• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting

    2021-11-19 05:40:12ChenhuiNiuYixinZhngJingDongRuixueYunWeiKouLinbinXu
    Chinese Chemical Letters 2021年8期

    Chenhui Niu,Yixin Zhng,Jing Dong,Ruixue Yun,Wei Kou,Linbin Xu,b,*

    a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

    b Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China

    ABSTRACT Electrochemical water splitting is a facile and effective route to generate pure hydrogen and oxygen.However, the sluggish kinetics of hydrogen evolution reaction (HER) and especially oxygen evolution reaction(OER)hinder the water splitting efficiency.Meanwhile,the high-cost of noble-metal catalysts limit their actual application.It is thus highly urgent to exploit an economical and earthabundant bifunctional HER and OER electrocatalyst to simplify procedure and reduce cost.Herein, we synthesize the three-dimensionally ordered macro-/mesoporous (3DOM/m) NixCo100-x alloys with distinctive structure and large surface area via a dual-templating technique.Among them, the 3DOM/m Ni61Co39 shows the lowest overpotentials of 121 mV and 241 mV at 10 mA/cm2 for HER and OER,respectively.Furthermore,when employed for water splitting,the Ni61Co39 only requires 1.60 V to approach 10 mA/cm2 and presents excellent stability.These encouraging performances of the Ni61Co39 render it a promising bifunctional catalyst for overall water splitting.

    Keywords:Macro-/mesoporous structure Ni-Co alloys Dual-templating technique Electrocatalysts Water splitting

    Hydrogen with high energy density and renewable character has been viewed as one of the sustainable and promising energy carriers.Electrochemical water splitting is an effective and prospective strategy to generate hydrogen, which involves the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) [1,2].However, besides the HER, OER normally requires a higher potential and possesses a complicated reaction mechanism leading to sluggish kinetic process,which restrict the practical utilization in water splitting.The practical operating potential for water splitting is typically 1.8-2.0 V, which is much higher than the theoretical value (1.23 V) [3].The high-performance bifunctional electrocatalyst can reduce the overpotentials for both HER and OER and thus enhance the efficiency for water splitting.Currently, the noble metals and their oxides have been utilized as efficient catalysts to enhance the electrocatalytic performance [4].However, the high cost, scarcity in the earth and lower stability hinder their industrialization[5].It is important to develop the electrocatalysts with low cost, high-performance and excellent stability for water splitting.

    Ni and Ni-based catalysts have attracted widespread interests due to their cost-effectiveness, low overpotential, and excellent stability for HER [6,7] and OER [8-10].Interestingly, compared with pure Ni catalysts,Ni-based alloy catalysts have presented the enhanced electrolytic efficiency, which may be due to the electronic structures and synergetic combination of different metals [11].Specifically, Ni-Co alloys with various structures have been reported for water splitting because of their intrinsic corrosion stability and abundant valence states,such as nanothorn arrays [12], nanowires [13], hollow microcuboids [14], and hierarchical three-dimensional (3D) structure [15].Among them,the 3D hierarchical porous structural material exhibits remarkable catalytic activity owing to relatively high surface area and good mass/charge transmission capabilities [16].For example,Zhou et al.reported the hierarchical porous Co-based phosphate 3D networks in which the overpotential for OER is 315 mV at 10 mA/cm2with a Tafel slope of 33 mV/dec[17].Li et al.prepared spinel NiCo2O43D nanoflowers supported on graphene nanosheets, the Tafel slope is 137 mV/dec and the onset potential is 1.50 V for OER [18].Unfortunately, most of the reported 3D hierarchical porous materials show disordered macro-/mesoporous structure and the morphology is difficult to control, which could hinder the transfer through the porous structures and limit further performance promotion.However,the ordered mesopores can provide catalysts with superb access to more active sites, the macropores can speed up mass/electron transfer, and the high stable 3D ordered porous network enable catalysts to exhibit a long-term stability [19,20].To this end, designing the 3D ordered macro-/mesoporous materials is urgently imperative.

    Herein, the 3D ordered macro-/mesoporous NixCo100-xalloys(3DOM/m NixCo100-x)were prepared via a dual-templating method and they were evaluated as high-performance bifunctional catalysts for HER and OER for the first time.The optimum 3DOM/m Ni61Co39catalyst requires 121 mV and 241 mV to reach 10 mA/cm2in terms of HER and OER,respectively.Meanwhile,the Ni61Co39catalyst is applied as both cathode and anode in water electrolysis,only 1.60 V is afforded at 10 mA/cm2.The results of this study confirm that coupling hierarchical porous nanostructures with the synergistic effect of alloying could lead to exceptional electrocatalytic activity for water splitting.

    Fig.S1 (Supporting information) demonstrates the process for preparing 3DOM/m NixCo100-x.Polymethyl methacrylate (PMMA)spheres were firstly synthesized via previously reported method[21].PMMA opal with highly ordered close-packed PMMA spheres was obtained by self-assembly.Then, the lyotropic liquid crystals(LLC) [22] containing Ni2+/Co2+with different ratios and nonionic surfactant Brij 58(C16H33(OCH2CH2)20OH)were immersed into the intervals of PMMA.Finally,after the reduction of Ni2+and Co2+with dimethylamine borane (DMAB) and then removal of the PMMA,the 3DOM/m NixCo100-xalloys were fabricated.

    The Ni-Co composition percentages of the 3DOM/m NixCo100-xsamples tested by inductively coupled plasma (ICP) are listed in Table S1 (Supporting information).The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to study the internal structure and morphology of the Ni61Co39.The SEM images of the Ni61Co39alloy (Fig.1a) preserve the highly ordered 3D macroporous structure,which is the inverse structure of the original PMMA template (Fig.S2a in Supporting information).The macroporous diameter is around 340 nm which is in conformity with the size of the PMMA template.The TEM images (Fig.1b) also show well-defined 3D porous structure and the size of macropores is around 340 nm.From the higher magnification image shown in the inset of Fig.1b,the mesoporous size is in a range of 3-5 nm.In addition, the TEM images of Ni61Co39at different orientations are displayed in Figs.S2b-d,respectively (Supporting information).Fig.S3 (Supporting information) shows the TEM images of 3DOM/m NixCo100-xcatalysts with different ratios of nickel and cobalt.The Ni61Co39shows the clearer and higher ordered structure.Moreover, with the increasing of Co ions, mesoporous structure of samples becomes disordered, which may be due to the activity of Co is less than Ni for anodic oxidation of DMAB[23].Furthermore,the elemental mapping of the 3DOM/m Ni61Co39(Fig.S4 in Supporting information)shows homogeneous distribution of Ni and Co across the selected area.

    Fig.1.(a) SEM and (b) TEM images for the Ni61Co39, inset: magnified image.

    The textural properties of 3DOM/m Ni61Co39were analyzed by N2adsorption-desorption measurement (Fig.2a).The isotherm exhibits type IV, proving the presence of mesoporous structure[24].The Brunauer-Emmett-Teller(BET)specific surface area of the Ni61Co39is 115 m2/g with the total pore volume is 0.21 cm3/g.With respect to the Barrett-Joyner-Halenda (BJH) distribution curve, it shows a narrow peak at 3.8 nm suggesting the uniform mesopore distribution, which is in concordance with the TEM.X-Ray Diffraction (XRD) can explore the crystal phase of Ni61Co39(Fig.2b).The broad peak at about 2θ=45°indicates that the catalyst exists in an amorphous-like state[25].Fig.S5(Supporting information) show the XRD patterns of 3DOM/m NixCo100-xcatalysts.With the Co content increases, the intensity of the broad peak at around 45°drops [26].No peaks for the oxidation states of Ni and Co are observed in the XRD patterns, indicating that NixCo100-xalloys mainly exist in the metallic state.The smallangle XRD pattern (inset in Fig.2b) presents a peak at 2θ=1.3°which further proves the existence of ordered mesostructure[25].The selected-area electron diffraction (SAED) pattern shows halo rings, implying the existence of amorphous state, which is in conformity with the XRD [26].

    We first investigated the HER performance for 3DOM/m NixCo100-xcatalysts and 20% Pt/C for comparison in 1.0 mol/L KOH.The cyclic voltammetry(CV)was run for 30 cycles to stabilize the system before recording the data.The CV curve (Fig.S6 in Supporting information) shows no redox peaks, indicating no additional reduction step occurs [27].From linear sweep voltammetry (LSV) curves in Fig.3a, the overpotential required for Ni61Co39catalyst to reach 10 mA/cm2is just 121 mV,better than the Ni (172 mV), Ni73Co27(146 mV), Ni49Co51(161 mV), Ni15Co85(250 mV), and Co (294 mV).

    The HER catalytic kinetics of all samples were probed by Tafel plots in Fig.3b.The Tafel slope for 20%Pt/C is consistent with the reported results(31 mV/dec)[28].The slope for Ni61Co39is 41 mV/dec, which is superior to electrodes for Ni, Ni73Co27, Ni49Co51,Ni15Co85, and Co with a slope of 52, 47, 49, 68, and 77 mV/dec,respectively.It is worth noting that the Tafel reaction is dominated by rate-limiting step in alkaline electrolyte.The Tafel slope of 41 mV/dec indicates that Ni61Co39follows a Volmer-Heyrovsky mechanism for HER[29] (see Supporting information for details).

    Electrochemical impedance spectroscopy (EIS) was conducted to research the charge transfer kinetics of all samples for HER.The Nyquist curves (Fig.3c) reveal that the impedance value of Ni61Co39is 4.5 Ohms, indicating that Ni61Co39possesses the highest charge transfers effectiveness[30].The turnover frequency(TOF) can assess the intrinsic properties of samples [31].The Ni61Co39catalyst has the highest TOF which is around 4.3×10-4s-1at η = 10 mV (Table S2 in Supporting information).

    Stability is also an important evaluation factor for catalysts.From Fig.3d, the LSV curve of the Ni61Co39catalyst is basically unchanged before and after the 2000 CV cycles.The inset in Fig.3d shows the chronopotentiometry curve.At a stable current density of 10 mA/cm2,the activity of Ni61Co39electrode decreases slightly(~6.9%) after 25 h of continuous operation.Meanwhile, after the stability test, there are no obvious changes of morphology and porous structure from the TEM observation (Fig.S7 in Supporting information), suggesting the remarkable stability for HER in alkaline solution.

    Prior to the LSV measurement for OER, the CV (Fig.S8 in Supporting information) was tested to activate the catalysts.The redox peak between 1.0-1.4 V is assigned to Ni2+and Co2+[32].The 3DOM/m Ni61Co39with well-ordered macro-/mesoporous structure shows the best OER activities and the overpotential is 241 mV at 10 mA/cm2.However,the Ni,Ni73Co27,Ni49Co51,Ni15Co85,Co and RuO2require higher overpotentials of 297,264,282,306,333 and 305 mV,respectively(Fig.3e).The Tafel slope of Ni61Co39is 44 mV/dec,which is lower than that of other NixCo100-xcatalysts and even RuO2(Fig.3f), proving the favorable OER kinetics for Ni61Co39.Fig.3g displays the EIS for the 3DOM/m NixCo100-xcatalysts and RuO2.The Ni61Co39electrode has the smallest semicircle diameter(23 Ohms), manifesting the lowest resistance and good mass transport.In addition, the Ni61Co39catalyst showed the highest TOF (5.8×10-4s-1).The relative data are listed in Table S3(Supporting information).

    Fig.2.(a)N2 adsorption-desorption isotherm of Ni61Co39 catalyst,inset:Pore size distribution curve.(b)The XRD pattern for the Ni61Co39,inset:Corresponding selected-area electron diffraction (SAED) and small-angle XRD.

    The stability for the Ni61Co39is tested by 2000 cycles of CV.The LSV curve of Ni61Co39(Fig.3h) was almost overlapped with the original one, confirming the good stability, which is significant in actual appliance.Moreover, the time-dependency of catalytic overpotential was performed by the chronoamperometry method at 1.47 V vs.RHE in 1.0 mol/L KOH for 25 h (inset of Fig.3h).The curve of the Ni61Co39shows negligible decay (~8.0%), implying that the electrode has good stability in the electrochemical process, which may be ascribed to the negligible deformation of the interconnected 3D porous structure after the test (Fig.S9 in Supporting information).

    Fig.3.(a,b)LSV and Tafel curves for the NixCo100-x catalysts and 20%Pt/C for HER.(c)The Nyquist curves of catalysts recorded at-0.10 V.(d)LSV curves of Ni61Co39 catalyst for the HER initially and after every 500 cycles,inset:The chronopotentiometry curve obtained from continuous testing of Ni61Co39 catalyst for 25 h at 10 mA/cm2.(e,f)LSV and Tafel curves for the NixCo100-x catalysts and RuO2 for OER.(g)EIS of catalysts recorded at 1.70 V.(h)LSV curves of Ni61Co39 catalyst for the OER initially and after every 500 cycles,inset:The chronoamperometry curve obtained from continuous stability testing of Ni61Co39 catalyst for 25 h at 1.47 V vs.RHE.(i)LSV curve of water splitting for the Ni61Co39 catalyst, inset: stability test at 1.60 V vs.RHE.

    Considering that the 3DOM/m Ni61Co39electrode has fast catalytic kinetics for both HER and OER under alkaline environment,this electrode could be used as anode and cathode for water electrolysis.It can be observed from Fig.3i that Ni61Co39electrode requires 1.60 V at 10 mA/cm2.This value is close to previously reported RuO2||Pt/C electrode (1.55 V) [33], Co-Ni-P (1.61 V) [34]and even favorable to NiCo2O4hollow microcuboids (1.65 V) [14],porous NiCo2N (1.70 V) [35], etc.(Table S4 in Supporting information).The electrocatalytic stability in a two-cell electrode was studied using a chronoamperometry test at 1.60 V vs.RHE,and the result displays in the inset of Fig.3i.The Ni61Co39catalyst exhibits high stability with ~7.4% current density decay for 25 h water electrolysis.The results demonstrate that the 3DOM/m Ni61Co39electrode can be effectively utilized as bifunctional HER and OER electrocatalyst for water splitting.

    The surface composition and elemental state of Ni61Co39were explained by X-ray photoelectron spectroscopy (XPS).Fig.S10(Supporting information) shows the XPS survey spectra of the Ni61Co39catalyst which show the presence of Ni, Co and O elements on the surface of as-synthesized sample.The high resolution XPS spectrum of Ni 2p for as-synthesized Ni61Co39is shown in Fig.4a.There are two main peaks appear at 856.2 eV and 874.0 eV, which are ascribed to Ni 2p3/2and Ni 2p1/2,respectively[36].At the same time, two broad satellite peaks at 860.9 and 880.2 eV suggest the presence of Ni2+.The peak at 852.1 eV reveals the sample contains metallic Ni0[37].The Co 2p (Fig.4b) shows two main peaks(781.7 eV and 797.0 eV)belonging to Co 2p3/2and Co 2p1/2and two satellite peaks (785.7 and 802.9 eV), which are assigned to Co2+[38].The peak at 774.4 eV is attributed to zero valence of Co[39].The detected divalent oxide peaks of Ni and Co may be caused by the partial oxidation on the catalyst surface in the preparation process and atmospheric exposure.The high resolution XPS spectrum of O 1s (Fig.4c) shows three peaks at 531.1 eV, 531.9 eV and 532.6 eV which are M--O peak (M=Ni, Co),M-OOH peak and the oxygen species in the surface-adsorbed H2O molecule, respectively [40].

    Fig.4.XPS spectra of the as-synthesized, post-HER and post-OER samples.(a) Ni 2p, (b) Co 2p, (c) O 1s.

    The XPS spectra of Ni61Co39catalyst after the HER and OER stability tests (Fig.4) are also analyzed.After the HER, the XPS spectra of Ni 2p and Co 2p are similar to those of the original sample, with the same oxidation/metallic states on the catalyst surface.And the XPS spectra of O 1s before and after the HER test also indicate the formation M--O bond evidenced by the peaks at 531.1 eV.Moreover,it is commonly accepted that the HER process consists of three possible steps (see Supporting information for details) [41].The initial stage is the Volmer reaction, followed by either Heyrovsky reaction or Tafel reaction.A lot of work has demonstrated that MO accelerates the Volmer step, while the metallic species is beneficial to the Heyrovsky or Tafel step[42,43].On the MO/M interface, the OH-from H2O dissociation might preferentially adhere to the MO surface since it has a strong electrostatic affinity to M2+component and there are more unfilled d orbitals in M2+than M0,while a nearby M site would promote H adsorption,giving MO/M the synergistic catalytic activity for HER[44].Thus, the MO/M might be the synergistically active sites for HER electrocatalysis.

    After the OER stability test,the metallic phases Ni0(852.1 eV)and Co0(774.4 eV)disappeared,suggesting that the surface metallic Ni and Co were oxidized.Notably,new peaks at 858.2 eV and 784.6 eV are assigned to trivalent NiOOH and CoOOH,respectively,which are key OER intermediates formed on the surface of Ni61Co39[45,46].This result can be confirmed by the high-resolution O 1s XPS spectra.After the OER, the intensity of M-OOH peak (531.9 eV) increased significantly.It is generally believed that the Ni/Co--OO Hare the real active phases for OER[47].

    It is anticipated that the outstanding electrochemical activities of the 3DOM/m Ni61Co39could be originated from its distinct 3D hierarchical macro-/mesoporous structure and the synergetic combination of Ni and Co.(1) The ordered mesopores increase the surface area of Ni61Co39catalyst, thereby exposing more catalytically active sites, while macropores can accelerate the diffusion of molecules/ions to the active sites, facilitate the electron transport rates and boost the utilization efficiency[48,49].(2)Alloying Ni with appropriate amount Co could reduce the overpotentials and improving the catalytic activity for both HER and OER and thus accelerating the efficiency of overall water splitting[50,51],but the excessive Co could lead to the destruction of ordered mesoporous structure and decrease of synergism effect[23].(3)Due to their amorphous structures with short range order,the synthesized amorphous state catalysts may be able to expose the active sites in the bulk through electrochemically activation,resulting in an increase in the number of active sites, thereby enhancing the catalytic performance [52].

    In this paper,noble-metal-free 3DOM/m NixCo100-xalloys have been prepared via a facile dual-templating method where PMMA opal and the surfactant Brij 58 as macropore template and mesopore directing agent,respectively.Because of the synergistic properties of bimetals, rich active sites exposure and distinctive mass transport ability derived from the unique hierarchical macro-/mesoporous architecture, the optimal Ni61Co39catalyst exhibits superior electrocatalytic performance with the overpotentials of 121 mV and 241 mV at 10 mA/cm2for HER and OER,respectively.Furthermore,Ni61Co39electrode only requires 1.60 V at 10 mA/cm2in water splitting system.The remarkable electrocatalytic activity indicate that the Ni61Co39catalyst may be a promising candidate to replace noble-metal catalysts.The uniform 3D macro-/mesoporous structure might offer a new strategy for designing Ni-based alloy catalysts as highly active electrodes for various electrochemical applications, such as electrocatalysis,batteries and supercapacitors.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The work was financially supported by the National Natural Science Foundation of China (No.21676018 and 51172014).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2020.12.045.

    午夜激情福利司机影院| 免费无遮挡裸体视频| 动漫黄色视频在线观看| 88av欧美| 美女cb高潮喷水在线观看 | 日韩欧美 国产精品| 久久天堂一区二区三区四区| 国产精品女同一区二区软件 | 男人舔奶头视频| 免费高清视频大片| 久久九九热精品免费| 高清在线国产一区| 九九在线视频观看精品| 美女高潮喷水抽搐中文字幕| 亚洲成av人片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 黄色成人免费大全| 国产一区二区三区视频了| 999久久久国产精品视频| 国产又色又爽无遮挡免费看| 日本精品一区二区三区蜜桃| 欧美日韩乱码在线| 免费观看的影片在线观看| 最新在线观看一区二区三区| 一本精品99久久精品77| 韩国av一区二区三区四区| 在线a可以看的网站| 国产精品久久久久久亚洲av鲁大| 久久人人精品亚洲av| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 一区二区三区国产精品乱码| 两个人的视频大全免费| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 午夜久久久久精精品| 免费av不卡在线播放| 一区福利在线观看| 99riav亚洲国产免费| 成人18禁在线播放| 亚洲成人免费电影在线观看| 哪里可以看免费的av片| 99热6这里只有精品| 一级毛片高清免费大全| 女人高潮潮喷娇喘18禁视频| 国内毛片毛片毛片毛片毛片| 最近最新免费中文字幕在线| 一个人免费在线观看电影 | 国产成人啪精品午夜网站| 美女扒开内裤让男人捅视频| xxx96com| 91在线观看av| 国产精品久久久久久久电影 | 欧美性猛交黑人性爽| 成人性生交大片免费视频hd| 精品国内亚洲2022精品成人| 国产精品1区2区在线观看.| 亚洲国产日韩欧美精品在线观看 | 欧美日韩一级在线毛片| 一本精品99久久精品77| www日本在线高清视频| 久久久久亚洲av毛片大全| 1024香蕉在线观看| or卡值多少钱| 国产精品久久视频播放| 一进一出抽搐动态| 亚洲人成网站高清观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一区av在线观看| 五月玫瑰六月丁香| 午夜福利在线观看吧| 少妇的丰满在线观看| 法律面前人人平等表现在哪些方面| 99热精品在线国产| h日本视频在线播放| 午夜福利高清视频| 他把我摸到了高潮在线观看| 十八禁网站免费在线| 欧美日韩乱码在线| 麻豆国产av国片精品| 国产久久久一区二区三区| 老司机深夜福利视频在线观看| 黑人巨大精品欧美一区二区mp4| www.自偷自拍.com| 99re在线观看精品视频| 亚洲激情在线av| 琪琪午夜伦伦电影理论片6080| 岛国在线免费视频观看| 欧美色视频一区免费| 又爽又黄无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 亚洲在线自拍视频| 人人妻人人澡欧美一区二区| 91在线精品国自产拍蜜月 | 日本熟妇午夜| 男女做爰动态图高潮gif福利片| 日本 欧美在线| 亚洲avbb在线观看| 国产精品98久久久久久宅男小说| 日本精品一区二区三区蜜桃| 97超级碰碰碰精品色视频在线观看| netflix在线观看网站| 免费看a级黄色片| 午夜亚洲福利在线播放| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 国产美女午夜福利| 不卡av一区二区三区| 国产一区二区在线观看日韩 | 亚洲色图 男人天堂 中文字幕| 99精品在免费线老司机午夜| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片| 久久热在线av| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站 | 18禁美女被吸乳视频| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| 久久久成人免费电影| 一本久久中文字幕| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 又粗又爽又猛毛片免费看| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 动漫黄色视频在线观看| 久久精品综合一区二区三区| 成年免费大片在线观看| 久久香蕉精品热| 久久性视频一级片| 亚洲成a人片在线一区二区| 高潮久久久久久久久久久不卡| 黄色日韩在线| 亚洲自拍偷在线| 欧美日韩中文字幕国产精品一区二区三区| 中国美女看黄片| 亚洲男人的天堂狠狠| 天天一区二区日本电影三级| 最好的美女福利视频网| 噜噜噜噜噜久久久久久91| 别揉我奶头~嗯~啊~动态视频| 两个人看的免费小视频| 在线a可以看的网站| 久久精品国产亚洲av香蕉五月| 亚洲精品中文字幕一二三四区| 在线看三级毛片| 国产欧美日韩精品一区二区| 国产午夜福利久久久久久| 香蕉av资源在线| 夜夜爽天天搞| 老司机福利观看| 免费看光身美女| 97人妻精品一区二区三区麻豆| 制服丝袜大香蕉在线| 精品无人区乱码1区二区| 国产精品野战在线观看| 亚洲中文字幕日韩| 久久香蕉国产精品| 黄色丝袜av网址大全| 999精品在线视频| 亚洲av电影在线进入| 麻豆国产av国片精品| 亚洲成人久久爱视频| 国产野战对白在线观看| 丁香欧美五月| 欧美一区二区国产精品久久精品| 日本一二三区视频观看| 午夜成年电影在线免费观看| 搞女人的毛片| 日韩制服骚丝袜av| 99热这里只有是精品在线观看| h日本视频在线播放| 亚洲熟妇中文字幕五十中出| 麻豆av噜噜一区二区三区| 免费av不卡在线播放| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| av.在线天堂| 激情 狠狠 欧美| 国产精品永久免费网站| 身体一侧抽搐| 一夜夜www| 久久久a久久爽久久v久久| 久久久久久九九精品二区国产| av在线播放精品| 国产一区有黄有色的免费视频 | 成人毛片a级毛片在线播放| 视频中文字幕在线观看| 最近最新中文字幕大全电影3| 亚洲av中文av极速乱| 一个人观看的视频www高清免费观看| 国产色婷婷99| 日韩精品有码人妻一区| 久久99热6这里只有精品| 免费av不卡在线播放| 九九热线精品视视频播放| 国产91av在线免费观看| 日本与韩国留学比较| 一区二区三区乱码不卡18| 免费av观看视频| 日韩制服骚丝袜av| 国产视频内射| 国产精品一区二区性色av| 一区二区三区四区激情视频| 麻豆一二三区av精品| 国产不卡一卡二| 久久久久网色| 九九在线视频观看精品| 丝袜美腿在线中文| 免费一级毛片在线播放高清视频| 26uuu在线亚洲综合色| 国产人妻一区二区三区在| 大香蕉久久网| 中国国产av一级| 亚洲天堂国产精品一区在线| eeuss影院久久| 能在线免费观看的黄片| 成年女人看的毛片在线观看| 一个人免费在线观看电影| 国产色婷婷99| 99热网站在线观看| 亚洲人成网站在线播| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 黑人高潮一二区| 又爽又黄无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 亚洲av成人av| videos熟女内射| 国产 一区精品| 国产精品嫩草影院av在线观看| 国产探花极品一区二区| 噜噜噜噜噜久久久久久91| 精品久久久久久久久久久久久| 亚洲精品久久久久久婷婷小说 | 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 国产精品人妻久久久影院| 久久久国产成人精品二区| 人妻夜夜爽99麻豆av| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| 一二三四中文在线观看免费高清| 亚洲无线观看免费| 欧美一区二区国产精品久久精品| 国产成人精品一,二区| 日韩精品有码人妻一区| 欧美成人精品欧美一级黄| av在线蜜桃| 久久6这里有精品| 赤兔流量卡办理| 亚洲一级一片aⅴ在线观看| 国产精品伦人一区二区| 日本与韩国留学比较| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 免费观看性生交大片5| 看片在线看免费视频| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 亚洲成人精品中文字幕电影| av女优亚洲男人天堂| 夫妻性生交免费视频一级片| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 九九久久精品国产亚洲av麻豆| 一二三四中文在线观看免费高清| 免费av毛片视频| 亚洲精品乱久久久久久| 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 伦精品一区二区三区| 草草在线视频免费看| 好男人在线观看高清免费视频| 青春草视频在线免费观看| ponron亚洲| 深爱激情五月婷婷| 国产精品久久久久久久久免| 亚洲丝袜综合中文字幕| 亚洲av日韩在线播放| 久久久久久久久久黄片| 亚洲精品影视一区二区三区av| 欧美高清性xxxxhd video| 中文亚洲av片在线观看爽| 色哟哟·www| 免费看日本二区| 小说图片视频综合网站| 国产精品三级大全| 久热久热在线精品观看| 精品国产露脸久久av麻豆 | 日韩精品有码人妻一区| 美女高潮的动态| 亚洲激情五月婷婷啪啪| 亚洲精品国产av成人精品| 白带黄色成豆腐渣| 毛片一级片免费看久久久久| 色综合色国产| 色播亚洲综合网| 高清视频免费观看一区二区 | 精品欧美国产一区二区三| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 岛国毛片在线播放| 国产高清国产精品国产三级 | 国产高潮美女av| 精华霜和精华液先用哪个| 我要搜黄色片| 午夜精品国产一区二区电影 | 亚洲高清免费不卡视频| 国产精品一区二区三区四区免费观看| 一个人免费在线观看电影| 亚洲成av人片在线播放无| 天堂√8在线中文| av在线老鸭窝| 精品午夜福利在线看| 中文字幕人妻熟人妻熟丝袜美| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 亚洲中文字幕一区二区三区有码在线看| 日韩高清综合在线| 全区人妻精品视频| 18禁裸乳无遮挡免费网站照片| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 成人漫画全彩无遮挡| 精品国内亚洲2022精品成人| 色哟哟·www| 国产淫语在线视频| 一边亲一边摸免费视频| 啦啦啦观看免费观看视频高清| 国产成人免费观看mmmm| 男女那种视频在线观看| 久久久久久久久久黄片| 男女那种视频在线观看| 久久精品影院6| 国产色婷婷99| 国产精品,欧美在线| 国产av一区在线观看免费| 日本wwww免费看| 亚洲国产精品久久男人天堂| 99热网站在线观看| av线在线观看网站| 搡女人真爽免费视频火全软件| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 丝袜喷水一区| 精品午夜福利在线看| 亚洲人成网站高清观看| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| a级毛片免费高清观看在线播放| 国产在线男女| av在线天堂中文字幕| 日韩在线高清观看一区二区三区| 成人漫画全彩无遮挡| 亚洲无线观看免费| 两个人视频免费观看高清| 国内精品一区二区在线观看| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美中文字幕日韩二区| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| 日产精品乱码卡一卡2卡三| 青春草国产在线视频| 久久99蜜桃精品久久| 久久久国产成人精品二区| 日本色播在线视频| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 老师上课跳d突然被开到最大视频| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 有码 亚洲区| 中文字幕av在线有码专区| 噜噜噜噜噜久久久久久91| 中国美白少妇内射xxxbb| 视频中文字幕在线观看| 国产黄片美女视频| 免费观看的影片在线观看| 大话2 男鬼变身卡| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 日本午夜av视频| 蜜桃久久精品国产亚洲av| 免费av毛片视频| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 美女高潮的动态| 国产免费一级a男人的天堂| 日韩欧美 国产精品| av在线天堂中文字幕| 欧美潮喷喷水| 国产成年人精品一区二区| 在线播放国产精品三级| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 又粗又爽又猛毛片免费看| 亚洲欧美中文字幕日韩二区| 亚洲国产高清在线一区二区三| 嫩草影院入口| 日本熟妇午夜| 听说在线观看完整版免费高清| 亚洲三级黄色毛片| 国产私拍福利视频在线观看| av黄色大香蕉| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 老司机影院毛片| 国产视频首页在线观看| 亚洲三级黄色毛片| 亚洲av男天堂| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 建设人人有责人人尽责人人享有的 | 麻豆久久精品国产亚洲av| 一区二区三区高清视频在线| 免费大片18禁| 亚洲无线观看免费| 亚洲av电影在线观看一区二区三区 | 22中文网久久字幕| 插阴视频在线观看视频| 国产毛片a区久久久久| 青春草亚洲视频在线观看| 99热精品在线国产| 在线免费观看的www视频| 九九爱精品视频在线观看| 日本色播在线视频| 亚洲人与动物交配视频| 精品国产一区二区三区久久久樱花 | 国产午夜福利久久久久久| 亚洲五月天丁香| www.av在线官网国产| 一个人免费在线观看电影| 日韩欧美在线乱码| 色哟哟·www| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 韩国高清视频一区二区三区| 1000部很黄的大片| 亚洲欧美清纯卡通| 国产黄片美女视频| 欧美性猛交╳xxx乱大交人| 真实男女啪啪啪动态图| 日韩中字成人| a级毛色黄片| 亚洲欧美日韩无卡精品| 又爽又黄a免费视频| 国产国拍精品亚洲av在线观看| 亚洲精华国产精华液的使用体验| 日韩av在线大香蕉| 国产精品一区二区性色av| 国产乱来视频区| 久久久久精品久久久久真实原创| 日本一本二区三区精品| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 国产片特级美女逼逼视频| 精品不卡国产一区二区三区| 日韩成人av中文字幕在线观看| 日韩欧美在线乱码| 久久久久久久午夜电影| 精品人妻一区二区三区麻豆| 日韩中字成人| a级毛色黄片| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 久久久久网色| 亚洲电影在线观看av| 日本欧美国产在线视频| 久久99蜜桃精品久久| 高清在线视频一区二区三区 | 亚洲精品乱码久久久v下载方式| 亚洲av成人av| 天天一区二区日本电影三级| 日本欧美国产在线视频| 国产精品无大码| 国产大屁股一区二区在线视频| 九九热线精品视视频播放| 色综合色国产| 能在线免费观看的黄片| 久久精品久久久久久噜噜老黄 | 欧美性感艳星| 中文亚洲av片在线观看爽| 秋霞在线观看毛片| 国产不卡一卡二| 青春草视频在线免费观看| 一个人免费在线观看电影| 亚洲中文字幕日韩| 麻豆av噜噜一区二区三区| 国产私拍福利视频在线观看| 国产亚洲精品av在线| 好男人视频免费观看在线| 男女啪啪激烈高潮av片| av线在线观看网站| 丰满乱子伦码专区| 欧美最新免费一区二区三区| 99热6这里只有精品| 日本wwww免费看| 免费人成在线观看视频色| 91在线精品国自产拍蜜月| 日本黄大片高清| 国产一级毛片在线| av又黄又爽大尺度在线免费看 | 精品久久久久久久久av| 九草在线视频观看| 国产人妻一区二区三区在| 少妇丰满av| 国产精品野战在线观看| 毛片一级片免费看久久久久| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区 | 免费观看精品视频网站| 免费观看性生交大片5| 我的老师免费观看完整版| 亚洲欧美精品综合久久99| 国产成年人精品一区二区| 欧美激情国产日韩精品一区| 一本一本综合久久| 欧美日韩精品成人综合77777| 免费观看精品视频网站| 91久久精品国产一区二区成人| 91久久精品电影网| 高清毛片免费看| 99在线人妻在线中文字幕| 亚洲国产精品合色在线| 成人av在线播放网站| 日韩中字成人| 成人午夜精彩视频在线观看| videossex国产| 国产亚洲5aaaaa淫片| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 国产老妇女一区| 99热这里只有是精品在线观看| 在线免费观看的www视频| 内射极品少妇av片p| 中文乱码字字幕精品一区二区三区 | 午夜a级毛片| 波多野结衣巨乳人妻| 成人无遮挡网站| 久久欧美精品欧美久久欧美| 国产大屁股一区二区在线视频| 青青草视频在线视频观看| 国产极品精品免费视频能看的| 欧美成人精品欧美一级黄| 日本猛色少妇xxxxx猛交久久| 日本熟妇午夜| 国产成人aa在线观看| 久久这里只有精品中国| 在线播放无遮挡| 大香蕉97超碰在线| 亚洲精品成人久久久久久| 免费一级毛片在线播放高清视频| 国产成人a∨麻豆精品| 亚洲精品自拍成人| 最近最新中文字幕大全电影3| 天美传媒精品一区二区| 男的添女的下面高潮视频| 高清毛片免费看| 国产精品精品国产色婷婷| 大话2 男鬼变身卡| 欧美成人午夜免费资源| 深爱激情五月婷婷| 纵有疾风起免费观看全集完整版 | 丝袜喷水一区| 日日干狠狠操夜夜爽| 国内少妇人妻偷人精品xxx网站| 国产乱人偷精品视频| 日本免费a在线| 国产爱豆传媒在线观看| 国产在视频线在精品| 嫩草影院新地址| 91午夜精品亚洲一区二区三区| 国产亚洲av片在线观看秒播厂 | 99久久精品国产国产毛片| 3wmmmm亚洲av在线观看| 国产成人午夜福利电影在线观看| 国产亚洲精品久久久com| 男女下面进入的视频免费午夜| 亚洲欧美成人精品一区二区| 一本一本综合久久| 久久这里只有精品中国| 国产伦在线观看视频一区| 成人性生交大片免费视频hd| 99热网站在线观看| 少妇熟女aⅴ在线视频| 热99re8久久精品国产|