• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compared catalytic properties of OMS-2-based nanocomposites for the degradation of organic pollutants

    2021-11-19 05:40:20WenxinHouShuhuiWangXiuruBiXuMengPeiqingZhaoXiangLiu
    Chinese Chemical Letters 2021年8期

    Wenxin Hou,Shuhui Wang,Xiuru Bi,Xu Meng**,Peiqing ZhaoXiang Liu*

    a College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Analysis and Testing Center, China Three Gorges University, Yichang 443002, China

    b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China

    c Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University,Yichang 443002, China

    1 These authors contributed equally to this work.

    ABSTRACT In this study, Mn catalysts have been designed based on manganese oxide octahedral molecular sieve(OMS-2)supports to optimize the catalytic activity in the degradation of organic pollutants.Herein,two different synthetic strategies:Pre-incorporation vs.wet-impregnation have been employed to synthesize[PW]-OMS-2 and[PW]/OMS-2.For[PW]-OMS-2,energy dispersive X-ray spectroscopy(EDX)confirmed that dispersed granular phosphotungstic acid attached and located at the surface of OMS-2,meanwhile some W atoms have been doped into frameworks of OMS-2.However, for [PW]/OMS-2, the W atoms cannot enter the OMS-2 frameworks.A correlation has been established between the different synthetic strategies and catalytic activities.The [PW]-OMS-2 is the most highly effective and stable over than[PW]/OMS-2 and OMS-2 itself for the organic pollutants removal.This may be caused not only by the synergetic effect of [PW] and OMS-2, but also by doping W into frameworks of OMS-2.Therefore, this work provides a new environmentally-friendly and heterogeneous PMS activator and it may be put into practice to degrade organic pollutants.

    Keywords:OMS-2 Phosphotungstic acid Organic pollutants Degradation Tungsten

    Over the last few decades, the wantonly emission of organic dyes,such as rhodamine B(RhB),reactive red 2(RR2),acid orange 7(AO7), and reactive blue 19 (RB19), by the textile industry in municipal wastewater effluents and natural aquatic systems have particularly become globally environmental and public health problems due to their complex structure, stability and nonbiodegradation [1].Most of organic dyes induce mutagenic,carcinogenic or teratogenic effects in the human body, even a low concentration [2].It is highly necessary to explore environmentally friendly, low-cost and effective methodologies for the removal of organic dyes in wastewater[3].There have been many studies reporting on the removal of synthetic dyes from wastewater, including via adsorption, flocculation, biological degradation, photo-Fenton, membrane separation, Fenton-like and electrochemical degradation [4].Among them, peroxymonosulfate (HSO5-, PMS) based advanced oxidation processes (AOPs)have attracted increasing attention in the rapid degradation of organic dyes in aqueous media.Sulfate radical (SO4?-), derived from the activation of PMS, has a higher redox potential(Eo=2.5-3.1 V vs.1.8-2.7 V), greater activity, a longer half-life(t1/2=30-40 μs vs.20 ns)and higher mineralization ability toward organic dyes, compared to hydroxyl radical (?OH) [5].In fact, a variety of heterogeneous catalysts including Co-, Fe- Ag-, Cu-,and Ru-based materials have been developed for effectively activating PMS in the degradation of organic dyes [6].

    Since Wang’s group first reported the Co3O4/MnO2catalyst in PMS based-AOP for effectively degrading phenol in 2012 [7],increasing interests have been paid to the exploration of manganese oxide octahedron molecular sieve OMS-2, a composition of KMn8O16with a 0.46 nm×0.46 nm tunnels,for activation of PMS on the removal of organic pollutants,due to its mixed valences of Mn2+,Mn3+and Mn4+,low toxicity,highly porous structure,low cost and environmental friendliness [8].In order to improve catalytic activity, OMS-2 has been usually doped with transition metal ions, including Co2+, Fe3+, Cr3+, Ce3+, Cu2+, V5+and Mo6+, by reflux,ball milling,hydrothermal method and impregnation[9].It is clear that metal dopants in the tunnel structure or framework of OMS-2 could increase more defects and simultaneously create more active sites[10].Among these transition metal ions,tungsten ion has been found to be a very important promoter to improve the catalytic activity and stabilize the active phase.Because tungsten ion (W6+: 0.60 ?) has mostly same ionic radius as Mn ion (Mn3+:0.645 ?,Mn4+:0.53 ?)in edge-shared MnO6octahedra[11-13].In 2020, our group first reported [PW]-OMS-2 nanocomposites,comprised of phosphotungstic acid [PW] and OMS-2, as an efficient reusable heterogeneous catalyst for the remarkably enhanced catalytic oxidative dehydrogenation of N-heterocycles[14].As a part of our current studies on the development in the synthesis and application of OMS-2-based nanocomposites [15],herein, we are employing two different synthetic strategies: Preincorporation vs.wet-impregnation to synthesize [PW]-OMS-2 and [PW]/OMS-2 for optimizing the catalytic activity in the degradation of organic pollutants,such as RhB,RR2,A07 and RB19,for the first time.Among them,[PW]-OMS-2 has been synthesized from potassium permanganate, manganese sulfate and sodium phosphotungstate via the pre-incorporation method, while [PW]/OMS-2 catalyst is obtained by wet-impregnation of OMS-2 in phosphotungstic acid solution, summarized in Figs.S1 and S2(Supporting information).The[PW]-OMS-2 is found to be the most highly effective and stable over than[PW]/OMS-2 and OMS-2 itself for the degradation of organic pollutants, in contrast with our previous Cu catalysts, where Cu-OMS-2 (pre-incorporation)shows less catalytic activity for reduction and click reaction, and no catalytic activity for homocoupling in comparison with CuOx/OMS-2(wet-impregnation)[15b].Moreover,as-synthesized[PW]-OMS-2 has been successfully recycled at least 5 times without any significant activity loss in the degradation of diverse organic pollutants via PMS activation.

    Fig.1.TEM of (a) OMS-2, (b) [PW]-OMS-2 I, (c) [PW]-OMS-2 II, (d) [PW]-OMS-2 III, (e) [PW]-OMS-2 IV and (f) [PW]-OMS-2 V.

    Fig.2.(a)Degradation of RhB over OMS-2,[PW]-OMS-2 I-V catalysts.(b)Degradation of RhB over OMS-2,[PW]-OMS-2 II and[PW]/OMS-2;Influences of(c)the amount of PMS,(d)[PW]-OMS-2 II concentration,(e)initial RhB concentration and(f)reaction temperature on RhB degradation;[PW]-OMS-2 II catalyzed degradation of(g)RR2,(h)AO7 and(i)RB19 via PMS activation.Reaction conditions:(a-d,f,g-i):0.25 g/L of cat,50 mg/L of dyes,0.25 g/L of PMS, 25°C.(e)0.126 g/L of[PW]-OMS-2 II,0.126 g/L of PMS, 25°C.

    Based on our previous work, [PW]-OMS-2 I-V had been synthesized from potassium permanganate, manganese sulfate and different amounts of sodium phosphotungstate (sodium phosphotungstate/KMnO4ratios of 1 mol%, 2 mol%, 3 mol%,4 mol% and 5 mol%) through the pre-incorporation method(Fig.S1).We confirmed that Na3O40PW12?xH2O was transformed into Na2WO4?2H2O and H3[P(W3O10)4]?xH2O in heated solution[14].The transmission electron microscope (TEM) images show that the low doping of sodium phosphotungstate (1 mol% and 2 mol%)does not change the structure and morphology of OMS-2,[PW]-OMS-2 I and II mostly remained the typical and uniform nanorod morphology as the OMS-2(Figs.1a-c).When the doping amount over than 2 mol%, the nanorod-like structure (such as[PW]-OMS-2 III,IV and V)became shorter and thicker(Figs.1d-f).These catalysts had also been fully characterized by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Brunauer Emmett Teller (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), Transmission Electron Microscope(TEM), X-ray Photoelectron Spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), raman spectra and electron paramagnetic resonance spectra (EPR).Due to the doping of sodium phosphotungstate, [PW]-OMS-2 had newly-generated mixed crystal phases, an enhanced surface area and labile lattice oxygen[14].In this work,their compared catalytic efficiency in the degradation of RhB in the presence of PMS has been investigated in Fig.2.The degradation reaction was conducted with 50 mg/L RhB and 0.25 g/L PMS in the presence of 0.25 g/L OMS-2 or[PW]-OMS-2 I-V at 25°C,respectively.RhB has been degraded totally in 6 min by [PW]-OMS-2 II and 45 min by OMS-2, respectively.It is clear that[PW]-OMS-2 II shows the highest degradation efficiency over than OMS-2 and other ones, consisting with our previous case of aerobic oxidative dehydrogenation of N-heterocycles[14].Herein,for confirming localization of [PW] in the OMS-2, high-angle annular dark field-scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectrometer (EDX)mappings of [PW]-OMS-2 II has been measured.In Figs.3a-f, the elements of O,P,K,Mn and W have been observed,indicating that the phosphotungstic acid and OMS-2 coexist in the[PW]-OMS-2 II nanocomposite.The disappearance of Na element in the EDX map sum spectrum proves that it was washed away (Fig.S3 in Supporting information).Taking a cue from the STEM pictures of nanorods (Fig.3g) and granular particles (Fig.3h), respectively,the EDX spectrum of P and W confirmed that the grannular particle is H3[P(W3O10)4]?xH2O, which is decomposed from Na3PO4?12WO3?xH2O (Fig.3h and Fig.S4 in Supporting information), the unit cell size of phosphotungstic acid is 12 ?×12 ?×12 ? [16], so it cannot enter OMS-2 (4.6 ?×4.6 ?).Whereas Fig.3g and Fig.S5(Supporting information)also verified only W, provided by Na2WO4?2H2O, has been doped into frameworks of OMS-2.It is confirmed that dispersed granular phosphotungstic acid attached and located at the surface of OMS-2,meanwhile some W atoms were doped into frameworks of OMS-2.Furthermore, [PW]/OMS-2 catalyst was obtained by wetimpregnation of OMS-2 in phosphotungstic acid solution,with the same proportion of [PW]/KMnO4as for the former catalyst(Fig.S1).It is also conceivable that[PW]only attached and located at the surface of OMS-2, the W atoms cannot enter the OMS-2 frameworks.The SEM of [PW]/OMS-2 confirmed the predictable results (Fig.S6 in Supporting information).Obviously, the wetimpregnation method destroyed the uniform nanorod-like structure of OMS-2.Then the catalysts of [PW]-OMS-2 II, [PW]/OMS-2 and OMS-2 have been investigated for the degradation of RhB(Fig.2b).[PW]-OMS-2 II exhibits highest efficiency for RhB degradation with a removal of 100%after 6 min in the presence of PMS at 25°C.Whereas[PW]/OMS-2 and OMS-2 needs 26 min and 45 min,respectively.On the other hand,self-degradation of RhB is very weak(10%)under neutral conditions in the absence of catalyst(Fig.2b).The order of catalytic activity follows: [PW]-OMS-2 II >[PW]/OMS-2>OMS-2.The comparative experiment confirms that significant catalytic performance of [PW]-OMS-2 II is taken into account not only by the synergetic effect of [PW] and OMS-2, but also by doping W into frameworks of OMS-2.Compared to wetimpregnation, the pre-incorporation of [PW] and OMS-2 creates new mixed crystal phases,significantly enhanced surface area and more labile lattice oxygen.In addition,the comparision of PMS and H2O2in the degradation of RhB shows that PMS is more efficient than that of H2O2(Fig.S7 in Supporting information).Hence,[PW]-OMS-2 II has been chosen as the optimal catalyst for further degradation study via PMS activation.

    Fig.3.(a)HAADF-STEM image,(b)O,(c)P,(d)K,(e)Mn and(f)W EDX compositional mapping of[PW]-OMS-2 II.HAADF-STEM-images of selected area of nanorod(g)and granualr particles (h).

    The influences of several parameters including the concentrations of PMS,catalyst and initial RhB,and reaction temperature on RhB degradation are investigated in Figs.2c-f.Fig.S8(Supporting information) exhibits that the adsorption of RhB on the surface of[PW]-OMS-2 II is very weak(20%)over 60 min.These results suggest that the adsorption capacity of [PW]-OMS-2 II is negligible.An increase in PMS concentration from 0.062 g/L to 0.5 g/L has a distinct positive effect on the degradation of RhB(Fig.2c).The slope of the logarithmic plot of RhB degradation versus concentration of PMS is 0.67, suggesting that the RhB degradation is the first order in PMS concentration.In similar,the slope of the logarithmic plot of RhB degradation versus catalyst concentration also exhibits that the reaction is first order in catalyst concentration (Fig.2d).The influences of initial RhB concentration from 30 mg/L to 80 mg/L on the RhB degradation was recorded in the Fig.2e.The degradation efficiency of RhB were negatively correlated with initial RhB concentration.It is also the first order in the initial RhB concentration.Moreover, increasing reaction temperature is beneficial to enhance the ability of [PW]-OMS-2 II for activating PMS to generate reactive species (Fig.2f).Based on the Arrhenius equation, the activation energy is calculated to be 12.38 kJ/mol, which is lower than that of OMS-2(16.80 kJ/mol), indicating again that [PW]-doped OMS-2 is more superior on RhB degradation.In addition, the effect of pH on RhB degradation catalyzed by [PW]-OMS-2 II shows that pH appears more favorable at acidic pH (Fig.S9 in Supporting information).

    To further explore the potential application of [PW]-OMS-2 II catalyst, different organic dyes such as the the azo RR2 (Fig.2g),AO7 (Fig.2h) and the disodium salt RB19 (Fig.2i) have been investigated under standard conditions.These results show that RR2, AO7 and RB19 has been degraded completely in 35 min,12 min and 15 min, respectively.According to the relevant published literature [5], the involved radicals in the current system are SO4?-,?OH,1O2and O2?-.To understand the contribution of the individual radicals,free radical quenching experiments were undertaken in the Fig.4a.EtOH, t-BuOH (TBA), NaN3and benzoquinone (BQ) were employed as effective scavengers SO4?-,?OH,O2?-and1O2in the RhB degradation, respectively.The result shown that1O2is the main active species in the RhB degradation process [17,18].To further confirm the possible reactive oxygen species generated in the standard RhB degradation process,a series of EPR experiments using 5,5-dimethyl-1-pyrrolidine N-oxide(DMPO)and 2,2,6,6-tetramethyl-4-piperidone(TEMP)as the spintrapping agents have been performed.In the Fig.4b,the signals of DMPO-?OH, DMPO-SO4?-and DMPO-O2?-characterized by four peaks are observed.Furthermore, a high-intensity triple signal peak of TEMP-1O2is observed on EPR spectra, confirming the emergence of1O2in the reaction system.EPR spectra shown that the existence of SO4?-,?OH,1O2and O2?-, in contrast with OMS-2/PMS degradation process for which only SO4?-and?OH are generated [7,15].In this study, the1O2played the most dominant role in the degradation,it may be caused not only by the synergetic effect of[PW]and OMS-2,but also by doping W into frameworks of OMS-2.

    Fig.4.(a)Inhibiter effect of EtOH,TBA,NaN3 and BQ for degradation of RhB over[PW]-OMS-2 II with PMS.Reaction conditions:0.25 g/L of[PW]-OMS-2 II,0.25 g/L of PMS,50 mg/L of RhB, 25°C.(b)EPR spectrum for different system with DMPO or TEMP.Reaction conditions:0.25 g/L of[PW]-OMS-2 II,0.25 g/L of PMS,5 mmol/L of DMPO or TEMP, 25°C.

    To evaluate the stability and reusability of[PW]-OMS-2 II in heterogeneous reaction system, the degradation of RhB has been successfully recycled 5 times with the used catalyst (Fig.S10 in Supporting information).The degradation efficiency of RhB for the 1stround to the 5thround decreased very slightly.Besides,the 5thused catalyst has been characterized by TEM and XRD.Fig.S11(Supporting information)exhibits that the morphology of 5th used[PW]-OMS-2 II remains typical and uniform nanorod morphology as the fresh catalyst(the JCPDS No.80-0382).Taken together,this demonstrates that [PW]-OMS-2 II is very stable.

    In summary, two different synthetic strategies: pre-incorporation vs.wet-impregnation have been employed to synthesize[PW]-OMS-2 and [PW]/OMS-2 for the efficient degradation of organic pollutants (such as rhodamine B, reactive red 2, acid orange 7,and reactive blue 19)for the first time.The[PW]-OMS-2 II catalyst had been synthesized from potassium permanganate,manganese sulfate and sodium phosphotungstate through the preincorporation method, while [PW]/OMS-2 catalyst was obtained by wet-impregnation of OMS-2 in phosphotungstic acid solution.The [PW]-OMS-2 II is found to be the most highly effective and stable over than[PW]/OMS-2 and OMS-2 itself for the degradation of organic pollutants, in contrast with our previous Cu catalysts.Based on the Arrhenius equation, the activation energy of[PW]-OMS-2 II is calculated to be 12.38 kJ/mol, which is lower than that of OMS-2 (16.80 kJ/mol).The free radical quenching experiments and EPR spectra confirm that the existence of SO4?-,?OH,1O2and O2?-in the [PW]-OMS-2 II/PMS system, in contrast with OMS-2/PMS degradation process for which only SO4?-and?OH are generated[7,15].In this study,the1O2played the most dominant role in the degradation,it may be caused not only by the synergetic effect of[PW]and OMS-2,but also by doping W into frameworks of OMS-2.In addition,as-synthesized[PW]-OMS-2 II has been successfully recycled at least 5 times without any significant activityloss inthe degradation ofdiverse organic pollutants via PMS activation.This work provides an environmentally friendly and heterogeneous catalyst for the wastewater remediation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.21805166,21403256 and 21573261),the 111 Project (No.D20015) and the Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University (No.KF2019-05), the Outstanding Young and Middle-Aged Science and Technology Innovation Teams, Ministry of Education, Hubei province, China(No.T2020004),the Youth Innovation Promotion Association CAS(No.2018456)and LICP Cooperation Foundation for Young Scholars(No.HZJJ20-10).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the on line version, at doi:https://doi.org/10.1016/j.cclet.2021.01.023.

    99在线视频只有这里精品首页| 国内毛片毛片毛片毛片毛片| 色综合亚洲欧美另类图片| 在线观看一区二区三区| 国产极品精品免费视频能看的| 国产成+人综合+亚洲专区| 看免费av毛片| 精品99又大又爽又粗少妇毛片 | 亚洲av成人不卡在线观看播放网| 九九在线视频观看精品| 欧美精品啪啪一区二区三区| 在线国产一区二区在线| 久久久久久久亚洲中文字幕 | 欧美日韩黄片免| 波野结衣二区三区在线| 免费无遮挡裸体视频| 激情在线观看视频在线高清| 国语自产精品视频在线第100页| 伦理电影大哥的女人| 欧美激情久久久久久爽电影| 色5月婷婷丁香| 在线国产一区二区在线| 精品久久久久久久人妻蜜臀av| 夜夜躁狠狠躁天天躁| 中文在线观看免费www的网站| 色视频www国产| 国产视频内射| 日韩 亚洲 欧美在线| 俺也久久电影网| 午夜福利视频1000在线观看| 免费观看的影片在线观看| 一区二区三区免费毛片| 嫁个100分男人电影在线观看| 欧美xxxx黑人xx丫x性爽| 一个人观看的视频www高清免费观看| 成人特级av手机在线观看| 亚洲自偷自拍三级| 在线免费观看的www视频| 美女高潮喷水抽搐中文字幕| 亚洲av.av天堂| 国产蜜桃级精品一区二区三区| 欧美在线黄色| 久久精品国产自在天天线| av欧美777| 男女下面进入的视频免费午夜| 97人妻精品一区二区三区麻豆| 免费看a级黄色片| 2021天堂中文幕一二区在线观| 嫩草影视91久久| 国产高潮美女av| 99久久久亚洲精品蜜臀av| 婷婷亚洲欧美| 99久久九九国产精品国产免费| 99久久九九国产精品国产免费| 婷婷亚洲欧美| 婷婷亚洲欧美| 在线天堂最新版资源| 精品一区二区三区视频在线观看免费| 不卡一级毛片| 在线观看av片永久免费下载| 国产精品影院久久| 亚洲 国产 在线| 美女免费视频网站| 国产精品av视频在线免费观看| 亚洲精品成人久久久久久| 亚洲片人在线观看| 久久亚洲精品不卡| 黄色女人牲交| 久久这里只有精品中国| 国产蜜桃级精品一区二区三区| 亚洲国产欧洲综合997久久,| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区免费观看 | 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久久久| 日日摸夜夜添夜夜添av毛片 | 夜夜躁狠狠躁天天躁| 国产激情偷乱视频一区二区| 波多野结衣巨乳人妻| 日日摸夜夜添夜夜添av毛片 | 特级一级黄色大片| 成人国产综合亚洲| 小说图片视频综合网站| 九九在线视频观看精品| 身体一侧抽搐| 国产三级中文精品| 91av网一区二区| 一级a爱片免费观看的视频| 午夜a级毛片| 国产91精品成人一区二区三区| 变态另类丝袜制服| 一个人免费在线观看的高清视频| 丝袜美腿在线中文| www.www免费av| 午夜精品久久久久久毛片777| 国产中年淑女户外野战色| 亚洲av不卡在线观看| 日本在线视频免费播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 91在线精品国自产拍蜜月| 搡老妇女老女人老熟妇| 日韩av在线大香蕉| 日本免费一区二区三区高清不卡| 少妇高潮的动态图| 国产精品亚洲一级av第二区| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| 久久欧美精品欧美久久欧美| 91久久精品电影网| 不卡一级毛片| 成人国产一区最新在线观看| 99国产极品粉嫩在线观看| 国产伦精品一区二区三区视频9| 久久久久久久午夜电影| 国产精品爽爽va在线观看网站| 一夜夜www| 亚洲精品影视一区二区三区av| 欧美成狂野欧美在线观看| 欧美xxxx性猛交bbbb| x7x7x7水蜜桃| 91麻豆av在线| 久久久精品大字幕| 99久久精品一区二区三区| 国产伦一二天堂av在线观看| 国产精品乱码一区二三区的特点| 国产毛片a区久久久久| 在线观看66精品国产| 色哟哟哟哟哟哟| 国产av在哪里看| 男女做爰动态图高潮gif福利片| 亚洲内射少妇av| 免费人成视频x8x8入口观看| 亚洲人成电影免费在线| 欧美成人免费av一区二区三区| 夜夜躁狠狠躁天天躁| 欧美日本视频| 午夜两性在线视频| 国产爱豆传媒在线观看| 亚洲精品在线观看二区| 国产精品久久久久久精品电影| 国产一区二区亚洲精品在线观看| 乱人视频在线观看| 免费人成视频x8x8入口观看| 一级作爱视频免费观看| 夜夜夜夜夜久久久久| 狂野欧美白嫩少妇大欣赏| 久久精品国产99精品国产亚洲性色| 欧美另类亚洲清纯唯美| 国产精品一区二区免费欧美| 丁香六月欧美| 91在线观看av| 久久香蕉精品热| 99国产极品粉嫩在线观看| 搡女人真爽免费视频火全软件 | 成年人黄色毛片网站| 国产精品伦人一区二区| 亚洲在线自拍视频| 国产伦在线观看视频一区| 国产极品精品免费视频能看的| av国产免费在线观看| 长腿黑丝高跟| 搡老妇女老女人老熟妇| 久久久国产成人免费| 欧美极品一区二区三区四区| 日韩大尺度精品在线看网址| 亚洲国产日韩欧美精品在线观看| 国产一级毛片七仙女欲春2| 亚洲中文日韩欧美视频| 亚洲av成人精品一区久久| 精品久久久久久久久久免费视频| 好看av亚洲va欧美ⅴa在| 变态另类成人亚洲欧美熟女| 婷婷精品国产亚洲av在线| 男人舔女人下体高潮全视频| 成年女人永久免费观看视频| 亚洲狠狠婷婷综合久久图片| 一本一本综合久久| 国产精品久久久久久久久免 | 波野结衣二区三区在线| av中文乱码字幕在线| 免费av毛片视频| АⅤ资源中文在线天堂| 国产高清有码在线观看视频| 嫁个100分男人电影在线观看| 成人鲁丝片一二三区免费| 久久久精品大字幕| 一个人看视频在线观看www免费| 每晚都被弄得嗷嗷叫到高潮| 一a级毛片在线观看| 亚洲国产欧美人成| 性插视频无遮挡在线免费观看| 在线看三级毛片| 怎么达到女性高潮| 黄色一级大片看看| 日韩欧美 国产精品| 国产高清激情床上av| 嫩草影院精品99| 国产亚洲av嫩草精品影院| 如何舔出高潮| 色综合婷婷激情| 亚洲精品在线美女| 欧美+亚洲+日韩+国产| 婷婷六月久久综合丁香| 深爱激情五月婷婷| 精品一区二区三区视频在线| 精品久久久久久久久久久久久| 免费av观看视频| 人妻夜夜爽99麻豆av| 色吧在线观看| 制服丝袜大香蕉在线| 精品熟女少妇八av免费久了| 亚洲天堂国产精品一区在线| 天天一区二区日本电影三级| 嫩草影视91久久| 美女高潮喷水抽搐中文字幕| 91在线精品国自产拍蜜月| 国产真实乱freesex| 色尼玛亚洲综合影院| 真人做人爱边吃奶动态| 国产亚洲精品久久久久久毛片| 最新中文字幕久久久久| 五月玫瑰六月丁香| 免费看美女性在线毛片视频| 能在线免费观看的黄片| 黄色丝袜av网址大全| 亚洲无线观看免费| 欧美最新免费一区二区三区 | 久久中文看片网| 亚洲欧美日韩卡通动漫| 成人性生交大片免费视频hd| 99久久成人亚洲精品观看| 欧美绝顶高潮抽搐喷水| 每晚都被弄得嗷嗷叫到高潮| 男女做爰动态图高潮gif福利片| 国产精品精品国产色婷婷| 一边摸一边抽搐一进一小说| 久久草成人影院| 日日摸夜夜添夜夜添av毛片 | 不卡一级毛片| 精品乱码久久久久久99久播| 69av精品久久久久久| 亚洲欧美精品综合久久99| 日韩大尺度精品在线看网址| av福利片在线观看| 热99在线观看视频| 免费人成视频x8x8入口观看| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 成人国产一区最新在线观看| 色吧在线观看| 欧美成人性av电影在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 免费看光身美女| 日韩欧美精品v在线| 成年女人永久免费观看视频| 日韩亚洲欧美综合| 精品久久久久久久久久久久久| 婷婷亚洲欧美| 婷婷色综合大香蕉| 噜噜噜噜噜久久久久久91| 精品熟女少妇八av免费久了| 尤物成人国产欧美一区二区三区| 日韩精品中文字幕看吧| 免费看a级黄色片| 国产一区二区在线av高清观看| 亚洲成av人片免费观看| 久久伊人香网站| 成人国产综合亚洲| 亚洲精品在线观看二区| 国产三级黄色录像| 久久久色成人| 淫妇啪啪啪对白视频| 九九在线视频观看精品| 亚洲成人精品中文字幕电影| 欧美精品国产亚洲| 国产成人影院久久av| 99久国产av精品| 丁香六月欧美| 欧美三级亚洲精品| 欧美黄色片欧美黄色片| 国模一区二区三区四区视频| 亚洲国产精品久久男人天堂| 免费av不卡在线播放| 午夜日韩欧美国产| 内射极品少妇av片p| 人人妻人人澡欧美一区二区| 色综合站精品国产| 日本 欧美在线| 免费看日本二区| 看黄色毛片网站| 波多野结衣高清无吗| 免费高清视频大片| 成人无遮挡网站| 日本在线视频免费播放| 伦理电影大哥的女人| 18禁黄网站禁片免费观看直播| 国产一区二区三区在线臀色熟女| 麻豆成人午夜福利视频| 午夜久久久久精精品| 国产精品亚洲一级av第二区| 免费av毛片视频| 天天躁日日操中文字幕| 精品久久久久久成人av| 99视频精品全部免费 在线| 99久久精品热视频| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 欧美日韩黄片免| 亚洲18禁久久av| 久久久色成人| 欧美最黄视频在线播放免费| 久久久久久九九精品二区国产| 天堂√8在线中文| 亚洲av免费高清在线观看| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 国产色婷婷99| 国产免费一级a男人的天堂| 精品午夜福利在线看| 精品一区二区三区视频在线| 成人欧美大片| 午夜福利高清视频| 久久精品影院6| 国产人妻一区二区三区在| 成人精品一区二区免费| 午夜福利在线在线| 噜噜噜噜噜久久久久久91| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| 少妇人妻一区二区三区视频| 亚洲国产精品成人综合色| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 久久精品影院6| 美女 人体艺术 gogo| 亚洲成av人片在线播放无| 91午夜精品亚洲一区二区三区 | 久久精品国产亚洲av香蕉五月| 最近最新免费中文字幕在线| 免费观看精品视频网站| 成人av一区二区三区在线看| 色综合站精品国产| 两人在一起打扑克的视频| 国产精品不卡视频一区二区 | 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添av毛片 | 欧美日本亚洲视频在线播放| 嫩草影院新地址| 久久精品国产亚洲av天美| 日本黄色视频三级网站网址| 九色成人免费人妻av| 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 国产主播在线观看一区二区| 美女cb高潮喷水在线观看| 天堂网av新在线| 久久精品人妻少妇| 国产精品自产拍在线观看55亚洲| 色视频www国产| 一级黄色大片毛片| 亚洲18禁久久av| 午夜激情福利司机影院| 亚洲国产精品合色在线| 我的女老师完整版在线观看| 久9热在线精品视频| 日韩欧美在线乱码| 久久国产乱子免费精品| 日本 欧美在线| 免费一级毛片在线播放高清视频| 国产av在哪里看| 男女视频在线观看网站免费| 中文在线观看免费www的网站| av在线蜜桃| 亚洲av一区综合| 免费黄网站久久成人精品 | 午夜老司机福利剧场| 波多野结衣巨乳人妻| 一区福利在线观看| 真人一进一出gif抽搐免费| 看片在线看免费视频| 精华霜和精华液先用哪个| 在现免费观看毛片| 久久久久免费精品人妻一区二区| 亚洲片人在线观看| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 精品午夜福利在线看| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 嫩草影院精品99| 亚洲avbb在线观看| 国产免费一级a男人的天堂| 狠狠狠狠99中文字幕| 午夜久久久久精精品| 一区二区三区高清视频在线| 日本a在线网址| 精品一区二区三区av网在线观看| 嫩草影视91久久| 91在线精品国自产拍蜜月| 日韩大尺度精品在线看网址| 日本与韩国留学比较| 国产精品久久视频播放| 亚洲人成网站高清观看| 嫩草影视91久久| 国产精品久久视频播放| 中文字幕av在线有码专区| 欧美午夜高清在线| x7x7x7水蜜桃| 国产老妇女一区| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播| 一进一出抽搐gif免费好疼| 欧美激情在线99| 久久久精品大字幕| 日韩欧美精品v在线| 久久性视频一级片| 亚洲va日本ⅴa欧美va伊人久久| 国产成年人精品一区二区| 午夜福利成人在线免费观看| 又紧又爽又黄一区二区| 欧美一区二区国产精品久久精品| 99热这里只有精品一区| 老熟妇仑乱视频hdxx| 丝袜美腿在线中文| 真人做人爱边吃奶动态| 热99在线观看视频| 国内精品久久久久久久电影| 亚洲人成网站在线播放欧美日韩| 欧美日韩中文字幕国产精品一区二区三区| 老司机福利观看| 欧美一区二区精品小视频在线| 日本免费a在线| 亚洲在线自拍视频| 亚洲精品日韩av片在线观看| 精品欧美国产一区二区三| 国产精品国产高清国产av| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 男人舔奶头视频| 日本一二三区视频观看| 在线十欧美十亚洲十日本专区| 久久人人爽人人爽人人片va | 乱人视频在线观看| 男人和女人高潮做爰伦理| 99久久九九国产精品国产免费| 国产精品三级大全| 国产在视频线在精品| 深夜a级毛片| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址| 嫩草影院新地址| 日日夜夜操网爽| 国产精品av视频在线免费观看| 国产美女午夜福利| 中文亚洲av片在线观看爽| 极品教师在线免费播放| 99热这里只有是精品50| 婷婷色综合大香蕉| 三级毛片av免费| 国产精品亚洲一级av第二区| 国产精品女同一区二区软件 | av在线老鸭窝| 国产主播在线观看一区二区| 久久久久性生活片| 欧美三级亚洲精品| 亚洲av第一区精品v没综合| 日韩大尺度精品在线看网址| 搡女人真爽免费视频火全软件 | 在线a可以看的网站| 亚洲性夜色夜夜综合| 欧美最黄视频在线播放免费| 亚洲美女视频黄频| 久久久久性生活片| 亚洲 欧美 日韩 在线 免费| 亚洲aⅴ乱码一区二区在线播放| 欧美高清成人免费视频www| 丰满人妻一区二区三区视频av| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 国产亚洲av嫩草精品影院| 欧美激情久久久久久爽电影| 国产三级黄色录像| 国产高清三级在线| 一区福利在线观看| 最新在线观看一区二区三区| 我的老师免费观看完整版| 日韩高清综合在线| 99久久九九国产精品国产免费| 综合色av麻豆| 成人美女网站在线观看视频| 国产精品av视频在线免费观看| 又爽又黄无遮挡网站| 亚洲专区中文字幕在线| 日本一二三区视频观看| h日本视频在线播放| 日日干狠狠操夜夜爽| 午夜日韩欧美国产| 成年女人永久免费观看视频| 高潮久久久久久久久久久不卡| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 国产精品嫩草影院av在线观看 | 精品日产1卡2卡| 久久久久亚洲av毛片大全| 久久久色成人| 欧美区成人在线视频| 精品免费久久久久久久清纯| 欧美日本视频| 综合色av麻豆| 亚洲三级黄色毛片| 久久亚洲精品不卡| 日韩欧美在线二视频| 日韩中字成人| 中出人妻视频一区二区| 神马国产精品三级电影在线观看| 99精品久久久久人妻精品| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 天天一区二区日本电影三级| 综合色av麻豆| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 色综合欧美亚洲国产小说| 午夜影院日韩av| 狂野欧美白嫩少妇大欣赏| 两个人的视频大全免费| 日韩亚洲欧美综合| 天天一区二区日本电影三级| 免费大片18禁| 色综合婷婷激情| 国产精品日韩av在线免费观看| 国产 一区 欧美 日韩| 精品一区二区免费观看| 日韩欧美在线二视频| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 久久精品人妻少妇| 在现免费观看毛片| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 91九色精品人成在线观看| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产 | 欧美另类亚洲清纯唯美| 少妇高潮的动态图| 国产高清视频在线播放一区| 亚州av有码| 一本一本综合久久| 国产在线男女| 国产成人福利小说| av在线老鸭窝| 国产蜜桃级精品一区二区三区| 极品教师在线视频| 搡女人真爽免费视频火全软件 | 99视频精品全部免费 在线| 美女cb高潮喷水在线观看| 永久网站在线| 成人性生交大片免费视频hd| 欧美+亚洲+日韩+国产| 一个人免费在线观看电影| 国产伦在线观看视频一区| 亚洲内射少妇av| 看片在线看免费视频| 欧美性猛交黑人性爽| 在线观看舔阴道视频| 欧美性感艳星| 国产伦一二天堂av在线观看| 天美传媒精品一区二区| 国内精品一区二区在线观看| 性插视频无遮挡在线免费观看| 网址你懂的国产日韩在线| 99久久无色码亚洲精品果冻| 黄色日韩在线| 天天躁日日操中文字幕| 在线a可以看的网站| 俺也久久电影网| 我的老师免费观看完整版| 简卡轻食公司| 亚洲精品亚洲一区二区| 夜夜夜夜夜久久久久| 成人三级黄色视频| 欧美另类亚洲清纯唯美| 草草在线视频免费看| 男女那种视频在线观看| 床上黄色一级片| 人人妻人人看人人澡| 观看美女的网站| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| 又紧又爽又黄一区二区| 给我免费播放毛片高清在线观看| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 精品久久久久久,| 色综合欧美亚洲国产小说| 色综合亚洲欧美另类图片| 国产高清三级在线| 久久久久久久久久黄片| 人妻丰满熟妇av一区二区三区| 国产一区二区激情短视频| 欧美日韩国产亚洲二区| 亚洲av熟女| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区精品| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 国产主播在线观看一区二区| 级片在线观看| 久久精品影院6| 韩国av一区二区三区四区| 亚洲欧美日韩卡通动漫|