• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrathin zinc selenide nanosheet-based intercalation hybrid coupled with CdSe quantum dots showing enhanced photocatalytic CO2 reduction

    2021-11-19 05:40:08ZejunZhoZilunLiuZhixioZhuFngWngFeiTengWenjunJingYongYng
    Chinese Chemical Letters 2021年8期

    Zejun Zho,Zilun Liu,Zhixio Zhu,Fng Wng,Fei Teng,Wenjun Jing*,Yong Yng,*

    a State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University,Xi’an 710072, China

    b Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China

    c School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

    1 These authors contributed equally to this work.

    ABSTRACT Fabrication of well-designed heterojunctions is an extraordinarily attractive pathway for boosting the photocatalytic activity toward CO2 photoreduction.Herein,a novel kind of nanosheet-based intercalation hybrid coupled with CdSe quantum dots (QDs) was successfully fabricated by a facile solvothermal method and served as photocatalyst for full-spectrum-light-driven CO2 reduction.Ultra-small CdSe QDs were rationally in-situ introduced and coupled with lamellar ZnSe-intercalation hybrid nanosheet,resulting in the formation of CdSe QDs/ZnSe hybrid heterojunction.Significantly, the concentration of Cd2+could change directly the crystallinity and micromorphology of ZnSe intercalation hybrid,which in turn would impact on the photocatalysis activity.The optimized CdSe QDs/ZnSe hybrid-5 composite demonstrated a considerable CO yield rate of the 25.6 μmol g-1 h-1 without any additional cocatalysts or sacrificial agents assisting,making it one of the best reported performance toward CO2 photoreduction under full-spectrum light.The elevated CO2 photoreduction activity could be attributed to the special surface heterojunction, leading to improving the ability of light absorption and promoting the separation/transfer of photogenerated carriers.This present study developed a new strategy for designing inorganic-organic heterojunctions with enhanced photocatalyst for CO2 photoreduction and provided an available way to simultaneously mitigate the greenhouse effect and alleviate energy shortage pressure.

    Keywords:Inorganic-organic hybrid ZnSe intercalation hybrid CdSe quantum dots Light absorption Photocatalytic CO2 reduction

    The aggravation of greenhouse effect and the shortage of fossil fuels have drawn significant research attention for the purpose of exploring a feasible way to resolve both of them simultaneously[1-5].Solar energy, as one of the most widely distributed energy resources,has been considered as an ideal clean energy due to its sustainable and inexhaustible supply [6-8].In recent years, the boom of photocatalysis technology provides a feasible strategy to make full use of solar energy[9-12].Among them,photocatalytic CO2reduction to CO have been regarded as one of the most promising strategies to realize the resource conversion [13-16].The efficiency of photoreduction CO2usually depended on the performance of photocatalyst, involving the excitation of photogenerated carriers [17,18], migration and separation of charges as well as photocatalytic reaction on the catalytic surface[19,20].For past decades, various catalysts for photoreduction CO2have been developed[21,22],but these catalysts usually suffered from some deficiencies such as inappropriate bandgap or band edge positions,unsatisfactory light response and rapid charge recombination,which was far from the demand to meet the practical applications[23-25].Therefore,it is necessary to develop a new type of catalyst with excellent photocatalytic activity for CO2reduction [26].

    Cadmium selenide (CdSe) with excellent visible-light responsivity [27], tunable energy band gap from 1.8 eV to 3.0 eV and sufficient conduction band (CB) potential well above the H2production potential (-0.41 eV vs.normal hydrogen electrode(NHE),pH 7)has been demonstrated exceptional catalytic activity for efficient CO2reduction [28-31].However, serious light corrosion and inferior stability decrease the efficiency of photocatalytic CO2reduction [32,33].Various methods have been proposed to enhance the photocatalytic performance, such as synthesis of quantum dots, regulating the morphology and construction of heterojunction [34-36].Recently, inorganicorganic hybrid II-VI semiconductors assembled with inorganic substance (MQ, M=Zn or Cd, Q=S or Se) and organic molecule(diethylenetriamine, amine) have demonstrated enhanced properties including electronic transport, optical response and band structures,which have attracted extensive potential application in photoelectric energy conversion[37-41].It was indicated that subnanometer-scale periodic structures could induce strong quantum confinement effects, which could be used as functional parts or building blocks in various nanodevices [42,43].For instance, the ZnS-DETA/CdS hierarchical hybrids exhibited efficient catalytic activity for CO2reduction owing to their unique features of visible light harvesting, high surface area and abundant catalytic active sites for adsorption and surface redox catalysis, promoting separation and transfer of photo-induced charge carriers [44].In this regard,construction of the metal-chalcogenides semiconductors inorganic/organic-hybrid heterostructures and quantization strategy had been deemed as a simple and effective way to improve photocatalytic activity and stability through tuning the band structures of two different semiconductors [45-48].

    In this work, CdSe quantum dots (QDs) attached to lamellar ZnSe intercalation hybrid labeled as CdSe QDs/ZnSe hybrid was successfully prepared by a simple solvothermal method and employed as catalyst for CO2photoreduction.The concentration of cadmium ions not only changed the crystal structure of products,but also had significant impacts on catalytic activity for CO2photoreduction.In this work,the moderate amounts of CdSe QDs can offer abundant active sites for CO2reduction and improve the absorption of solar energy efficiently.As a result,ZnSe intercalation hybrid was conducive to improving the absorption of CO2on catalyst surface.Compared with the ZnSe-intercalation hybrid,the optimized sample CdSe QDs/ZnSe hybrid-5 exhibited superior catalytic activity toward photocatalytic CO2reduction to CO under full-spectrum-light irradiation.Enhanced performance could be attributed to the unique heterojunction between ZnSe intercalation hybrid and ultra-small CdSe QDs, which could improve the abilities of light absorption and the separation/transfer of photogenerated carriers.

    Fig.1a shows the synthetic process of CdSe QDs/ZnSe hybrid composite.ZnSe-intercalation hybrid with a lamellar structure was initially obtained through a self-assembly process under the ligation and structure guiding functions of octylamine,resulting in the formation of inorganic-organic intercalation compounds.CdSe QDs coupled with ZnSe-intercalation hybrid was rationally fabricated in the same way when Cd2+was involved.Under the reaction procedure,CdSe QDs would be formed spontaneously and simultaneously coupled with lamellar ZnSe-intercalation hybrid,leading to the formation of CdSe QDs/ZnSe hybrid.

    Fig.1.(a) Synthesis process of the ZnSe-intercalation hybrid and CdSe QDs/ZnSe hybrid and their applications for photocatalysts CO2 reduction.(b) TEM image of ZnSe-intercalation hybrid.(c)HRTEM image of ZnSe-intercalation hybrid.(d)Lowangle XRD pattern of ZnSe-intercalation hybrid from 2° to 9.5°.(e,f)HAADF-STEM image of ZnSe-intercalation hybrid.(g)EDS mapping images of ZnSe-intercalation hybrid.

    The micromorphology of ZnSe-intercalation hybrid was firstly investigated by scanning electron microscopy (SEM).Fig.S1a(Supporting information) clearly reveals that ZnSe-intercalation hybrid is composed of ultra-thin nanosheets displaying a flowerlike structure.Transmission electron microscopy (TEM) image of ZnSe-intercalation hybrid shown in Fig.1b indicates that numerous ultra-thin nanosheets were assembled together forming the ZnSe-intercalation hybrid.High-resolution transmission electronic microscopy (HRTEM) images clearly illustrate that the ultra-thin nanosheets have a periodic lamellar structure and the interlayer distance is up to 0.95 nm (Fig.1c and Fig.S1b in Supporting information).Low-angle XRD test from 2°to 9.5°was conducted to analyze the lamellar structure of ZnSe-intercalation hybrid.Three diffraction peaks appeared at 3.25°, 6.50°and 9.28°in the lowangle XRD patterns reveal well-defined ZnSe-intercalation structure with interlayer distance, indicating the formation of amine intercalated ZnSe hybrid (Fig.1d) [49].These three peaks were corresponding to different interlamellar spacing of 2.71 nm,1.35 nm and 0.95 nm, respectively.The low-angle XRD results are consistent with those of transmission analysis.High-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)image shown in Fig.S2a(Supporting information)further reveals that of ZnSe-intercalation hybrid nanosheets consist of single layer or multi-layer nanosheets.HRTEM image and the associated selected area electron diffraction (SAED)pattern (inset of Fig.S2b in Supporting information) show that ZnSe-intercalation hybrid possesses a lower crystallinity.In order to shed light on the phase composition of ZnSe-intercalation hybrid, XRD tests from 10°to 80°was further carried out.The characteristic peaks are corresponding to the ZnSe hexagonal phase but with a slight shift (Fig.S3a in Supporting information).The energy-dispersive X-ray(EDX)spectrum of ZnSe-intercalation hybrid shown in Fig.S3b(Supporting information)illustrates that ZnSe-intercalation hybrid was mainly composed of Zn, Se and C elements.HAADF-STEM image shown in Fig.1e further illustrates that ZnSe-intercalation hybrid is assembled by the ultra-thin inorganic-organic intercalation nanosheets.High magnification HAADF-STEM image demonstrates that ZnSe-intercalation hybrid possesses a layered structure similar to periodic arrangement crystal (Fig.1f).The EDS elemental mapping images of ZnSeintercalation hybrid distinctly manifest the uniform distribution of elements throughout the whole structure, including Zn, Se, C, N and O elements (Fig.1g).Corresponding EDS linear scanning elemental mapping images shown in Fig.S4(Supporting information) also testify the elements distribution state.Through the above analysis, ZnSe-intercalation hybrid with a lamellar crystal feature have been fabricated through structure-oriented function of octylamine during solvothermal reaction.

    Subsequently,CdSe QDs/ZnSe hybrids were rationally designed and fabricated by adding a certain amount of cadmium acetate(5.0 mg and 10.0 mg) into the reaction system.As-obtained products were labeled as CdSe QDs/ZnSe hybrid-5, CdSe QDs/ZnSe hybrid-10, respectively.SEM images of CdSe QDs/ZnSe hybrid-5 are presented in Fig. 2a and Fig.S5a (Supporting information), in comparison with the ZnSe-intercalation hybrid,the morphology of CdSe QDs/ZnSe hybrid-5 has no distinct changes and still retains the flower-like structure.Fig.S5b(Supporting information) shows that CdSe QDs/ZnSe hybrid-5 is also constructed with the nanosheets.Many quantum dots marked with the small white circles are easily detected on the surface of nanosheets(Fig. 2b and Fig.S6 in Supporting information).And the diameter of CdSe QDs is about 1-2 nm (Fig.S7 in Supporting information).The interplanar distance about 0.22 nm is corresponded to the (110) crystal plane of CdSe (Fig. 2c and Fig.S8 in Supporting information).We proposed that cadmium ions preferred to form CdSe crystal rather than assemble into the inorganic-organic intercalation composites.As presented in Fig.2d, HAADF-STEM image distinctly shows that CdSe QDs/ZnSe hybrid-5 is constructed by the ultra-thin nanosheets,resulting the flower like construction.Further careful observation of the HAADFSTEM image of CdSe QDs/ZnSe hybrid-5 exhibited in Fig.2e,periodic layered structure of ultra-thin nanosheets have not been transformed.EDS elemental mapping images shown in Fig.2f verify the uniform distribution of elements Cd, C, N, Se and Zn,indicating that CdSe QDs was incorporated in CdSe QDs/ZnSe hybrid-5.

    Fig.2.(a)SEM image of CdSe QDs/ZnSe hybrid-5.(b)TEM image of CdSe QDs/ZnSe hybrid-5.(c) HRTEM image CdSe QDs/ZnSe hybrid-5.(d,e)HAADF-STEM image of CdSe QDs/ZnSe hybrid- 5.(f) EDS mapping images of CdSe QDs/ZnSe hybrid-5.

    It was noteworthy that Cd2+had significant influence on the crystallinity and micromorphology of products.The effects of Cd2+on the layered structure of ZnSe-intercalation hybrid were investigated in detailed.Low-angle XRD patterns show that the intensity of diffraction peaks at 3.25°, 6.50°and 9.28°decrease gradually with the increase of Cd2+concentration (Fig.3a).The diffraction peaks had completely disappeared when 20 mg cadmium acetate was involved(Fig.S9 in Supporting information).CdSe QDs would be produced when Cd2+was introduced, which could influence the formation of layered ZnSe-intercalation hybrid.With the increase of Cd2+concentration,the crystallization effects of cadmium ions became more significant than self-assembly effects.Besides, the crystallization characteristics of the samples would also be affected by the concentration of Cd2+.Fig.3b shows that the intensity of diffraction patterns exhibiting a decreasing trend with the increase of Cd2+concentration.As for CdSe QDs/ZnSe hybrid-10, only two broad peaks can be found in the diffraction patterns,which indicates that the addition of Cd2+will disturb the crystallization of ZnSe-intercalation hybrid even at lower variation level of concentration.Interestingly,after coupling with CdSe QDs, but there were no diffraction peaks about CdSe found suggesting that either the content of CdSe QDs was very low or the crystalline size of CdSe QDs was too small beyond the sensitivity of XRD.The TEM image of CdSe QDs/ZnSe hybrid-10 in Fig.S10 (Supporting information) shows the morphology of CdSe QDs/ZnSe hybrid-10 have changed dramatically:the arrangement of superlattice structure disappears gradually with the increasing of Cd2+concentration.Similar transformation can be found in the TEM image of CdSe QDs/ZnSe hybrid-20 (Fig.S11 in Supporting information).It could be concluded that the Cd2+would not only lead to the formation of CdSe QDs, but also influence the micromorphology of products.

    Fig.3.(a)Low-angle XRD patterns from 2°to 9.5°.(b)XRD patterns from 10°to 80°.High-resolution XPS spectra: (c) Cd 3d and (d) Se 3d.

    The surface chemical compositions and their valence states were further analyzed by X-ray photoelectron spectroscopy(XPS).The XPS survey spectrum is shown in Fig.S12 (Supporting information),distinctly,signal peaks observed at around 53.16 eV(Se 3d),285.0 eV(C 1s),398.0 eV(N 1s),530.54 eV(O 1s),1021.36 eV (Zn 2p), respectively, demonstrate that ZnSe-intercalation hybrid is comprised of Se,C,N,O and Zn elements.Compared with the ZnSe-intercalation hybrid, the signal intensity of CdSe QDs/ZnSe hybrid-5 is higher than that of ZnSe-intercalation hybrid.In addition,the peak corresponding to Cd element can be detected in CdSe QDs/ZnSe hybrid-5 spectrum at 404.28 eV after cadmium ions are introduced confirming that Cd have been successful integrated into ZnSe-intercalation hybrid.High-resolution XPS spectrum of Cd 3d is shown in Fig.3c,two peaks around 404.02 eV and 410.9 eV are observed in the Cd 3d spectrum, which are assigned to the Cd 3d5/2and Cd 3d3/2, respectively.In Se 1s spectrum, two peaks located at 52.77 and 53.6 eV belong to the Se 3d5/2and Se 3d3/2, respectively (Fig.3d).In this regard, ultrasmall CdSe QDs formed and simultaneously coupled with lamellar ZnSe-intercalation hybrid nanosheet,resulting in the formation of CdSe QDs/ZnSe hybrid heterojunction.

    Fig.4.(a) UV/vis diffuse reflectance spectra of the samples, insert shows the samples photo from left to right:ZnSe-intercalation hybrid,CdSe QDs/ZnSe hybrid-5, CdSe QDs/ZnSe hybrid-10, respectively.(b) Tauc plots of the samples.(c)Photocurrent response curves of the samples.(d)EIS Nyquist plots for the samples.

    Fig.5.(a)Time-yield plots of CO under irradiation of full-spectrum light.(b)GC-MS analysis of CO generated from the 13CO2 isotope experiment over CdSe QDs/ZnSe hybrid-5 using NaH13CO3 as the source of 13CO2.(c)GC-MS analysis of O2 generated from the H218O isotope experiment over CdSe QDs/ZnSe hybrid-5 using H218O(H216O:H218O=1:1).(d) Possible reaction mechanism of photocatalytic CO2 reduction for CdSe QDs/ZnSe hybrid-5.

    It is well known that the efficient light adsorption is one of the key requirements for photocatalyst [50,51].In order to figure out the light adsorption performance of the samples, UV-vis diffuse reflectance spectra (UV-DRS) tests were implemented.Fig.4a shows that the pure ZnSe-intercalation hybrid exhibits the absorption edge below 320 nm,which greatly limit the utilization of light.With the increasing Cd content, an absorption edge appears at 480 nm,which is attributed to CdSe QDs.Moreover,the adsorption band in 300-600 nm intensified, indicating that the CdSe QDs/ZnSe hybrid can increase the absorption range of light(Fig.S13 in Supporting information).The color of the samples inserted in Fig.4a demonstrated that the color of the sample is influenced by the concentration of Cd2+: with the increase of Cd2+concentration, the color changes from white to yellow and then to dark red.As displayed in Fig.4b, the band gap of ZnSeintercalation hybrid is calculated to be 4.11 eV,indicating that the ZnSe-intercalation hybrid need a higher energy of light to excite.Compared with ZnSe-intercalation hybrid, the CdSe QDs/ZnSe hybrid-5 and CdSe QDs/ZnSe hybrid-10 show another band gap at the 2.62 eV, which suggests the CdSe QDs/ZnSe hybrid heterojunction is successfully formed.The N2adsorption-desorption isotherms and the pore size distribution of the CdSe QDs/ZnSe hybrid-5 are shown in Fig.S14 (Supporting information).The Brunauer-Emmett-Teller (BET) specific surface area of the CdSe QDs/ZnSe hybrid-5 is 48.43 m2/g and the pore structure is mainly microporous with a size range from 2 nm to 25 nm.The larger specific surface area and hierarchical pore distribution is favor of the CO2adsorption and improve the efficiency of photocatalysis.

    To further investigate the photoreduction activity of CdSe QDs/ZnSe hybrid, the various photoelectrochemical characterizations were conducted to reveal the kinetics properties of photogenerated carriers.The photocurrent response measurements were performed to investigate the charge separation/transfer in asprepared samples.The data in Fig.4c demonstrate that the CdSe QDs/ZnSe hybrid-5 exhibits much larger current density than that of ZnSe-intercalation hybrid and CdSe QDs/ZnSe hybrid-10,suggesting enhanced electron and hole separation/transfer in CdSe QDs/ZnSe hybrid-5.The charge transfer resistance was investigated by electrochemical impedance spectroscopy(EIS).As shown in Fig.4d, the diameter of the semicircle Nyquist plot for CdSe QDs/ZnSe hybrid-5 is smaller than that of ZnSe-intercalation hybrid and CdSe QDs/ZnSe hybrid-10, indicating a lower charge transfer resistance and more efficient photogenerated carriers transport in CdSe QDs/ZnSe hybrid-5.

    The photocatalytic activities of the samples were evaluated by CO2photoreduction reaction under a 300 W Xe lamp irradiation(Fig.S15 in Supporting information).The gas phase products were identified and quantified by the gas chromatography, CO was the major phase products and no H2was detected during the CO2photoreduction process.In the absence of cocatalysts and sacrificial agents, the CO2photoreduction activity of ZnSeintercalation hybrid and CdSe QDs/ZnSe hybrid samples are shown in Fig. 5a and Fig.S16(Supporting information).At beginning,the CdSe QDs/ZnSe hybrids manifested unsatisfactory CO2photoreduction activity.When the cadmium acetate was up to 5 mg, the CdSe QDs/ZnSe hybrid-5(25.6 μmol g-1h-1)exhibited a 2.5 times enhanced CO2photoreduction activity comparing with ZnSeintercalation hybrid (10.4 μmol g-1h-1), which was presented in Fig.S17 (Supporting information).The catalytic activity of CdSe QDs/ZnSe hybrid-5 is superior to most of the previously reported photocatalysts(Table S1 in Supporting information).Enhanced CO2photoreduction activity of CdSe QDs/ZnSe hybrid-5 indicated that the CdSe/ZnSe heterojunction could increase the light absorption and promote the separation/transfer of photogenerated carriers.

    In order to confirm the source of carbon, the13C isotopic labeling experiment was performed.As shown in Fig.5b,the peak at m/z=29 (13CO) indicated that the formation of CO is indeed derived from the reduction of CO2.In addition, the18O isotopic labeling experiment was also carried out.It was noted that the peak at m/z=34 (16O18O) and m/z=38 (18O18O) can be observed,indicating that the formation of O2is indeed derived from the oxidation of water(Fig.5c).Based on the results mentioned above,we proposed that the possible mechanism of photocatalytic CO2reduction in Fig.5d.When light irradiated on the surface of CdSe/ZnSe, electron would be excited from the valence band to the conduction band, and leaving holes in the valence band.Then,under the effect of diffusion potential energy caused by the CdSe/ZnSe heterostructure type III band alignment, the electrons migrated to the CdSe conduction band, and the holes in the valence band of ZnSe also migrated to the CdSe valence band.As a result,the photogenerated carriers were well separated, reducing the recombination opportunity of photogenerated carriers.The photogenerated holes in CdSe valence band could oxidize into oxygen,and the electrons in the CdSe conduction band would react with CO2molecule into CO.

    In summary, ultra-small CdSe QDs were rationally in-situ introduced and coupled with lamellar ZnSe-intercalation hybrid nanosheet, resulting in the formation of CdSe QDs/ZnSe hybrid heterojunction.It was demonstrated that the optimized sample CdSe QDs/ZnSe hybrid-5 exhibited excellent CO2photoreduction activity:a considerable CO yield rate of 25.6 μmol g-1h-1could be obtained in the absence of any extra cocatalysts or sacrificial agents under full-spectrum light irradiation, one of the best reported performance toward CO2photoreduction under full-spectrum light.It was proposed that CdSe QDs/ZnSe hybrid-5 heterojunction could increase the light absorption and promote the separation/transfer of photogenerated carriers, thus improving the performance of photocatalytic CO2reduction.This work might provide a new approach for designing CdSe QDs coupling ZnSe nanosheetbased intercalation hybrid for photocatalytic CO2reduction to CO.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51902266 and 22002185), the Fundamental Research Funds for the Central Universities (Nos.310201QD0410 and 3102019ZD0403), the Natural Science Foundation of Beijing(No.2204100)and Natural Science Foundation of Shaanxi (No.2020JQ-143).The Project supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China (No.2019-TS-12).We would like to thank the Analytical &Testing Center of Northwestern Polytechnical University for TEM characterizations.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version, at doi:https://doi.org/10.1016/j.cclet.2021.01.004.

    av视频免费观看在线观看| 9色porny在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品人妻熟女毛片av久久网站| 国产欧美亚洲国产| 国产有黄有色有爽视频| 操美女的视频在线观看| 一本久久精品| 夜夜骑夜夜射夜夜干| 女同久久另类99精品国产91| 亚洲,欧美精品.| 国产精品二区激情视频| 久久午夜亚洲精品久久| 建设人人有责人人尽责人人享有的| 久久精品亚洲熟妇少妇任你| av在线播放免费不卡| 国内毛片毛片毛片毛片毛片| 一本色道久久久久久精品综合| 91精品国产国语对白视频| 妹子高潮喷水视频| 欧美黑人欧美精品刺激| 久久九九热精品免费| 一级毛片电影观看| 国产精品1区2区在线观看. | 精品乱码久久久久久99久播| 国产精品成人在线| 精品国内亚洲2022精品成人 | 亚洲专区中文字幕在线| 国产精品一区二区在线观看99| 久久香蕉激情| 中文字幕色久视频| 国产精品熟女久久久久浪| 色在线成人网| 啪啪无遮挡十八禁网站| av天堂久久9| 中文字幕高清在线视频| 亚洲少妇的诱惑av| 久久人妻熟女aⅴ| 日本撒尿小便嘘嘘汇集6| 黄色毛片三级朝国网站| 国产精品久久久久久精品古装| 久久中文看片网| 这个男人来自地球电影免费观看| 最新美女视频免费是黄的| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 男人操女人黄网站| 国产成人av激情在线播放| 日本黄色视频三级网站网址 | 18在线观看网站| 国产精品 欧美亚洲| 下体分泌物呈黄色| 欧美变态另类bdsm刘玥| 后天国语完整版免费观看| 久久人妻av系列| 国产精品亚洲一级av第二区| 在线永久观看黄色视频| 亚洲熟女精品中文字幕| 高潮久久久久久久久久久不卡| 中文亚洲av片在线观看爽 | 欧美日韩成人在线一区二区| 国精品久久久久久国模美| 老司机靠b影院| 国产精品二区激情视频| 一进一出抽搐动态| 免费在线观看视频国产中文字幕亚洲| 波多野结衣av一区二区av| 肉色欧美久久久久久久蜜桃| 欧美成人免费av一区二区三区 | 黑人巨大精品欧美一区二区mp4| 成年动漫av网址| 亚洲黑人精品在线| 黑人猛操日本美女一级片| 午夜福利视频精品| 欧美日韩黄片免| 久久精品aⅴ一区二区三区四区| 美女高潮喷水抽搐中文字幕| 女警被强在线播放| av不卡在线播放| 在线观看一区二区三区激情| 亚洲精品自拍成人| 久久午夜综合久久蜜桃| 一区二区三区激情视频| 国产在线免费精品| 可以免费在线观看a视频的电影网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美久久黑人一区二区| 免费在线观看影片大全网站| 99国产综合亚洲精品| 国产成人免费观看mmmm| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 国产成人精品久久二区二区91| 婷婷丁香在线五月| 国产亚洲av高清不卡| 深夜精品福利| 色婷婷av一区二区三区视频| 9热在线视频观看99| 少妇被粗大的猛进出69影院| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美一区二区三区| 中文字幕制服av| 精品久久久久久久毛片微露脸| 免费不卡黄色视频| 国产精品99久久99久久久不卡| 考比视频在线观看| 在线观看免费午夜福利视频| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| 男女高潮啪啪啪动态图| 亚洲熟女毛片儿| www.999成人在线观看| 天堂动漫精品| 视频区图区小说| 99九九在线精品视频| 亚洲美女黄片视频| 一级片免费观看大全| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看 | 日日夜夜操网爽| 精品人妻1区二区| 亚洲欧美一区二区三区黑人| svipshipincom国产片| 中文亚洲av片在线观看爽 | 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 精品亚洲乱码少妇综合久久| 国产精品久久久久久人妻精品电影 | 久久人人97超碰香蕉20202| 国产男女超爽视频在线观看| 亚洲第一欧美日韩一区二区三区 | 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 无限看片的www在线观看| 久久亚洲精品不卡| 日韩有码中文字幕| 欧美国产精品va在线观看不卡| av欧美777| 黄片大片在线免费观看| 久久精品国产综合久久久| 国产成人系列免费观看| 超色免费av| 人人澡人人妻人| 久久久久久人人人人人| 啪啪无遮挡十八禁网站| 成人精品一区二区免费| 在线永久观看黄色视频| 色婷婷av一区二区三区视频| 国产精品98久久久久久宅男小说| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区 | 久久99一区二区三区| 久久久精品94久久精品| 嫩草影视91久久| 亚洲av第一区精品v没综合| svipshipincom国产片| 婷婷成人精品国产| 亚洲av日韩在线播放| 欧美大码av| 欧美 日韩 精品 国产| 国产精品自产拍在线观看55亚洲 | 一边摸一边抽搐一进一出视频| 久久天堂一区二区三区四区| av福利片在线| 黄色成人免费大全| 亚洲av电影在线进入| 色综合欧美亚洲国产小说| 亚洲欧美激情在线| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频 | 国产精品欧美亚洲77777| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 高清在线国产一区| 久久久久久久大尺度免费视频| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂| tube8黄色片| 中国美女看黄片| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 一区二区三区精品91| 亚洲成人手机| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 免费日韩欧美在线观看| 久久av网站| 一区二区av电影网| 欧美成人午夜精品| 国产亚洲精品久久久久5区| av天堂久久9| 国产精品影院久久| 香蕉国产在线看| 一本久久精品| 欧美激情极品国产一区二区三区| www.熟女人妻精品国产| 免费看a级黄色片| 亚洲精品自拍成人| 热99国产精品久久久久久7| 欧美激情 高清一区二区三区| 久久这里只有精品19| 成年版毛片免费区| 亚洲性夜色夜夜综合| av天堂久久9| 精品人妻1区二区| 丝袜人妻中文字幕| 五月天丁香电影| 91精品三级在线观看| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 母亲3免费完整高清在线观看| 少妇猛男粗大的猛烈进出视频| 国产成人欧美| 国产一区二区激情短视频| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 免费少妇av软件| 波多野结衣一区麻豆| 亚洲专区字幕在线| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 91成人精品电影| 高清毛片免费观看视频网站 | 国产97色在线日韩免费| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看| 真人做人爱边吃奶动态| 99精品欧美一区二区三区四区| 女人精品久久久久毛片| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 我要看黄色一级片免费的| 午夜福利,免费看| 一本色道久久久久久精品综合| 国产无遮挡羞羞视频在线观看| 少妇裸体淫交视频免费看高清 | 久久九九热精品免费| av不卡在线播放| 亚洲熟妇熟女久久| 久久热在线av| 一区福利在线观看| 亚洲成a人片在线一区二区| 激情视频va一区二区三区| 日韩欧美免费精品| 国产免费视频播放在线视频| 免费在线观看完整版高清| 国产单亲对白刺激| 日本五十路高清| 久久性视频一级片| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 欧美成人免费av一区二区三区 | 巨乳人妻的诱惑在线观看| 久9热在线精品视频| 欧美黑人精品巨大| 一区二区av电影网| 亚洲国产成人一精品久久久| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 亚洲中文av在线| 丰满人妻熟妇乱又伦精品不卡| 日韩制服丝袜自拍偷拍| tocl精华| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩一区二区三区影片| 交换朋友夫妻互换小说| 久久精品亚洲精品国产色婷小说| 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲国产一区二区在线观看 | 久热爱精品视频在线9| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| 欧美老熟妇乱子伦牲交| 精品午夜福利视频在线观看一区 | 两性夫妻黄色片| 手机成人av网站| 国产一区二区三区在线臀色熟女 | 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 老鸭窝网址在线观看| netflix在线观看网站| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久| 免费黄频网站在线观看国产| 亚洲人成伊人成综合网2020| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 91麻豆av在线| 在线观看人妻少妇| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 1024视频免费在线观看| 变态另类成人亚洲欧美熟女 | 欧美成人午夜精品| 久久精品成人免费网站| 手机成人av网站| 少妇裸体淫交视频免费看高清 | 人人妻人人澡人人看| 日韩中文字幕欧美一区二区| 1024视频免费在线观看| 久热爱精品视频在线9| 国产免费福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码| 国产精品熟女久久久久浪| 久久久国产欧美日韩av| 水蜜桃什么品种好| 久久久欧美国产精品| 日韩大码丰满熟妇| 色尼玛亚洲综合影院| 激情视频va一区二区三区| 天堂动漫精品| 99香蕉大伊视频| 丁香六月欧美| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人| 国产男女内射视频| 动漫黄色视频在线观看| 久久天堂一区二区三区四区| 久久免费观看电影| 法律面前人人平等表现在哪些方面| 亚洲色图av天堂| 久久久欧美国产精品| 91国产中文字幕| 色视频在线一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 欧美激情极品国产一区二区三区| 视频区图区小说| 国产亚洲精品一区二区www | 亚洲五月色婷婷综合| 91麻豆精品激情在线观看国产 | 97在线人人人人妻| 黄频高清免费视频| 成人影院久久| 亚洲av成人不卡在线观看播放网| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 天天影视国产精品| 国产精品偷伦视频观看了| 丰满少妇做爰视频| 一进一出好大好爽视频| 日本wwww免费看| 国产精品免费视频内射| 亚洲精品粉嫩美女一区| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 一夜夜www| 免费在线观看日本一区| av在线播放免费不卡| 18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 亚洲精品美女久久av网站| 80岁老熟妇乱子伦牲交| 亚洲五月婷婷丁香| 老司机深夜福利视频在线观看| 宅男免费午夜| 女警被强在线播放| 久久久久网色| 精品人妻熟女毛片av久久网站| 91麻豆av在线| 久久久久久人人人人人| 欧美精品人与动牲交sv欧美| 精品高清国产在线一区| 日韩欧美一区视频在线观看| 一进一出抽搐动态| 黑人巨大精品欧美一区二区mp4| 国产精品自产拍在线观看55亚洲 | 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 99国产精品一区二区蜜桃av | 中文字幕精品免费在线观看视频| 露出奶头的视频| 国产成人精品久久二区二区免费| 亚洲九九香蕉| 热99国产精品久久久久久7| 男女免费视频国产| 成年版毛片免费区| 欧美日韩成人在线一区二区| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| 性少妇av在线| 99re在线观看精品视频| 一级毛片电影观看| 欧美黑人欧美精品刺激| 久久 成人 亚洲| 五月开心婷婷网| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 国产一区二区激情短视频| 我的亚洲天堂| 亚洲中文av在线| 9191精品国产免费久久| 亚洲精品中文字幕一二三四区 | tocl精华| 老熟女久久久| 久久久久国产一级毛片高清牌| av在线播放免费不卡| 黑人猛操日本美女一级片| 亚洲精品一二三| 国产成人av激情在线播放| 啦啦啦 在线观看视频| 中文字幕高清在线视频| 天堂中文最新版在线下载| 久久久久网色| 桃红色精品国产亚洲av| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲成人免费av在线播放| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 一二三四社区在线视频社区8| 国产成人免费无遮挡视频| 国产成人精品在线电影| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 久久九九热精品免费| 在线亚洲精品国产二区图片欧美| 两人在一起打扑克的视频| 搡老岳熟女国产| 午夜久久久在线观看| 国产欧美日韩一区二区三| 最近最新中文字幕大全电影3 | 性色av乱码一区二区三区2| 老熟妇乱子伦视频在线观看| 超色免费av| 久久久久久久大尺度免费视频| 极品人妻少妇av视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩视频在线欧美| 新久久久久国产一级毛片| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 高清视频免费观看一区二区| 2018国产大陆天天弄谢| 成人特级黄色片久久久久久久 | 成人黄色视频免费在线看| 色老头精品视频在线观看| 天堂动漫精品| 亚洲精品国产一区二区精华液| 午夜精品国产一区二区电影| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 三上悠亚av全集在线观看| 亚洲七黄色美女视频| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 高清毛片免费观看视频网站 | av天堂在线播放| 久久亚洲真实| 一区二区三区国产精品乱码| 考比视频在线观看| 两人在一起打扑克的视频| 建设人人有责人人尽责人人享有的| 免费观看人在逋| 精品国内亚洲2022精品成人 | 变态另类成人亚洲欧美熟女 | 视频在线观看一区二区三区| 咕卡用的链子| 亚洲精品美女久久久久99蜜臀| 2018国产大陆天天弄谢| 国产野战对白在线观看| 制服诱惑二区| 下体分泌物呈黄色| 欧美日韩亚洲综合一区二区三区_| 免费一级毛片在线播放高清视频 | 18在线观看网站| 国产精品98久久久久久宅男小说| 高清黄色对白视频在线免费看| 欧美性长视频在线观看| 亚洲九九香蕉| 咕卡用的链子| 99国产综合亚洲精品| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 国产精品.久久久| 久久 成人 亚洲| av有码第一页| 国产免费视频播放在线视频| 国产三级黄色录像| 国产成人免费无遮挡视频| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区 | 黄色视频,在线免费观看| netflix在线观看网站| 大陆偷拍与自拍| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 大片免费播放器 马上看| 老司机影院毛片| 777久久人妻少妇嫩草av网站| 国产色视频综合| 涩涩av久久男人的天堂| www.熟女人妻精品国产| 午夜福利免费观看在线| 国产精品98久久久久久宅男小说| 一进一出抽搐动态| 午夜福利乱码中文字幕| 免费一级毛片在线播放高清视频 | 亚洲精品国产区一区二| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 一区二区三区乱码不卡18| 亚洲av国产av综合av卡| 99国产极品粉嫩在线观看| 国产精品免费大片| 久久久水蜜桃国产精品网| 我要看黄色一级片免费的| 亚洲五月婷婷丁香| 久久久国产欧美日韩av| 9色porny在线观看| 肉色欧美久久久久久久蜜桃| 精品一区二区三区视频在线观看免费 | 人人妻,人人澡人人爽秒播| svipshipincom国产片| 亚洲av日韩精品久久久久久密| 9热在线视频观看99| 在线观看免费午夜福利视频| 精品一品国产午夜福利视频| 窝窝影院91人妻| 天天操日日干夜夜撸| 中文字幕制服av| 亚洲avbb在线观看| 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 欧美日韩视频精品一区| 99re在线观看精品视频| 一级毛片精品| 中亚洲国语对白在线视频| 午夜精品国产一区二区电影| www.精华液| 久久久国产精品麻豆| 亚洲专区国产一区二区| 操美女的视频在线观看| 人妻一区二区av| 又黄又粗又硬又大视频| 久久性视频一级片| 国产精品久久久av美女十八| 脱女人内裤的视频| 亚洲黑人精品在线| 日韩制服丝袜自拍偷拍| 成人影院久久| 少妇裸体淫交视频免费看高清 | 我的亚洲天堂| 亚洲av日韩在线播放| 在线亚洲精品国产二区图片欧美| 欧美乱码精品一区二区三区| 国产成人影院久久av| 久久久国产欧美日韩av| 久久影院123| 国产伦人伦偷精品视频| 悠悠久久av| 欧美中文综合在线视频| 免费高清在线观看日韩| 天堂俺去俺来也www色官网| 少妇的丰满在线观看| 日本黄色日本黄色录像| 老熟妇乱子伦视频在线观看| 久久这里只有精品19| kizo精华| 99国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久亚洲精品不卡| 黑人操中国人逼视频| 十八禁人妻一区二区| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 久久亚洲真实| 亚洲少妇的诱惑av| 高潮久久久久久久久久久不卡| 人成视频在线观看免费观看| 大型黄色视频在线免费观看| 成人国语在线视频| 午夜福利一区二区在线看| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区| 99久久99久久久精品蜜桃| 国产免费福利视频在线观看| 手机成人av网站| 大香蕉久久成人网| 美女视频免费永久观看网站| 午夜老司机福利片| 男女午夜视频在线观看| 精品午夜福利视频在线观看一区 | 夜夜爽天天搞| 国产精品99久久99久久久不卡| 1024视频免费在线观看| 日韩一区二区三区影片| 欧美精品一区二区免费开放| 12—13女人毛片做爰片一| 女警被强在线播放| 91成人精品电影| 777米奇影视久久| 精品人妻在线不人妻| 伦理电影免费视频| 天堂动漫精品| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 国产老妇伦熟女老妇高清| 色精品久久人妻99蜜桃|