• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning the concentration of surface/bulk oxygen vacancies in CeO2 nanorods to promote highly efficient photodegradation of organic dyes

    2021-11-19 05:40:24ZhenShenYipengZhouYueGuoJieZhoJinhuSongYuXieYunLingWeiZhng
    Chinese Chemical Letters 2021年8期

    Zhen Shen,Yipeng Zhou,Yue Guo,Jie Zho,,**,Jinhu Song,Yu Xie,*,Yun Ling,Wei Zhng*

    a Department of Material Chemistry, Nanchang Hangkong University, Nanchang 330063, China

    b School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

    c School of Ecology and Environment Science, Zhengzhou University, Zhengzhou 450001, China

    1 These authors contributed equally to this work.

    ABSTRACT To enhance the photodegradation ability of CeO2 for organic dyes, an effective strategy is to introduce oxygen vacancies(Vo).In general,the introduced Vo are simultaneously present both on the surface and in the bulk of CeO2.The surface oxygen vacancies(Vo-s)can decrease the band gap,thus enhancing light absorption to produce more photogenerated e- for photodegradation.However, the bulk oxygen vacancies(Vo-b)will inhibit photocatalytic activity by increasing the recombination of photogenerated eand Vo-b.Therefore,regulating the concentrations of Vo-s to Vo-b is a breakthrough for achieving the best utilization of photogenerated e- during photodegradation.We used an easy hydrothermal method to achieve tunable concentrations of Vo-s to Vo-b in CeO2 nanorods.The optimized CeO2 presents a 70.2%removal of rhodamine B after 120 min of ultraviolet-visible light irradiation, and a superior photodegradation performance of multiple organics.This tuning strategy for Vo also provides guidance for developing other advanced metal-oxide semiconductor photocatalysts for the photodegradation of organic dyes.

    Keywords:CeO2 Nanorods Oxygen vacancy Photodegradation Organic pollutant

    As a green and sustainable technology,photocatalysis has been increasingly studied due to its great potential in solving environmental pollution and energy crises[1-3].In photocatalytic processes, photoactive materials, such as TiO2[4], CeO2[5],ZnCo2O4/Bi2O3[6], g-C3N4/Ag3PO4[7], SnO2[8], BiOBr/TiO2/Ti3C2TX[9], GaN [10], CdS [11], and BiVO4/Znln2S4[12] play decisive roles in the redox/charge-transfer reactions due to their unique electronic structures with a filled valence band(VB)and an empty conduction band (CB) [1].Among them, CeO2has been widely used in industry because Ce,as a rare-earth element,has a low price and relatively high abundance in the Earth’s crust.As an n-type semiconductor(with a band gap similar to that of TiO2),it exhibits potential photocatalytic activity.However,the wide band gap restricts its photocatalytic efficiency [4,13].Considering this,other components, including semiconductors and metals, have been introduced to improve UV and/or visible light absorption and prevent hole-electron recombination [14-17].Moreover, the modification of CeO2by controlling its size, morphology, and number of defects will be significant for improving its intrinsic photocatalytic properties [18,19].

    Nanoscale CeO2, e.g., nanoparticles, nanosheets, and nanorods,can effectively enhance UV and/or visible light absorption and promote the adsorption of reactants due to its high specific surface area, thereby facilitating photocatalytic reactions [20].Previous studies have mainly focused on the comparison of photocatalytic performancewithdifferentmorphologiesofCeO2[21,22].However,the intrinsic photocatalytic performance of CeO2still needs to be further studied, especially the effect of defects on its catalytic performance,which needs tobe studied with the same morphology or even uniform size.One-dimensional (1D) CeO2nanorods with well-defined {100} and {110} planes show better photocatalytic performances than other stable polyhedral-structured CeO2[13].Additionally,the 1D nanorod structure dramatically improves the redox properties because of its more efficient and fast transport of photogenerated e-and h+along the nanorod surface[23-26].

    Defects in catalysts are crucial factors affecting photocatalytic performance.The defect formation energies in nanomaterials are lower due to the existence of a high-density interface,which leads to an increase in nonstoichiometric defects and the generation of electron carriers [27].In addition, Ce ions usually show two valences (Ce3+and Ce4+) due to their special outer electron structure of[Xe]4f26s2,thus tending to form multivalent oxides of CeO2-x(x=0-0.5) [13].Therefore, a large number of oxygen vacancies (Vo) are easily formed on/in the surface/bulk of CeO2.Many strategies have been developed for the introduction of oxygen vacancies to CeO2by using reductant including H2,CO,NH3,and Li[28-30].These Voare present both on the surface and in the bulk phase.The surface oxygen vacancies (Vo-s) can promote the increase in the Fermi level attributed to the generation of defect energy levels(near the bottom of the CB in CeO2)in the band gap,leading to a narrowed band gap and enhanced light absorption[31].In addition, coordinative-unsaturated metal atoms (surrounding Vo)can act as strong binding sites for organic dyes,thus accelerating photocatalytic reactions [32,33].Moreover, bulk oxygen vacancies (Vo-b) may act as recombination centers of photogenerated e-coming from the surface, resulting in a low utilization of photogenerated e-[34].With an increasing concentration ratio (from Vo-sto Vo-b), the utilization of photogenerated e-for photodegradation can be improved,thus leading to improved photocatalytic performance [35-37].Therefore, the precise regulation of Vois of great significance to improve the intrinsic photocatalytic performance of CeO2when applied to the degradation of organic dyes.

    Herein, we synthesize and report a 1D CeO2nanorod with uniform size and morphology.The hydrothermal method is used to tune the concentration ratio of surface/bulk oxygen vacancies in CeO2nanorods.With the highest concentration of Vo-sto Vo-b,the CeO2nanorod presents the narrowest band gap and the highest utilization of photogenerated e-.In regard to the photodegradation of rhodamine B, the percentage of removal reaches 70.2% after 120 min of ultraviolet-visible light irradiation, exhibiting potential application in wastewater purification.This tuning strategy of Voalso provides guidance for the development of other advanced metal-oxide semiconductor photocatalysts for the photodegradation of organic dyes.

    The X-ray powder diffraction(XRD)patterns of the as-prepared CeO2-1, CeO2-2, and CeO2-3 are shown in Fig.1a.The diffraction peaks of the catalysts were mainly assigned to the (111), (200),(220),(311),(222),(400),and(331)planes,which were indexed to the cubic fluorite structure of CeO2crystals (JCPDS No.34-0394).The field-emission scanning electron microscopy (FESEM) and transmission electron microscopy(TEM)images of CeO2-1,CeO2-2,and CeO2-3 are shown in Figs.1b and c and Fig.S1 (Supporting information), respectively.All the samples are 1D nanorod structures.The shorter and narrower CeO2-1 and CeO2-2 nanorods loaded with small nanoparticles led to irregular surfaces with rough structures(Fig.1c and Fig.S1).CeO2-3 exhibited longer and broader nanorods with smooth surfaces (Fig.S1d).Furthermore,two types of interference fringes of 0.19 and 0.31 nm were observed at the outer and inner nanorods from the high resolution transmission electron microscopy(HRTEM)image,which could be assigned to the (220) and (111) planes of the cubic fluorite structure CeO2,respectively(Fig.1d).This result suggests that the preferred orientation growth of the individual CeO2-2 nanorods was along the [110] direction and that the main exposed crystal surface was the (220) plane, which had a higher photocatalytic activity than(111).In addition,an ~5 nm CeO2nanoparticle on the CeO2-2 surface could be clearly seen, which likely formed during the initial crystal growth processes after the distribution of nucleation sites.Moreover,CeO2-2 exhibited a Brunauer-Emmett-Teller(BET)surface area of 137 m2/g,which was larger than those of CeO2-1 and CeO2-3 (52 and 47 m2/g, respectively) (Fig.S2 in Supporting information).Clearly, this large BET specific surface area was mainly attributed to its rough surface (Fig.1c), thus providing abundant active sites and more Vo-s.These Vo-swere conducive to enhanced light absorption and reactant adsorption;additionally, the exposed (220) facets contributed to the high reactive activity, and both factors improved the photocatalytic performance of CeO2-2 nanorods.

    Fig.1.Structure and morphology.(a)XRD patterns.(b-d)FESEM,TEM,and HRTEM images of CeO2-2.The pore defects and nanoparticles are marked by white dashed rectangles and arrows, respectively.

    At present,several detection technologies can be used to resolve the Voin metal oxides, such as, Raman spectrum, extended X-ray absorption fine structure spectroscopy (EXAFS),positron annihilation lifetime spectroscopy(PALS),electron paramagnetic resonance spectrum(EPR),aberration-corrected transmission electron microscopy(ACTEM),electron energy loss spectroscopy(EELS),and X-ray photoelectron spectroscopy (XPS) [38,39].Among those detection method,Raman,EXAFS,PALS,and EPR are often used to analyze the total Voinformation in catalyst,while the ACTEM,EELS,and XPS are often used to analyze Voin the local or surface of catalyst.In this paper,we combined Raman and XPS to semi-quantitatively analyze the concentration ratio of surface/bulk Voin CeO2.

    Fig.2.Tuning surface/bulk oxygen vacancies.(a) Raman spectra.(b) XPS Ce 3d spectra.(c) Schematic action mechanism at different surface/bulk oxygen vacancy ratios.

    The Raman spectra providing the Voinformation of the total crystal, including the bulk and surface, are shown in Fig.2a.The sharp Raman peaks of CeO2-1,CeO2-2,and CeO2-3 were located at frequencies of 459,459,and 461 cm-1,respectively,and these were attributed to the first-order vibrational mode with F2gvibration(symmetrical stretching mode of the Ce-O8vibration unit) in a fluorite cubic structure.Compared with the reported value of 466 cm-1,the redshifts of the F2gvibration peaks were ascribed to the nanocrystalline nature of CeO2[40].The peak shifts of CeO2-1 and CeO2-2 were larger than those of CeO2-3, further indicating the smaller crystal grains of CeO2-1 and CeO2-2.The broader peaks at approximately 270 and 597 cm-1corresponded to the secondorder transverse acoustic mode and the defect (D) vibration (i.e.,Vo), respectively [17,41].The I(D)/I(F2g) ratios of CeO2-1, CeO2-2,and CeO2-3 were estimated to be 0.048, 0.047 and 0.043,respectively, indicating all three had similar total Voconcentrations (Fig.S3 and Table S1 in Supporting information).

    The Ce 3d XPS spectra presented the chemical state of elemental Ce (Fig.2b).All the peaks could be mainly attributed to the spin-orbital doublet peaks of Ce 3d5/2and 3d3/2, which could be deconvolved into four pairs, i.e., v1 (882.7 eV)/u1(901.0 eV), v2 (885.4 eV)/u2 (903.7 eV), v3 (889.2 eV)/u3(907.5 eV), and v4 (898.4 eV)/u4 (916.7 eV) [42,43].Among them,the v1/u1, v3/u3, and v4/u4 peaks referred to the Ce4+3d states,while the v2/u2 peak corresponded to the Ce3+3d states,indicating the composition of Ce4+and Ce3+in these CeO2.This absence of Ce3+provided evidence of lattice oxygen depletion, further illustrating the existence of Voon CeO2surfaces.The surface oxygen vacancies, i.e., Vo-s, could decrease the band gap, thus enhancing light absorption and promoting photogenerated e-for photocatalysis.The Ce3+/Ce4+ratios of CeO2-1,CeO2-2,and CeO2-3 were estimated to be 4.1%,8.0%, and 3.8%,respectively, indicating that the order of Vo-sconcentration was CeO2-2>CeO2-1>CeO2-3.Combining the Raman analysis(the total Voconcentrations in the order of CeO2-2 ≈CeO2-1 ≈CeO2-3)with the XPS results(the Vo-sconcentrations in the order of CeO2-2 > CeO2-1 > CeO2-3), the order of Vo-bconcentrations should be CeO2-2 CeO2-1 > CeO2-3 (Table S1 in Supporting information).Fig.2c illustrates the action mechanism of photodegradation by Vounder different concentration ratios of Vo-sto Vo-b.Briefly, h+/epairs would be generated under irradiation and migrate to the surface of CeO2, followed by their participation in catalytic reactions.During the migration process, a fair number of photogenerated e-may be captured by Vo-band become invalid[35].A higher concentration ratio of Vo-sto Vo-bled to more photogenerated h+/e-pairs and less recombination, which would improve the utilization of photogenerated e-.In contrast, in the case of a low ratio of Vo-sto Vo-b,most photogenerated e-would be depleted by recombination with more Vo-b,which would deteriorate the photodegradation activity.

    Fig.3a shows the photocatalytic performances of the assynthesized CeO2nanorods for rhodamine B photodegradation under UV-vis light irradiation.The results showed that 29.8%and 67.4% of rhodamine B was discolored by CeO2-1 and CeO2-2,respectively.CeO2-2 displayed more efficient photocatalytic performance, which was approximately 2.3 times higher than that of CeO2-1 after 120 min of light irradiation.CeO2-3 demonstrated little activity for rhodamine B photodegradation,as shown in Fig.3a.To quantitatively clarify the photocatalytic activities of different catalysts,rhodamine B photodegradation was studied based on the plots of -ln(Ct/C0) versus time (Fig.3b)corresponding to the first-order kinetics model with a linear regression mechanism.As shown, the reaction rate constant k value of CeO2-2 was 0.0093 min-1, which was approximately 2.5 times that of CeO2-1 (0.0038 min-1).Accordingly, rhodamine B could be easily adsorbed on the CeO2-2 surface with abundant Vo-sby a first-order kinetics model.In contrast,the rhodamine B hardly degraded without photocatalyst under UV-vis light.These experimental results further confirmed that Vo-splayed a crucial role in improving photocatalytic activity.Next, we explored the reusability of the catalyst (Fig.3c).The photocatalytic cycling performance of CeO2-2 over six cycles slightly decreased for each 120 min run of rhodamine B degradation.These results suggest that CeO2-2 (with abundant Vo-s) was stable and could be reused for rhodamine B photodegradation.For congo red and methyl orange, CeO2-2 sample also has excellent degradation performance, indicating its application prospect in sewage treatment(Fig.S4 in Supporting information).

    Fig.3.Photocatalytic degradation performance.(a) Photocatalytic activity of the photodegradation of rhodamine B for 120 min.(b) Corresponding plot of (C0-Ct)versus time.(c) Recycling performance of CeO2-2.(d) Photocurrent responses.

    The photocurrent responses of the catalysts are shown in Fig.3d, while the order of photocurrent response was CeO2-2 >CeO2-1 > CeO2-3 under alternating irradiation(lights on and off),which was consistent with the order of the concentration ratio of Vo-sto Vo-b.The photocurrent densities based on the BET surface area of three CeO2nanorods are similar after 400 s, indicating a negligible effect of surface area on the photocatalytic efficiency in the total photocatalytic processes (Fig.S5 in Supporting information).In regard to the CeO2-2 sample,its high concentration ratio of Vo-sto Vo-bcould ensure that plenty of photogenerated e-were consumed during photodegradation, corresponding to the largest photocurrent intensity.Moreover, the photocurrent intensities of CeO2-2 exhibited a very slight decrease during the initial cycles and tended to be flat with increasing time, indicating a stable photoelectric characteristic.

    The optical properties and band structures of CeO2-1, CeO2-2,and CeO2-3 were analyzed by UV-vis diffuse reflectance spectroscopy(DRS).Fig.4a shows that the absorption band edges of CeO2-1,CeO2-2, and CeO2-3 were 428, 436, and 425 nm, respectively,which were higher than that reported for CeO2(approximately 420 nm).These redshifts in the absorption bands indicated the quantum confinement effect of 1D-nanostructured CeO2nanorods.Furthermore,the absorption band edge of CeO2-2 exceeded that of other CeO2nanorods,suggesting an expanded UV light absorption range and enhanced UV-light-response ability due to its abundant Vo-s,which was the reason for its higher photocatalytic efficiency.The band gap energy (Eg) of three samples could be calculated based on the Tauc plot (Eq.1):

    where α, hν, A, and Egsignify the absorption coefficient, photoenergy,proportionality constant,and band gap energy,respectively.The constant n here equaled 1/2 because CeO2is a direct-gap semiconductor.As shown in Fig.4b,the Egof CeO2-1,CeO2-2,and CeO2-3 was estimated to be 2.88, 2.82, and 2.92 eV, respectively,exhibiting a lower value compared with that reported for CeO2(3.2 eV) [44].This result could be attributed to the formation of localized states within the band gap due to the Voand increased Ce3+concentration.Previously,it has been shown that the presence of Ce3+reduces the band gap, leading to an expanded UV light absorption range [45,46].CeO2-2 exhibited the narrowest Egand generated more light-excited carriers under UV irradiation.The evaluated valance band potentials (EVB) of CeO2-1, CeO2-2, and CeO2-3 were +2.50, +2.47, and +2.52 eV, respectively [47].They were smaller than the required potential for OH radical formation by OH-(?OH/H2O pair,+2.68 eV)but larger than that by H2O(?OH/OH-pair, +1.99 eV), indicating that the holes in the valance band could directly oxidize rhodamine B but could not oxidize water.The conduction band edge position could be calculated by the following equation (Eq.2):

    As a result, the conduction band potentials (ECB) of CeO2-1,CeO2-2, and CeO2-3 were calculated to be -0.38, -0.35, and-0.40 eV, respectively, which were larger than the reduction potential for the reduction of molecular oxygen to superoxide anion radicals with strong oxidation (O2/?O2-pair, -0.33 eV),which energetically satisfied the requirements for the degradation of rhodamine B.

    Based on the Egand band edge positions of the CeO2nanorods,a photodegradation mechanism was proposed and is shown in Fig.4c.Excitations (e-/h+) were produced when UV-vis light irradiated the CeO2nanorods.These charge carriers rapidly transferred to the CeO2surface due to the short transfer length in the 1D nanorod structure.The h+in the valance band could directly oxidize rhodamine B; simultaneously, the e-in the conduction band could reduce molecular oxygen to superoxide anion radicals.In regard to the CeO2-2 sample, the narrow band gap ensured the generation of a large number of photogenerated e-.The higher concentration ratio of Vo-sto Vo-bimproved the utilization of photogenerated e-because of the fast transfer of photogenerated e-for photodegradation on the surface and the decreased probability of photogenerated e-and Vo-brecombination in bulk.Additionally, the high specific surface area of CeO2-2 provided a large number of adsorption sites for the photodegradation of rhodamine B.Based on the above reasons,the CeO2-2 sample exhibited the best photodegradation performance.

    Fig.4.Band gap analysis.(a)UV-vis diffuse reflectance spectra of the as-prepared samples.(b) Band gap measurement using the Tauc plot.(c) Photodegradation mechanism.

    In summary,we successfully prepared 1D CeO2nanorods with a uniform size and morphology.By an easy hydrothermal method,we tuned the concentration of surface/bulk oxygen vacancies in CeO2nanorods.With the highest concentration ratio(from Vo-sto Vo-b), the CeO2nanorod presented more efficient utilization of photogenerated e-due to the fast transfer of photogenerated e-for photodegradation on the surface and the decreased probability of photogenerated e-and Vo-brecombination in bulk.In regard to the photodegradation of rhodamine B,the removal percentage reached 70.2%after 120 min of UV-vis light irradiation,exhibiting potential applications for wastewater purification.This Votuning strategy provides guidance for the development of other advanced metaloxide semiconductor photocatalysts for the photodegradation of organic dyes.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21404054,21667019,22066017,52000163), the Key Project of the Natural Science Foundation of Jiangxi Province(No.20171ACB20016),the Jiangxi Province Major Academic and Technical Leaders Cultivating Object Program (No.20172BCB22014), the Science and Technology Department of Jiangxi Province (Nos.20181BCB18003, 20181BAB216012,20181ACG70025, and 20192BAB206013), the Key Laboratory of Photochemical Conversion and Optoelectronic Materials,TIPC,CSA(No.PCOM201906),and the Key Project of Science and Technology Research of the Jiangxi Provincial Department of Education (Nos.DA201602063, GJJ13508, and GJJ191044), the Aviation Science Foundation of China(No.2017ZF56020),the Fujian Key Laboratory of Measurement and Control System for Shore Environment (No.S1-KF1703), and the Program B for Outstanding PhD Candidate of Nanjing University (No.202002B076).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.01.044.

    久久久精品94久久精品| 国产高清videossex| 激情视频va一区二区三区| 午夜成年电影在线免费观看| 后天国语完整版免费观看| 国产三级黄色录像| 日韩欧美三级三区| 韩国精品一区二区三区| 国产成人av激情在线播放| 国产有黄有色有爽视频| 97在线人人人人妻| 五月天丁香电影| 国产在线精品亚洲第一网站| 国产一区二区在线观看av| 最近最新中文字幕大全免费视频| 一级片'在线观看视频| 少妇的丰满在线观看| 日日爽夜夜爽网站| 丝瓜视频免费看黄片| 国产欧美日韩精品亚洲av| 中国美女看黄片| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| 自线自在国产av| 一二三四社区在线视频社区8| 午夜福利在线观看吧| 欧美日韩亚洲国产一区二区在线观看 | 国产精品二区激情视频| 久久香蕉激情| 亚洲午夜理论影院| 精品亚洲成国产av| 满18在线观看网站| 一本色道久久久久久精品综合| 国产成人精品久久二区二区免费| 国产男靠女视频免费网站| 视频区欧美日本亚洲| 久久久国产成人免费| 91老司机精品| 老司机靠b影院| 亚洲久久久国产精品| 91国产中文字幕| av天堂久久9| 国产精品99久久99久久久不卡| 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| 少妇被粗大的猛进出69影院| 亚洲av日韩在线播放| 日韩大片免费观看网站| 高清欧美精品videossex| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看| av又黄又爽大尺度在线免费看| 我要看黄色一级片免费的| 丝袜喷水一区| 久久亚洲真实| 黄色丝袜av网址大全| 国产精品99久久99久久久不卡| h视频一区二区三区| 69av精品久久久久久 | 日韩欧美一区视频在线观看| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频 | 91av网站免费观看| 老司机午夜福利在线观看视频 | 亚洲精品粉嫩美女一区| 国产成人免费观看mmmm| 美女国产高潮福利片在线看| 亚洲第一青青草原| 亚洲人成电影免费在线| 美国免费a级毛片| videos熟女内射| 一个人免费在线观看的高清视频| 亚洲国产欧美在线一区| a级毛片黄视频| 精品亚洲成国产av| 在线看a的网站| 国产亚洲欧美精品永久| 亚洲三区欧美一区| 女性生殖器流出的白浆| 首页视频小说图片口味搜索| 国产精品一区二区精品视频观看| 亚洲av美国av| 日本wwww免费看| 精品国产国语对白av| videos熟女内射| 亚洲欧美一区二区三区黑人| 精品午夜福利视频在线观看一区 | 黑丝袜美女国产一区| 成人国语在线视频| 亚洲专区国产一区二区| 在线天堂中文资源库| 亚洲人成电影免费在线| 亚洲中文日韩欧美视频| 99re在线观看精品视频| 十八禁网站网址无遮挡| av片东京热男人的天堂| 国产精品免费视频内射| 99国产精品免费福利视频| 午夜精品久久久久久毛片777| 丁香六月欧美| 97在线人人人人妻| 久久天躁狠狠躁夜夜2o2o| 国产人伦9x9x在线观看| 18禁观看日本| 男女下面插进去视频免费观看| 多毛熟女@视频| 欧美成人午夜精品| 亚洲av日韩精品久久久久久密| 国产成人一区二区三区免费视频网站| 岛国在线观看网站| kizo精华| 三级毛片av免费| 亚洲专区字幕在线| 一进一出好大好爽视频| 一区在线观看完整版| 窝窝影院91人妻| 精品人妻1区二区| 叶爱在线成人免费视频播放| 国产精品欧美亚洲77777| 亚洲三区欧美一区| 国产成人精品在线电影| 成人18禁在线播放| 少妇粗大呻吟视频| 狠狠狠狠99中文字幕| 午夜激情久久久久久久| 一级黄色大片毛片| 成人亚洲精品一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利视频精品| 国产亚洲精品第一综合不卡| 亚洲av国产av综合av卡| 啦啦啦在线免费观看视频4| 好男人电影高清在线观看| 俄罗斯特黄特色一大片| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 欧美激情高清一区二区三区| 最近最新中文字幕大全电影3 | 丁香六月天网| 国产成人影院久久av| 精品国产乱子伦一区二区三区| videosex国产| 精品熟女少妇八av免费久了| 超碰成人久久| h视频一区二区三区| 国产黄频视频在线观看| 亚洲自偷自拍图片 自拍| 久热这里只有精品99| 欧美精品一区二区免费开放| 免费在线观看日本一区| 一个人免费看片子| 成年人黄色毛片网站| 国产1区2区3区精品| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区 | 国产精品九九99| 99热网站在线观看| 日韩中文字幕欧美一区二区| 五月开心婷婷网| 国产单亲对白刺激| 建设人人有责人人尽责人人享有的| 欧美激情极品国产一区二区三区| 亚洲国产欧美在线一区| 午夜精品国产一区二区电影| 母亲3免费完整高清在线观看| 我的亚洲天堂| 巨乳人妻的诱惑在线观看| 高清毛片免费观看视频网站 | tocl精华| 国产精品熟女久久久久浪| 亚洲第一青青草原| 欧美一级毛片孕妇| 亚洲国产成人一精品久久久| 母亲3免费完整高清在线观看| 日本av手机在线免费观看| 国产精品影院久久| 高清毛片免费观看视频网站 | 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 色精品久久人妻99蜜桃| 午夜91福利影院| 日韩欧美一区视频在线观看| 国产成人免费观看mmmm| 免费在线观看影片大全网站| 电影成人av| 一级毛片精品| 热99久久久久精品小说推荐| 首页视频小说图片口味搜索| 在线亚洲精品国产二区图片欧美| 电影成人av| 久久 成人 亚洲| 国产真人三级小视频在线观看| 欧美乱妇无乱码| 欧美乱码精品一区二区三区| 国产伦理片在线播放av一区| 91麻豆av在线| 日韩制服丝袜自拍偷拍| 日本av免费视频播放| 亚洲欧美一区二区三区久久| 十八禁网站免费在线| 国产成人欧美在线观看 | 久久中文看片网| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 黄色视频,在线免费观看| 久久午夜综合久久蜜桃| 午夜福利欧美成人| 午夜老司机福利片| 精品一区二区三区视频在线观看免费 | 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| 亚洲免费av在线视频| 天堂俺去俺来也www色官网| 国产男女超爽视频在线观看| 国产日韩一区二区三区精品不卡| 天天影视国产精品| 日本wwww免费看| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 午夜成年电影在线免费观看| 波多野结衣av一区二区av| 黄片大片在线免费观看| 国产精品国产高清国产av | 国产精品美女特级片免费视频播放器 | 99精品欧美一区二区三区四区| 成人国语在线视频| 日韩制服丝袜自拍偷拍| 波多野结衣一区麻豆| 亚洲自偷自拍图片 自拍| 99re6热这里在线精品视频| 亚洲综合色网址| 老熟妇仑乱视频hdxx| 国产成人精品无人区| 91精品国产国语对白视频| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 80岁老熟妇乱子伦牲交| 精品欧美一区二区三区在线| 免费看a级黄色片| 青草久久国产| 国产精品免费视频内射| 男女下面插进去视频免费观看| 91精品国产国语对白视频| 另类亚洲欧美激情| 大码成人一级视频| 国产男靠女视频免费网站| 国产色视频综合| 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 91老司机精品| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 午夜免费成人在线视频| av福利片在线| 在线观看www视频免费| 狠狠狠狠99中文字幕| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面| 亚洲精品在线观看二区| av福利片在线| 国产成人欧美| a级毛片在线看网站| 丰满少妇做爰视频| 国产免费现黄频在线看| 丁香六月欧美| 亚洲精品美女久久av网站| av一本久久久久| 91成人精品电影| 久9热在线精品视频| 手机成人av网站| 亚洲av电影在线进入| 国产在线精品亚洲第一网站| 国产91精品成人一区二区三区 | 一本一本久久a久久精品综合妖精| 亚洲第一欧美日韩一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 亚洲自偷自拍图片 自拍| 成人免费观看视频高清| 一级毛片女人18水好多| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 国产精品影院久久| 日本wwww免费看| 不卡一级毛片| 超色免费av| videos熟女内射| 后天国语完整版免费观看| 久热爱精品视频在线9| 免费女性裸体啪啪无遮挡网站| 一级毛片精品| 岛国毛片在线播放| 精品国产乱子伦一区二区三区| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 在线观看免费视频网站a站| bbb黄色大片| 热re99久久精品国产66热6| 天天操日日干夜夜撸| 成人永久免费在线观看视频 | 岛国在线观看网站| 满18在线观看网站| www日本在线高清视频| 天天添夜夜摸| 亚洲午夜理论影院| 成在线人永久免费视频| 亚洲av成人一区二区三| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 成人影院久久| 国产一卡二卡三卡精品| 伦理电影免费视频| 国产免费av片在线观看野外av| 午夜激情久久久久久久| 国产精品香港三级国产av潘金莲| aaaaa片日本免费| 久久婷婷成人综合色麻豆| 久久精品成人免费网站| 精品少妇一区二区三区视频日本电影| 又大又爽又粗| 亚洲中文字幕日韩| 久久性视频一级片| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 麻豆成人av在线观看| 欧美精品一区二区大全| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 亚洲午夜理论影院| 亚洲av电影在线进入| 国产成人免费无遮挡视频| 欧美日本中文国产一区发布| 国产精品电影一区二区三区 | 制服诱惑二区| 美女视频免费永久观看网站| 久9热在线精品视频| 久久久久久免费高清国产稀缺| 久久精品91无色码中文字幕| 在线观看66精品国产| 欧美精品人与动牲交sv欧美| 亚洲午夜精品一区,二区,三区| 男女之事视频高清在线观看| 超碰成人久久| 纵有疾风起免费观看全集完整版| 精品福利观看| a级毛片在线看网站| 水蜜桃什么品种好| 最近最新免费中文字幕在线| 亚洲五月色婷婷综合| 最近最新免费中文字幕在线| 日韩一区二区三区影片| 国产黄频视频在线观看| 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| 国产日韩欧美视频二区| 成人手机av| 久久久精品区二区三区| 69精品国产乱码久久久| 亚洲专区中文字幕在线| 无人区码免费观看不卡 | 午夜激情久久久久久久| 日韩欧美一区视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 夫妻午夜视频| 黄片小视频在线播放| 国产人伦9x9x在线观看| 亚洲成av片中文字幕在线观看| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 精品少妇内射三级| 亚洲av电影在线进入| 99九九在线精品视频| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 老司机影院毛片| 天天躁日日躁夜夜躁夜夜| 久久国产精品大桥未久av| 91九色精品人成在线观看| 国产有黄有色有爽视频| a级毛片黄视频| 精品福利永久在线观看| 亚洲欧美激情在线| 亚洲天堂av无毛| 成人av一区二区三区在线看| 无人区码免费观看不卡 | 色尼玛亚洲综合影院| 国产精品国产av在线观看| 国产人伦9x9x在线观看| 国产在线视频一区二区| 午夜福利视频精品| 日韩欧美免费精品| 黄色视频在线播放观看不卡| 久久精品成人免费网站| 黄色 视频免费看| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 在线av久久热| 国产主播在线观看一区二区| 9色porny在线观看| 国产精品.久久久| 男男h啪啪无遮挡| 久久国产精品大桥未久av| 无限看片的www在线观看| 高清黄色对白视频在线免费看| 老司机在亚洲福利影院| 国产黄频视频在线观看| 91字幕亚洲| 日本wwww免费看| 久久久国产欧美日韩av| 法律面前人人平等表现在哪些方面| 久久久欧美国产精品| 国产精品一区二区免费欧美| 亚洲中文av在线| 在线观看舔阴道视频| 91av网站免费观看| 亚洲精品一卡2卡三卡4卡5卡| 超色免费av| 每晚都被弄得嗷嗷叫到高潮| 性少妇av在线| 精品视频人人做人人爽| 中文字幕最新亚洲高清| 久久久水蜜桃国产精品网| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 9热在线视频观看99| 亚洲精品自拍成人| 午夜视频精品福利| 日韩大片免费观看网站| 午夜福利一区二区在线看| 国产aⅴ精品一区二区三区波| 天堂动漫精品| 亚洲欧美一区二区三区久久| 欧美精品一区二区大全| 热re99久久精品国产66热6| 国产精品美女特级片免费视频播放器 | 亚洲av国产av综合av卡| 午夜视频精品福利| 少妇的丰满在线观看| 精品人妻在线不人妻| 两个人看的免费小视频| 日韩熟女老妇一区二区性免费视频| 午夜福利影视在线免费观看| 色精品久久人妻99蜜桃| 女人被躁到高潮嗷嗷叫费观| 国产区一区二久久| 欧美变态另类bdsm刘玥| 亚洲五月色婷婷综合| 久久久久久久精品吃奶| 亚洲中文字幕日韩| 精品国产一区二区久久| av在线播放免费不卡| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 欧美激情久久久久久爽电影 | 国产欧美日韩一区二区三区在线| 国产成人欧美在线观看 | 久久久久国内视频| 成人av一区二区三区在线看| 久久精品国产99精品国产亚洲性色 | 日本a在线网址| av免费在线观看网站| 一级片免费观看大全| 国产无遮挡羞羞视频在线观看| 日本wwww免费看| 啦啦啦免费观看视频1| 制服人妻中文乱码| 一个人免费在线观看的高清视频| 激情在线观看视频在线高清 | 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| 午夜激情av网站| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 亚洲精品国产一区二区精华液| 美女高潮喷水抽搐中文字幕| 亚洲av成人一区二区三| av超薄肉色丝袜交足视频| 丝袜在线中文字幕| 亚洲精品乱久久久久久| 亚洲,欧美精品.| 99国产精品99久久久久| 国产精品久久久久久人妻精品电影 | 久久人妻熟女aⅴ| 夜夜骑夜夜射夜夜干| 日本a在线网址| 美女国产高潮福利片在线看| 欧美在线一区亚洲| 9热在线视频观看99| 日韩人妻精品一区2区三区| 精品福利观看| 久久精品成人免费网站| 一区二区三区激情视频| 大香蕉久久成人网| 日韩一区二区三区影片| 又大又爽又粗| 激情在线观看视频在线高清 | 国产一区二区三区在线臀色熟女 | 久久中文字幕人妻熟女| 色综合婷婷激情| 国产成人精品在线电影| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 少妇猛男粗大的猛烈进出视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av电影在线进入| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 大码成人一级视频| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 午夜福利视频在线观看免费| 精品久久蜜臀av无| 男女无遮挡免费网站观看| 午夜激情久久久久久久| avwww免费| av网站在线播放免费| 99re在线观看精品视频| 亚洲欧洲日产国产| 精品人妻在线不人妻| 91老司机精品| 国产午夜精品久久久久久| 99九九在线精品视频| 久久精品91无色码中文字幕| 99国产极品粉嫩在线观看| 亚洲欧洲日产国产| 91成年电影在线观看| 黄色视频在线播放观看不卡| 热99re8久久精品国产| 国产主播在线观看一区二区| 热re99久久国产66热| 男女边摸边吃奶| 亚洲专区中文字幕在线| www.熟女人妻精品国产| 国产精品自产拍在线观看55亚洲 | 亚洲精品一二三| 精品久久久精品久久久| 欧美亚洲 丝袜 人妻 在线| 男女午夜视频在线观看| 欧美久久黑人一区二区| 免费女性裸体啪啪无遮挡网站| 热re99久久精品国产66热6| 久久久久视频综合| 日本精品一区二区三区蜜桃| 女性被躁到高潮视频| 99香蕉大伊视频| 午夜福利乱码中文字幕| 精品高清国产在线一区| 丝袜人妻中文字幕| 一个人免费看片子| 脱女人内裤的视频| 久久久久久久精品吃奶| 久久人人97超碰香蕉20202| 午夜成年电影在线免费观看| 精品久久久久久久毛片微露脸| 女同久久另类99精品国产91| 日本vs欧美在线观看视频| 日韩欧美三级三区| 色婷婷久久久亚洲欧美| 欧美日韩一级在线毛片| 午夜福利乱码中文字幕| 99久久99久久久精品蜜桃| 亚洲五月婷婷丁香| 国产成人系列免费观看| 一级毛片精品| 国产黄色免费在线视频| 波多野结衣av一区二区av| 脱女人内裤的视频| 最近最新免费中文字幕在线| 国产亚洲精品第一综合不卡| 怎么达到女性高潮| 夜夜爽天天搞| 老熟女久久久| 国产在线精品亚洲第一网站| 最近最新中文字幕大全免费视频| 亚洲 国产 在线| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜制服| 999精品在线视频| 亚洲欧洲日产国产| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| 久久久精品94久久精品| 香蕉丝袜av| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻熟妇乱又伦精品不卡| 久久人妻福利社区极品人妻图片| 悠悠久久av| 成人18禁在线播放| 中文字幕人妻丝袜制服| 久久久久久久国产电影| 中文字幕最新亚洲高清| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 搡老乐熟女国产| 亚洲欧美一区二区三区黑人| 欧美+亚洲+日韩+国产| 国产精品一区二区免费欧美| 交换朋友夫妻互换小说| 大型黄色视频在线免费观看| 久久午夜综合久久蜜桃| 亚洲一码二码三码区别大吗|