry with the nanosheet structure in the low-magnification TEM pattern,which agrees well with the SEM observations.The HRTEM images show the interplanar distance in the lattice fringes of the ZnIn2S4/CD200(0.326 nm)and CD(0.219 nm),corresponding to the(102)facet of the ZnIn2S4/CD200 and (100) plane of CD (Fig.1c) [32].Clear atomic deficiencies are present on the ZnIn2S4/CD200, and the irregular lattice fringes in the yellow region and distortion in the blue range indicate that there are abundant defects in the ZnIn2S4/CD200[33].This result can be further verified by the electron spin resonance(ESR)analysis(Fig.1d),demonstrating that the ZnIn2S4/CD200 contained more defects.

    Fig.1.TEM image of CD(a);TEM image(b),HRTEM image(c),and ESR spectra(d)of ZnIn2S4/CD200 nanosheet.

    The phase and crystal structure of the parent ZnIn2S4and its composites were confirmed by X-ray diffraction (XRD) (Fig.2a).The pure ZnIn2S4exhibited the characteristic bands of the hexagonal ZnIn2S4phase at 2θ=21.2°, 27.5°, 30.4°, 47.5°, 52.4°and 55.7°,which could be consistent with the crystal faces at(006),(102),(104),(110),(116)and(202),respectively[22,24].There were no conspicuous changes in the diffraction peaks and intensities after CD introduction, indicating the preservation of the pristine crystal structure and low CD concentration [28].The FT-IR technique was employed to further validate the successful preparation of the catalysts.As shown in Fig.2b, the parent ZnIn2S4exhibited several adsorption bands at approximately 3370,1611,and 1414 cm-1,which could be associated with the hydroxyl units and absorbed water [20,34,35].Additionally, the peaks at 1000-1250 cm-1could be associated with the C--O bond in the residual solvent[36].Similar profiles were also present in the serial ZnIn2S4/CD nanocomposites,demonstrating that the change in the chemical structure via CD doping was negligible[3,37].The specific surface area of semiconductor catalysts plays an important role in their application as photocatalysis.Fig.S2 (Supporting information) and its inset present typical type-IV curves and the relevant pore size distribution, respectively, and suggest the presence of a mesoporous framework.The parameters of the N2adsorption/desorption isotherms are listed in Table S1 (Supporting information).Defective ZnIn2S4has a high specific surface area (106.18 m2/g) and large pore volume (0.873 cm3/g), surpassing those of most previously reported ZnIn2S4catalysts [22,34].The specific surface area of prepared material is not change much after CD loading, and they endow near degradation rates.Therefore, it can be predicted that the specific surface area is not the dominant factors influencing the photocatalytic performance that are controlled by doping and electron transfer [29,34].The optical properties of the photocatalysts were recorded by UV-vis diffuse reflectance spectra(DRS).As shown in Fig.2c,ZnIn2S4and ZnIn2S4/CD200 exhibited similar absorption edges at approximately 534 nm, indicating that the photocatalysts can respond under visible-light.The absorption intensity of ZnIn2S4/CD200 was notably enhanced above 500 nm, suggesting the presence of the defect-state in the band structure[24].The optical bandgaps can be determined via (αhν)1/2= A(hν-Eg) equation [2].

    Fig.2.XRD patterns(a),FT-IR spectra(b),DRS spectra(c)and XPS survey spectra of prepared samples (d).

    According to the inset of Fig.2c, the bandgaps of ZnIn2S4and ZnIn2S4/CD200 are 2.10 and 2.03 eV, respectively.The Mott-Schottky (M-S) curve was used to confirm the type of photocatalyst.Fig.S3(Supporting information)exhibits a positive slope for ZnIn2S4/CD200, which is consistent with n-type semiconductors [38,39].The flat-band potential (Ef) of ZnIn2S4/CD200 is-0.93 eV vs.SCE, and reached -0.69 eV vs.normal hydrogen electrode(NHE).Therefore,the CB of ZnIn2S4/CD200 was-0.99 eV[38].X-ray photoelectron spectroscopy (XPS) was employed to determine the elemental composition, chemical state, and presence of defects (Fig.2).As shown in the XPS survey pattern(Fig.2d), S, In, and Zn were present.The high-resolution S 2p spectra of ZnIn2S4and ZnIn2S4/CD200 in Fig.S4a (Supporting information)exhibit two characteristic bands(S 2p1/2and S 2p3/2)[24].The negative shifts in the S 2p3/2and S 2p1/2peaks for ZnIn2S4/CD200 (161.49 and 162.69 eV) from those of ZnIn2S4(161.59 and 162.85 eV) indicate the presence of defects [22].Similarly, the Zn 2p binding energies and intensities for ZnIn2S4/CD200(1044.44 eV,Zn 2p1/2and 1021.38 eV,Zn 2p3/2)also exhibit similar contrasting reductive tendencies compared to those of ZnIn2S4(1044.51 eV, Zn 2p1/2and 1021.48 eV, Zn 2p3/2) [40].However,there were no clear changes in the In 3d binding energy for ZnIn2S4(452.29 eV,In 3d3/2and 444.74 eV,In 3d5/2)when CD was present(452.28 eV, In 3d3/2and 444.73 eV, In 3d5/2).These results indicated that the deficiency of S atoms resulted in reduced electron density at the nearby Zn atoms,rather than the nearby In atoms[21,24],indicating the occurrence of local electron transport.Further quantitative elemental analysis exhibited different atomic percentages (Table S2 in Supporting information).ZnIn2S4exhibited sulfur-vacancy properties due to the Zn:In:S ratio of 1.02:2:3.42.Following the implantation of CD, the atomic ratio of Zn further declined, which could be due to the existence of Zn vacancies.This is consistent with the ESR results.

    To estimate the photocatalytic activities of the materials, the photocatalytic DCF degradation process under visible light and natural sunlight were performed.Fig.3a compares the DCF degradation achieved by the different photocatalysts.The absence of catalyst did not impact the DCF degradation under visible light.However, in the presence of parent ZnIn2S4and its composites, the photocatalytic performance was greatly enhanced.In particular, ZnIn2S4/CD200 achieved optimal activity and fully removed the DCF within 12 min at a degradation rate of 0.455 min-1, which is 15.7-fold that of ZnIn2S4(Fig.S5 in Supporting information).Interestingly,the catalytic performance decreased after doping with a high amount of CD,indicating that the inner filter effect weakened the acquisition of photons by ZnIn2S4[25,38].Furthermore, we found that ZnIn2S4/CD200 can efficiently catalyse the degradation of DCF under natural sunlight(Fig.3b).There was no significant change in the DCF degradation under natural sunlight when there was no catalyst.However,the photocatalytic efficiency was estimated to be 98.2% in the presence of ZnIn2S4/CD200.As stated above, we summarized DCF degradation performance of previous reports and the materials in the present study (Table S3 in Supporting information).The observations reveal that ZnIn2S4/CD200 is superior to that of the currently used photocatalysts.

    Fig.3.Photocatalytic degradation of DCF under visible light on different photocatalysts(a).Photocatalytic activity of DCF under visible and natural light(b).

    Photo-electrochemical characterisation was employed to explore the enhanced DCF degradation performance of ZnIn2S4/CD200.The steady-state photoluminescence spectra (PL) in Fig.S6a (Supporting information) indicate evident PL quenching of ZnIn2S4/CD200 nanosheet,suggesting the suppressed recombination of electron-hole pair.The time-resolved photoluminescence(TRPL) spectra confirm the charge-carrier kinetics of ZnIn2S4and ZnIn2S4/CD200 (Fig.S6b in Supporting information).ZnIn2S4/CD200 exhibited a shorter average lifetime (1.11 ns) than ZnIn2S4(1.70 ns, Table S4 in Supporting information).The clear PL quenching and lifetime reduction reveal the efficient electronhole migration behavior from ZnIn2S4to CD in ZnIn2S4/CD200 nanosheet[41].As shown in Fig.S6c(Supporting information),the EIS pattern displays a smaller semicircle for ZnIn2S4/CD200,suggesting lower charge migration resistance in this photocatalyst,which permits the slow recombination of photo-induced electronhole pairs.Similarly, the enhanced carrier transfer dynamics of ZnIn2S4/CD200 were also proposed by the transient photocurrent measurements(Fig.S6d in Supporting information).These results indicate that the rich defects and CD implantation can significantly facilitate charge migration and the response to solar light.

    To elucidate the contribution of reactive species, the trapping experiments were conducted(Fig.4a).The photocatalytic efficiency of DCF decreased slightly when isopropyl alcohol (IPA) was introduced into the photo-reactor, and the degradation rate decreased from 0.455 to 0.335 min-1.However, the participation of p-benzoquinone (p-BQ), potassium dichromate (K2Cr2O7), and ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA-2Na) greatly restrained the degradation rate of DCF under visible light.The rate constants are 32.5-fold, 10.8-fold, and 20.7-fold lower than those of the scavenger-free,respectively (Fig.4b).The results suggest that?OH plays a negligible role, e-and h+play a secondary function,and O2?-is the predominant contributor to the photodegradation process [2].DCF degradation process was not occurred in the oxygen-deficient environment,indicating that O2is indispensable for the degradation reaction.Moreover,the presence of O2?-and?OH products on ZnIn2S4and ZnIn2S4/CD200 was also directly confirmed by the ESR analysis.Figs.4c and d presents the O2?-and?OH generation signals by photocatalysts in the dark and under visible light(5 and 10 min).No clear O2?-(1:1:1:1)and?OH(1:2:2:1)signal peaks were observed in the dark,while the signal intensities markedly enhanced under visible light as the illumination time increased.Additionally,the signal intensities of O2?-and?OH of ZnIn2S4/CD200 are greater than those of ZnIn2S4.This indicates that ZnIn2S4and ZnIn2S4/CD200 can generate O2?-and?OH,and ZnIn2S4/CD200 achieved higher electron-hole separation and utilisation of sunlight, corresponding to the photocatalysis results.

    A schematic diagram of the proposed mechanism is shown in Fig.S7 (Supporting information).The ZnIn2S4/CD200 nanosheet can produce e-and h+under visible-light.The photo-induced e-on the CB of ZnIn2S4can migrate to the CD due to the electronic storage characteristics of CD [27].The energy band structure of ZnIn2S4/CD200 exhibited a more negative CB edge than the potential of O2/O2?-(-0.33 eV vs.NHE).Therefore, the transferred e-in the CD can cause O2to adsorb onto the surface of ZnIn2S4/CD200 to generate O2?-[42].As shown in the ESR patterns,?OH signal peaks were present,which was attributed to the multi-step transformation between e-and O2,rather than direct h+oxidation.This illustrated that O2?-was a rate-determining step under trapping experiment of?OH,thus leading to slight decrease of rate in IPA addition and obvious decline in p-BQ participation.According to the trapping test, h+and e-also directly served as the contribution due to the formation of interstitial energy states,allowing more photogenerated e-/h+to participate in the photocatalytic process.Moreover, the up-converted PL behaviour of CD resulted in stronger absorption of sunlight.Therefore, ZnIn2S4/CD200 achieved excellent DCF degradation under natural light.In summary, O2?-,?OH, h+, and e-are synergistically responsible for the degradation of DCF.

    To further explore the degradation mechanism,a series of DCF by-products and corresponding structures were recorded through LC-MS analysis (Table S5 in Supporting information).Based on these proposed intermediates,there were three possible degradation pathways of DCF by ZnIn2S4/CD200 under visible light,namely pathways A, B, and C (Fig.S8 in Supporting information).The m/z fragment of the intermediates increased in the first 6 min, then decreased as the irradiation time continued.This can be attributed to two reasons.The low-electron-density C-15 atoms in DCF could be preferentially attacked by nucleophilic O2?-to generate carbocation radicals, and further oxidized to produce P1 (m/z 298)[4,7].The C-4 atom in P1 was then broken by O2?-to generate large-molecule P2.The small-molecule intermediate P3(m/z 181)was then generated by the cleavage of C--N bonds[2].Pathway B involves the hydroxylation of DCF.The C-5 atom in DCF could form P4 through hydroxylation due to its high-electron-density[43,44].The structure of P5 could be attributed to dihydroxylation, while P6 was further hydroxylated with the loss of the chlorine atom[7,45].The m/z 168 and 145 fragments are vital and agree well with the cleavage of the C--N bond through the attack of h+[2].In pathway C,e-can induce dechlorination and interact with?OH to produce P7(m/z 241)[46],while O2?-could facilitate the oxidation of C-15 on P7,resulting in the formation of P8(m/z 211).Following decarboxylation and election reduction,P9(m/z 197)was detected[47].These intermediates broke up into small-molecule byproducts, and finally CO2and H2O.The TOC analysis confirms the final fate of DCF in the ZnIn2S4/CD200 photocatalytic system.The TOC removal rate was calculated to be 48.62% within 12 min under visible-light illumination (Fig.S9a in Supporting information), indicating that the parent DCF and its related by-products can be decomposed by the reactive species and converted into CO2and H2O.

    Whether the intermediate of DCF degradation is environmentally friendly is related to human health.Therefore, the Toxicity Estimation Software Tool(T.E.S.T.)was used to determine the ecotoxicity risk of the photocatalytic products[3].Fig.S9b(Supporting information) shows the effect of a lethal concentration of 50%(LC50)in the fathead minnow(96 h)in the system with degradation intermediates.The LC50value of the parent DCF is 0.43 mg/L.All degradation by-products exhibited a higher LC50value(excluding P4 and P5),indicating that the hydroxylation process has negative effects [48].Among all intermediates, the larger-molecules intermediates resulted in a high degree of toxicity, while the small-molecule intermediates were less toxic, particularly P10,P11, P12 and P13, as they were further oxidized and mineralized.Therefore,a high degree of oxidation and mineralization is vital to ensure safe water quality.Overall,the ZnIn2S4/CD200/visible light system could weaken the ecological toxicity of DCF to aquatic organisms.

    Reusability and stability are important for assessing the performance of materials in a photocatalytic system.As shown in Fig.S9c (Supporting information), the degradation efficiency was 87%during the fourth recycle,suggesting a slight decrease in efficiency from the first experiment.The crystallinity of the fresh and reused ZnIn2S4/CD200 was compared using their XRD patterns(Fig.S9d in Supporting information).No clear phase changes can be observed,and these observations confirm the excellent regeneration and stability of ZnIn2S4/CD200.

    In summary, we successfully synthesised defective ZnIn2S4/CD200 nanosheets via a facile method.The development of defects and implantation of CD can introduce interstitial states to extend the carriers' recombination pathways and provide a chargetransfer channel to migrate e-from ZnIn2S4to CD.More photoinduced e-and h+can participate in the photocatalytic system, thereby achieving a 100% removal percentage and rate constant of 0.455 min-1for DCF degradation.The photocatalytic efficiency was estimated to be 98.2%under natural sunlight.O2?-, e-, h+and?OH play key roles in DCF degradation.Hydroxylation,decarboxylation,C--N bond cleavage,dechlorination,ring closure,and ring-opening are the main DCF photodegradation pathways.The ecological risk assessment shows that ZnIn2S4/CD200/visible light system could weaken the ecological toxicity of DCF to aquatic organisms.These findings indicate that the engineering of defects and incorporation of carbon dots can accelerate electron migration and direct use of natural-sunlight for environmental remediation and other applications.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was funded by the Venture & Innovation Support Program for Chongqing Overseas Returnees (No.cx2019034) and National Major Project of Pollution Control and Treatment Science and Technology (No.2017ZX07401003-4).We would also like to thank the Analytical and Testing Center of Chongqing University for conducting the various characterization.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version, at doi:https://doi.org/10.1016/j.cclet.2020.12.049.

    午夜福利乱码中文字幕| 法律面前人人平等表现在哪些方面| 又大又爽又粗| 久久99一区二区三区| 日韩欧美免费精品| 美女高潮到喷水免费观看| 亚洲av美国av| 巨乳人妻的诱惑在线观看| 国产又爽黄色视频| 波多野结衣av一区二区av| 亚洲成人免费av在线播放| 欧美日韩黄片免| 日韩免费高清中文字幕av| www.精华液| 大片电影免费在线观看免费| av又黄又爽大尺度在线免费看| 桃花免费在线播放| 久久这里只有精品19| 日韩有码中文字幕| 国产精品成人在线| 如日韩欧美国产精品一区二区三区| 国产成人精品久久二区二区91| 十八禁网站网址无遮挡| 国产主播在线观看一区二区| 在线观看人妻少妇| 人人妻,人人澡人人爽秒播| 亚洲伊人色综图| 伊人久久大香线蕉亚洲五| 中文亚洲av片在线观看爽 | 久久久久久亚洲精品国产蜜桃av| 如日韩欧美国产精品一区二区三区| 男人操女人黄网站| 成人手机av| 国产黄色免费在线视频| 又大又爽又粗| 国产黄频视频在线观看| 国产色视频综合| 久久性视频一级片| 亚洲熟女精品中文字幕| 99热国产这里只有精品6| 后天国语完整版免费观看| 中文欧美无线码| 在线观看免费日韩欧美大片| 69av精品久久久久久 | 国产精品电影一区二区三区 | 法律面前人人平等表现在哪些方面| 人妻久久中文字幕网| 一本—道久久a久久精品蜜桃钙片| 18禁裸乳无遮挡动漫免费视频| 免费不卡黄色视频| 亚洲免费av在线视频| 一本—道久久a久久精品蜜桃钙片| kizo精华| 一进一出好大好爽视频| 欧美午夜高清在线| 亚洲精品美女久久久久99蜜臀| 亚洲九九香蕉| 欧美成狂野欧美在线观看| 在线观看免费午夜福利视频| 精品熟女少妇八av免费久了| 国产精品偷伦视频观看了| av福利片在线| e午夜精品久久久久久久| 国产精品秋霞免费鲁丝片| av片东京热男人的天堂| 18禁裸乳无遮挡动漫免费视频| 成人三级做爰电影| 亚洲欧洲日产国产| 丰满迷人的少妇在线观看| 黄色a级毛片大全视频| 青青草视频在线视频观看| xxxhd国产人妻xxx| 精品卡一卡二卡四卡免费| 一本久久精品| 一本大道久久a久久精品| 国产精品久久久久成人av| 欧美人与性动交α欧美软件| 一边摸一边抽搐一进一出视频| 一二三四在线观看免费中文在| 女同久久另类99精品国产91| 少妇 在线观看| 人人妻人人添人人爽欧美一区卜| 国产有黄有色有爽视频| 亚洲av第一区精品v没综合| 亚洲av欧美aⅴ国产| 日本av免费视频播放| 在线av久久热| 日本撒尿小便嘘嘘汇集6| 成人18禁在线播放| 日本av手机在线免费观看| 亚洲专区字幕在线| 国产精品一区二区精品视频观看| 热re99久久精品国产66热6| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 无遮挡黄片免费观看| 热99久久久久精品小说推荐| av有码第一页| 欧美激情高清一区二区三区| 视频在线观看一区二区三区| 少妇 在线观看| 欧美日韩黄片免| 亚洲美女黄片视频| 国产主播在线观看一区二区| 99在线人妻在线中文字幕 | 久久中文看片网| 国产在线免费精品| 黄色视频,在线免费观看| 国产成人影院久久av| 久久久国产成人免费| 操出白浆在线播放| 亚洲综合色网址| 国产精品一区二区免费欧美| 日本av手机在线免费观看| 搡老熟女国产l中国老女人| 水蜜桃什么品种好| 国产亚洲一区二区精品| 精品亚洲乱码少妇综合久久| 国产免费av片在线观看野外av| 精品人妻熟女毛片av久久网站| 99国产综合亚洲精品| a级毛片在线看网站| 99精品久久久久人妻精品| 色综合欧美亚洲国产小说| 99精品在免费线老司机午夜| 超碰成人久久| 激情视频va一区二区三区| 国产男靠女视频免费网站| 天天影视国产精品| 欧美黑人精品巨大| 国产午夜精品久久久久久| 国产伦人伦偷精品视频| 电影成人av| 一区二区av电影网| 国产精品欧美亚洲77777| 热re99久久国产66热| 97人妻天天添夜夜摸| 欧美亚洲日本最大视频资源| 色在线成人网| 日韩欧美一区二区三区在线观看 | 侵犯人妻中文字幕一二三四区| 嫩草影视91久久| 国产免费av片在线观看野外av| 精品国产一区二区三区久久久樱花| 丝袜人妻中文字幕| 99热网站在线观看| 色尼玛亚洲综合影院| 久久精品国产综合久久久| 精品少妇一区二区三区视频日本电影| 嫩草影视91久久| a级片在线免费高清观看视频| 大陆偷拍与自拍| 中亚洲国语对白在线视频| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| 搡老熟女国产l中国老女人| 亚洲精品中文字幕在线视频| 亚洲成人免费av在线播放| www.999成人在线观看| 日韩欧美免费精品| 嫁个100分男人电影在线观看| 成人国语在线视频| 黄片播放在线免费| 一本大道久久a久久精品| 老司机靠b影院| 亚洲精品久久成人aⅴ小说| av有码第一页| 18在线观看网站| 亚洲精品乱久久久久久| 怎么达到女性高潮| 老司机在亚洲福利影院| 亚洲 国产 在线| 日韩欧美一区二区三区在线观看 | 99国产极品粉嫩在线观看| 少妇被粗大的猛进出69影院| 国产免费现黄频在线看| 又大又爽又粗| 国产成人欧美在线观看 | 窝窝影院91人妻| av免费在线观看网站| 精品亚洲乱码少妇综合久久| 亚洲第一青青草原| 久久精品国产亚洲av高清一级| 欧美日韩福利视频一区二区| 欧美大码av| 99国产精品一区二区三区| 久久久久久免费高清国产稀缺| 日韩精品免费视频一区二区三区| 99精国产麻豆久久婷婷| 香蕉国产在线看| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 亚洲三区欧美一区| 极品少妇高潮喷水抽搐| 精品人妻熟女毛片av久久网站| 一边摸一边抽搐一进一小说 | av又黄又爽大尺度在线免费看| 丁香六月欧美| 亚洲三区欧美一区| 欧美黑人精品巨大| 亚洲av第一区精品v没综合| 精品熟女少妇八av免费久了| 国产aⅴ精品一区二区三区波| 欧美性长视频在线观看| 欧美日韩亚洲高清精品| 人妻 亚洲 视频| 日韩欧美免费精品| 精品一区二区三区四区五区乱码| 欧美日韩一级在线毛片| 2018国产大陆天天弄谢| 日日摸夜夜添夜夜添小说| 中文亚洲av片在线观看爽 | av线在线观看网站| 国产欧美日韩精品亚洲av| 啪啪无遮挡十八禁网站| 亚洲人成伊人成综合网2020| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| 国产成人系列免费观看| 深夜精品福利| 欧美在线一区亚洲| 99久久精品国产亚洲精品| 窝窝影院91人妻| 一区二区三区激情视频| 国产成人系列免费观看| 亚洲中文av在线| 最新的欧美精品一区二区| 可以免费在线观看a视频的电影网站| 国产精品电影一区二区三区 | 国产精品98久久久久久宅男小说| 精品亚洲乱码少妇综合久久| 国产一区二区激情短视频| 中国美女看黄片| 免费av中文字幕在线| 97人妻天天添夜夜摸| a级片在线免费高清观看视频| 久久精品国产亚洲av高清一级| bbb黄色大片| 黄色怎么调成土黄色| 下体分泌物呈黄色| 在线观看一区二区三区激情| 美女高潮到喷水免费观看| 嫁个100分男人电影在线观看| 一级毛片电影观看| 中文字幕精品免费在线观看视频| 天天躁夜夜躁狠狠躁躁| 黄色视频不卡| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 亚洲精品久久成人aⅴ小说| 18禁美女被吸乳视频| 国产极品粉嫩免费观看在线| 精品第一国产精品| 少妇 在线观看| 精品一品国产午夜福利视频| 亚洲av第一区精品v没综合| 久久这里只有精品19| 精品国内亚洲2022精品成人 | 夫妻午夜视频| 丰满少妇做爰视频| 好男人电影高清在线观看| 99国产精品免费福利视频| 18在线观看网站| 欧美中文综合在线视频| 99九九在线精品视频| 免费在线观看影片大全网站| 午夜福利一区二区在线看| 人成视频在线观看免费观看| 大片电影免费在线观看免费| 欧美国产精品va在线观看不卡| 午夜福利视频在线观看免费| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 国精品久久久久久国模美| 不卡一级毛片| a级片在线免费高清观看视频| 亚洲人成电影观看| 久久ye,这里只有精品| 亚洲精品在线美女| 日韩欧美一区二区三区在线观看 | 国产日韩欧美在线精品| 亚洲九九香蕉| 久久久精品国产亚洲av高清涩受| 久久青草综合色| 又紧又爽又黄一区二区| 国产成人系列免费观看| 成人免费观看视频高清| 美女主播在线视频| 最近最新中文字幕大全电影3 | 欧美变态另类bdsm刘玥| 国产精品 国内视频| 国产精品免费大片| 水蜜桃什么品种好| avwww免费| 日韩人妻精品一区2区三区| 黄色丝袜av网址大全| 国产视频一区二区在线看| 久久毛片免费看一区二区三区| 亚洲一区二区三区欧美精品| 午夜成年电影在线免费观看| 下体分泌物呈黄色| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 桃花免费在线播放| 午夜日韩欧美国产| 涩涩av久久男人的天堂| 国产精品自产拍在线观看55亚洲 | 亚洲天堂av无毛| 一级毛片女人18水好多| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 亚洲免费av在线视频| 久久精品亚洲熟妇少妇任你| 久久国产精品男人的天堂亚洲| 狠狠狠狠99中文字幕| 成人三级做爰电影| 欧美精品亚洲一区二区| 1024香蕉在线观看| 久久久久久久久久久久大奶| 黄色片一级片一级黄色片| 久久香蕉激情| 少妇裸体淫交视频免费看高清 | 国产在视频线精品| 曰老女人黄片| 搡老岳熟女国产| 母亲3免费完整高清在线观看| 在线av久久热| 一本大道久久a久久精品| 久久国产精品男人的天堂亚洲| 满18在线观看网站| 国产精品一区二区在线不卡| 久久国产精品影院| 午夜福利欧美成人| 天天操日日干夜夜撸| www.熟女人妻精品国产| 中文亚洲av片在线观看爽 | 国产不卡一卡二| 久久中文字幕人妻熟女| 久久久久视频综合| 中文字幕精品免费在线观看视频| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 最近最新中文字幕大全电影3 | 亚洲精品国产色婷婷电影| 欧美精品亚洲一区二区| 蜜桃在线观看..| 成人黄色视频免费在线看| 午夜日韩欧美国产| 国产在线观看jvid| 肉色欧美久久久久久久蜜桃| 人妻久久中文字幕网| 国产精品99久久99久久久不卡| 午夜福利,免费看| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 在线天堂中文资源库| 最新在线观看一区二区三区| 我要看黄色一级片免费的| 国产高清激情床上av| 国产精品偷伦视频观看了| 脱女人内裤的视频| 欧美日韩亚洲高清精品| 91av网站免费观看| 伦理电影免费视频| 国产一区二区三区视频了| 欧美激情高清一区二区三区| 高清av免费在线| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久av网站| 色婷婷av一区二区三区视频| 欧美日韩精品网址| 成年人免费黄色播放视频| 成人国语在线视频| 亚洲成人免费电影在线观看| 露出奶头的视频| 国产成人啪精品午夜网站| 激情视频va一区二区三区| 成人亚洲精品一区在线观看| 国产激情久久老熟女| 国产成人欧美| 男女下面插进去视频免费观看| 青青草视频在线视频观看| 欧美av亚洲av综合av国产av| 国产精品成人在线| 午夜91福利影院| avwww免费| 欧美日韩视频精品一区| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 国产一区二区在线观看av| 国产亚洲av高清不卡| 免费高清在线观看日韩| 久久午夜综合久久蜜桃| 午夜视频精品福利| cao死你这个sao货| 天堂8中文在线网| 丁香欧美五月| 成人手机av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一码二码三码区别大吗| 久久久久久久久免费视频了| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 欧美国产精品va在线观看不卡| 国产在线免费精品| 在线播放国产精品三级| 久久人人97超碰香蕉20202| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 久久精品国产亚洲av香蕉五月 | 国产成人一区二区三区免费视频网站| 午夜激情av网站| 亚洲人成77777在线视频| 久久影院123| 一个人免费看片子| 超色免费av| 高清欧美精品videossex| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 欧美精品人与动牲交sv欧美| 色综合婷婷激情| 亚洲,欧美精品.| 成人国产av品久久久| 日韩三级视频一区二区三区| 2018国产大陆天天弄谢| av线在线观看网站| a在线观看视频网站| 亚洲欧美日韩另类电影网站| 国内毛片毛片毛片毛片毛片| 天堂8中文在线网| 国产高清激情床上av| 99热国产这里只有精品6| 女同久久另类99精品国产91| 肉色欧美久久久久久久蜜桃| xxxhd国产人妻xxx| av视频免费观看在线观看| 成人手机av| 国产精品99久久99久久久不卡| 欧美午夜高清在线| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 搡老乐熟女国产| 美女午夜性视频免费| av不卡在线播放| 欧美黑人欧美精品刺激| 肉色欧美久久久久久久蜜桃| 久久午夜亚洲精品久久| 色婷婷久久久亚洲欧美| 国产一区二区激情短视频| 亚洲精品国产色婷婷电影| 亚洲成人免费av在线播放| 成人黄色视频免费在线看| 老熟妇乱子伦视频在线观看| 亚洲人成77777在线视频| 制服人妻中文乱码| 精品国产一区二区三区四区第35| 视频区图区小说| 日本黄色视频三级网站网址 | 国产精品自产拍在线观看55亚洲 | 青青草视频在线视频观看| 国产精品香港三级国产av潘金莲| 亚洲国产av新网站| 12—13女人毛片做爰片一| 色精品久久人妻99蜜桃| av不卡在线播放| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 99riav亚洲国产免费| 国精品久久久久久国模美| 日韩欧美三级三区| 久久久国产一区二区| 亚洲少妇的诱惑av| 制服诱惑二区| 国产精品98久久久久久宅男小说| 国产成人精品在线电影| 91大片在线观看| avwww免费| 国产成人av教育| 精品福利观看| 欧美在线一区亚洲| 日韩免费高清中文字幕av| 国产精品九九99| 亚洲情色 制服丝袜| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 国产精品国产高清国产av | 欧美激情 高清一区二区三区| 人妻久久中文字幕网| 极品少妇高潮喷水抽搐| 在线观看免费午夜福利视频| 久久国产精品影院| 国产成人精品在线电影| 天堂8中文在线网| 久久久欧美国产精品| 高清av免费在线| tube8黄色片| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 国产精品自产拍在线观看55亚洲 | 777米奇影视久久| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲成人免费电影在线观看| 精品福利永久在线观看| 无限看片的www在线观看| 欧美激情极品国产一区二区三区| 久久久国产一区二区| 新久久久久国产一级毛片| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 国产av又大| 免费在线观看影片大全网站| 黄片大片在线免费观看| 黄色视频在线播放观看不卡| 男女免费视频国产| 高清欧美精品videossex| 黄色视频,在线免费观看| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 欧美久久黑人一区二区| 国产一卡二卡三卡精品| 一级毛片电影观看| h视频一区二区三区| 国产男女内射视频| av在线播放免费不卡| 亚洲精品乱久久久久久| 午夜福利视频在线观看免费| 亚洲免费av在线视频| 韩国精品一区二区三区| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 国产一区二区在线观看av| 91字幕亚洲| 人人妻人人澡人人看| 大型黄色视频在线免费观看| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 热99re8久久精品国产| 久久久久久久国产电影| 欧美乱妇无乱码| 另类精品久久| 日本av免费视频播放| 久久婷婷成人综合色麻豆| 欧美日韩一级在线毛片| 久久久久久人人人人人| 亚洲人成电影免费在线| 999久久久国产精品视频| 日本wwww免费看| videos熟女内射| 久久精品国产99精品国产亚洲性色 | 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月 | 制服人妻中文乱码| 国产伦理片在线播放av一区| 黄色怎么调成土黄色| 一本一本久久a久久精品综合妖精| 50天的宝宝边吃奶边哭怎么回事| 亚洲av美国av| 久久青草综合色| 在线天堂中文资源库| 免费一级毛片在线播放高清视频 | 亚洲黑人精品在线| 97人妻天天添夜夜摸| 麻豆av在线久日| 国产亚洲一区二区精品| 两性夫妻黄色片| 每晚都被弄得嗷嗷叫到高潮| 99热国产这里只有精品6| 亚洲av成人不卡在线观看播放网| 性少妇av在线| 无遮挡黄片免费观看| 亚洲综合色网址| 考比视频在线观看| 国产精品一区二区免费欧美| 久久久久精品人妻al黑| 丁香六月欧美| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看. | 国产一卡二卡三卡精品| 色视频在线一区二区三区| 欧美日本中文国产一区发布| 成人精品一区二区免费| 国产成人精品在线电影| 国产成+人综合+亚洲专区| 久久久久久久精品吃奶| 女同久久另类99精品国产91| 如日韩欧美国产精品一区二区三区| 少妇粗大呻吟视频| 国产国语露脸激情在线看| av线在线观看网站| 一本色道久久久久久精品综合| tube8黄色片| 法律面前人人平等表现在哪些方面| 精品国产乱码久久久久久男人| 搡老熟女国产l中国老女人| 国产福利在线免费观看视频| 国产精品免费视频内射| 日本av免费视频播放| 乱人伦中国视频| 一级片'在线观看视频| 亚洲精品一二三| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| av不卡在线播放| 1024视频免费在线观看|