• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving cycling stability of Bi-encapsulated carbon fibers for lithium/sodium-ion batteries by Fe2O3 pinning

    2021-11-19 05:40:00TinyiHouAnrnFnXiohongSunXiZhngZhongkiXuShuCiChunmingZheng
    Chinese Chemical Letters 2021年8期

    Tinyi Hou,Anrn Fn,Xiohong Sun,*,Xi Zhng,Zhongki Xu,Shu Ci,Chunming Zheng*

    a School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University,Tianjin 300072, China

    b School of Chemistry and Chemical Engineering, State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tiangong University,Tianjin 300387, China

    ABSTRACT Bi draws increasing attention as anode materials for lithium-ion batteries and sodium-ion batteries due to its unique layered crystal structure,which is in favor of achieving fast ionic diffusion kinetics during cycling.However, the dramatic volume expansion upon lithiation/sodiation and an insufficient theoretical capacity of Bi greatly hinder its practical application.Herein, we report the Fe2O3 nanoparticle-pinning Bi-encapsulated carbon fiber composites through the electrospinning technique.The introduction of Fe2O3 nanoparticles can prevent the growth and aggregation of Bi nanoparticles during synthetic and cycling processes,respectively.Fe2O3 with high specific capacity also contributes to the specific capacity of the composites.Consequently,the as-prepared Bi-Fe2O3/carbon fiber composite exhibits outstanding long-term stability, which delivers reversible capacities 504 and 175 mAh/g after 1000 cycles at 1 A/g for lithium-ion and sodium-ion batteries, respectively.

    Keywords:Bismuth Iron oxide Pinning effect Lithium-ion batteries Sodium-ion batteries

    Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs)have attracted extensive attention in the field of high energydensity storage and the large-scale grid application, respectively[1-3].Due to the abundant sodium resources, SIBs with price advantages and similar working principles are considered to be a promising counterpart of LIBs [4-7].However, it remains a great challenge to find suitable anode materials for LIBs and SIBs with satisfied electrochemical performance beyond carbonaceous materials with limited capacities[8-10].Transition-metal chalcogenides(TMCs)powered by conversion reactions can deliver high capacities [11,12].Even so, TMCs always suffer from inadequate electronic conductivity and severe volume expansion and thus are subjected to poor cycling stability [13].Alloying anode materials(e.g., Sn, Sb) with high theoretical capacities and ideal voltage platforms are also promising candidates[14,15].Thereinto, Bi has riveted increasing attention due to its high theoretical capacity of~385 mAh/g and unique layered crystal structure with large lattice fringes along the c-axis (d(003)= 3.95 ?), which would allow fast ionic diffusion kinetics [16,17].

    Though Bi has its unique merits,the theoretical capacity of Bi is still limited when compared with other alloying anode materials,such as Si (~4200 mAh/g) for LIBs and P (~2600 mAh/g) for SIBs[18,19].However, severe volume expansion comes with high capacities.Compare with Si (~400%) and P (~440%), Bi shows a relatively smaller volume expansion of ~244%[19-21].Nevertheless, the dramatic volume variation of Bi upon alloying and dealloying processes is still deleterious to cycling stability[19].In order to address the poor cyclability of Bi anodes,many efforts have been made.Thereinto,encapsulating Bi nanoparticles into carbon architectures is reckoned as an effective strategy, where carbon matrix can accommodate the volume expansion of Bi nanoparticles, preventing structural failure [19].For example, Hong et al.reported a spongiform porous Bi/C composite, which delivered a specific capacity of 380 mAh/g at 0.5 A/g after 500 cycles for LIBs [22].Zhang et al.confined Bi nanodots in MOFderived carbon arrays on carbon fiber cloth, and this composite achieved a stable lifespan up to 500 cycles for SIBs[23].However,Bi-based anode materials still suffer from unsatisfied cyclability because of the aggregation of Bi nanoparticles during cycling and deliver insufficient capacities [24].Hence, it is necessary to propose new strategies to further mitigate the volume expansion and impede the aggregation of Bi nanoparticles, and elevate the specific capacity of Bi-based anode composites to meet practical needs, simultaneously.

    Herein, we prepared the Fe2O3nanoparticle-pinning Biencapsulated carbon fiber composites through the electrospinning technique.Fe2O3nanoparticles are in-situ formed in carbon fibers and prevent Bi nanoparticles from further growing and aggregating during synthetic and cycling processes, which is similar to the pinning effect for restricting the grain growth of the second-phase particles[25,26].Similarly,Wangetal.employedTiO2nanoparticles to achieve physical pinning to stabilize SnS2on reduced graphene oxide [27].Moreover, the Fe2O3was introduced with another purpose,which is to take advantage of its high theoretical capacity(~1007 mAh/g)to compensate for the insufficient specific capacity of Bi[28].In this work,the contentof Bi and Fe2O3in the composites was also investigated by adjusting the proportion of Bi(NO3)3and Fe(NO3)3with different Bi/Fe molar ratios of 2:1,1:1 and 1:2,which aredenotedas BFC-1,BFC-2 and BFC-3,respectively.Thereinto,BFC-2 exhibits the best electrochemical performance, delivering high reversible capacities of 504and 175 mAh/g after1000 cycles at 1 A/g for LIBs and SIBs,respectively.

    Fig.1a shows the X-ray diffraction(XRD)patterns of BFC-1,BFC-2,BFC-3 and Bi/carbon fibers(Bi/C).Most of the diffraction peaks of BFC composites can be indexed to the hexagonal Bi(JCPDS No.85-1329).Meanwhile,except for the Bi phase,other diffraction peaks can be assigned to the cubic Fe2O3(JCPDS No.02-1047), and the intensity of Fe2O3peaks gradually mounts up as the Fe2O3content increases.The X-ray photoelectron spectroscopy (XPS) was employed to reveal the chemical state of BFC composites, and their XPS survey spectra are shown in Fig.S1 (Supporting information).In Fig.1b, high-resolution XPS spectra of Bi 4f present two peaks at 164.2 and 158.9 eV for BFC-1,corresponding to Bi 4f5/2and Bi 4f7/2, respectively [29].As the Fe2O3content increases, the peaks of Bi 4f5/2and Bi 4f7/2shift to 164.5 and 159.2 eV, which may account for the charge transfer from Bi to adjacent Fe2O3[30],suggesting more obvious interaction between Bi and Fe2O3nanoparticles in BFC-2 and BFC-3.Fig.1c shows Fe 2p3/2and Fe 2p1/2doublets centered at 711.3 and 725.1 eV,indicating the presence of the Fe2O3phase[28].The left shift of Bi-O bonds shown in Fig.1d corresponds to the XPS spectra of Bi.

    Fig.1.(a) XRD patterns of the BFC-1, BFC-2, BFC-3 and Bi/C.High-resolution (b)Bi 4f, (c) Fe 2p, and (d) O 1s XPS spectra of the BFC-1, BFC-2 and BFC-3.

    Fig.2a presents the network structure of BFC-2, which is composed of uniformed one-dimensional carbon fibers with a diameter of approximately 700 nm (Fig.2b).The nanofibers are curly and pliable like noodles, and the outer surface is smooth without obvious particles, which indicates that the Bi and Fe2O3nanoparticles have been mostly encapsulated into the carbon fibers without exposure.Scanning electron microscopy (SEM)images of BFC-1, BFC-3 and Bi/C show similar network structures compared with BFC-2(Fig.S2 in Supporting information).The Bi/Fe molar ratios of BFC-1,BFC-2 and BFC-3 are determined to be 1.64,0.81 and 0.41 from energy dispersive spectroscopy (EDS) results(Fig.S3 in Supporting information),giving theoretical capacities of around 503, 584 and 685 mAh/g based on the Bi-Fe2O3system,respectively.The deviation of the Bi/Fe ratios between as-prepared BFC samples from their precursor solutions is because the low melting point of the Bi metal (~271.5°C) causes the loss of the Bi content of BFC composites during calcination.The contents of Bi,Fe2O3and C in as-prepared samples can be further quantified by combining thermogravimetric analysis(TGA,Fig.S4 in Supporting information) and summarized in Table S1 (Supporting information).Detailed microstructures of BFC-2 are revealed by transmission electron microscopy(TEM),where Bi and Fe2O3nanoparticles are uniformly distributed in the carbon fiber(Figs.2c and d).EDS mapping images from the STEM dark-field image (Fig.S5 in Supporting information) present the elemental distribution of Bi,Fe,O and C,further demonstrating the homogeneous distribution of Bi and Fe2O3in carbon fiber (Figs.2e-h).

    Fig.2.(a,b)SEM,(c,d)TEM images and(e-h)the corresponding elemental mapping of Bi, Fe, O and C of BFC-2.

    The electrochemical performance of the as-prepared samples was evaluated in Li and Na half cells.Fig.3a shows the cycling performance of the BFC-1,BFC-2,BFC-3 and Bi/C in Li half cells at a current density of 0.1 A/g.BFC-2 exhibits a high reversible capacity of 564 mAh/g over 50 cycles, while BFC-1, BFC-3 and Bi/C only maintain lower capacities of 445, 400 and 274 mAh/g (Fig.S6 in Supporting information).Compared with BFC-2, the inferior performance of BFC-1 may be contributed to the slight capacity contribution and inadequate restriction effect of the low Fe2O3content.However, as the Fe2O3content increases, BFC-3 also suffers from the severe volume expansion of Fe2O3.Hence,Bi and Fe2O3nanoparticles can confine each other during cycling to achieve good stability.As shown in the cyclic voltammetry (CV)curves of BFC-2 (Fig.3b), a strong reduction peak centered at~0.45 V in the first scan can be attributed to the formation of solid electrolyte interface (SEI) films, alloying processes of Bi, and the conversion reaction of Fe2O3[31,32].In the following two scans,two cathodic peaks at around 0.6 and 0.75 V can be attributed to the formation of LiBi and Li3Bi[33].The anodic peak at ~0.96 V is assigned to the de-alloying reaction of Li3Bi[33].Two weak redox pairs at around 1.4/1.8 V and 1.7/2.4 V may relate to the reduction and oxidation of a small amount of Bi3+intermetallic Bi [34].No obvious redox peaks of the conversion reaction of Fe2O3can be seen,which probably overlap with that of the alloying reaction of Bi[32].The obvious difference between the first and the following two scans is ascribed to the decomposition of electrolytes and the irreversible formation of SEI films,which is also accounted for the limited initial Coulombic efficiency if BFC-2 (72.5%) and the capacity loss in the first cycle as shown in its charge-discharge curves.Though this value is not satisfied,it still higher than that of Bi/C(69.2%,Fig.S7 in Supporting information),and the Coulombic efficiency of BFC-2 quickly increases to 97.5% in the second cycle,indicating the good electrochemical reversibility of BFC-2.

    Fig.3.Lithium storage properties of the BFC-1, BFC-2, BFC-3 and Bi/C.(a) Cycling performance at 0.1 A/g.(b)Galvanostatic charge-discharge and CV curves of BFC-2 in initial three cycles.(c)Rate capability and(d)charge-discharge curves at various current densities of the BFC-2.(e) Long-term stability at 1 A/g.

    Due to the effective Fe2O3pinning,BFC-2 presents excellent rate capability, delivering a reversible capacity of 338 mAh/g at 2 A/g,and when the current density returns to 0.1 A/g, a reversible capacity of 567 mAh/g can be retained (Fig.3c).As the current density increases from 0.1 A/g to 2 A/g, the polarization voltage slightly increases from 0.4 V to 0.6 V, suggesting fast reaction kinetics of BFC-2(Fig.3d).Meanwhile,BFC-2 exhibits outstanding long-term stability(Fig.3e).After 1000 cycles,BFC-2 can sustain a reversible capacity of 504 mAh/g at 1 A/g with the Coulombic efficiency of ~100% (Fig.S8 in Supporting information), which is much higher than that of BFC-1 (235 mAh/g), BFC-3 (206 mAh/g),and Bi/C (226 mAh/g).The capacity of BFC-1 decays continuously along with cycling, while the specific capacity of BFC-2 increases first during cycling and then remain stable with marginal capacity loss, which may be related to the introduction of an appropriate amount of Fe2O3nanoparticles to BFC-2.According to previous research,this extra capacity as widely reported in transition-metal oxides for LIBs is most likely attributed to the reversible formation of a polymer or gel-like film on metallic nanograins [35] and the interfacial Li+storage between electrochemically reduced metal nanoparticles and Li2O, accompanied by a large number of spinpolarized electrons stored in metallic nanoparticles [36].To the best of our knowledge, the cycling performance of BFC-2 exceeds most of the previous work (Table S2 in Supporting information).

    When tested in Na half cells, BFC-2 also shows good cycling stability, delivering a reversible capacity of 332 mAh/g at 0.1 A/g over 50 cycles (Fig.4a and Fig.S9 in Supporting information).As shown in the CV curves of BFC-2(Fig.4b),two pairs of redox peaks at around 0.43/0.73 and 0.61/0.83 V correspond to the formation and oxidation of NaBi and Na3Bi[17],and a pair of broad cathodic/anodic peak at about 0.8/1.4 V is attributed to the conversion reaction of Fe2O3[28,37].BFC-2 shows an initial discharge capacity of 538 mAh/g with a Coulombic efficiency of ~70%,which is caused by the decomposition of electrolytes to form SEI films in the first cycle.Though the Coulombic efficiency of BFC-2 in the initial cycle is slightly lower than that of Bi/C (74%, Fig.S10 in Supporting information),it quickly goes up to 96.8%in the second cycle owing to the effectiveness of carbon encapsulating and Fe2O3pinning.BFC-2 possesses decent rate capability for SIBs(Fig.4c),showing a reversible capacity of 203 mAh/g at 2 A/g(Fig.4d),which is around twice that of BFC-1 (91 mAh/g)and BFC-3 (102 mAh/g), and more than three times that of Bi/C(58 mAh/g).Moreover,Fig.4e exhibits the long-term stability of these as-prepared samples,where BFC-2 keeps stable up to 1000 cycles with a reversible capacity of 175 mAh/g at 1 A/g(Fig.S11 in Supporting information).Compared with previous reports, BFC-2 still presents decent and wellmatched cycling performance as shown in Table S3 (Supporting information).

    Fig.4.Sodium storage properties of the BFC-1, BFC-2, BFC-3 and Bi/C.(a) Cycling performance at 0.1 A/g.(b)Galvanostatic charge-discharge and CV curves of BFC-2 in initial three cycles.(c)Rate capability and(d)charge-discharge curves at various current densities of the BFC-2.(e) Long-term stability at 1 A/g.

    The impedance difference between BFC-2 and Bi/C were investigated by electrochemical impedance spectroscopy (EIS)measurements.Asshownin the Nyquistplots(Fig.S12in Supporting information),compared with Bi/C,BFC-2 possesses smaller solution resistance(Rs)and charge-transfer resistance(Rct)after 50 cycles in Li and Na half cells (Table S4 in Supporting information), which means the facile ionic diffusion of Biand Fe2O3nanoparticles in BFC-2 enabled by the pinning effect leading to easier charge transfer kinetics [6,9] and indicates the formation of stable SEI films [38].Owing to this kinetic advantage, the loading of active materials shows little negative effects on the performance of BFC-2 electrodes.Even at an active material loading of ~2.6 mg/cm2,BFC-2 still possesses reversible capacities of 531 and 304 mAh/g at 100 mA/g after 15 cycles in Li half cells and 30 cycles in Na half cells,respectively(Fig.S13 in Supporting information),corresponding to 97% and 94% capacity retention compared with its specific capacities of ~1 mg/cm2electrodes for LIBs and SIBs.In contrast,Bi/C only holds 86% and 56% capacity retention for lithium and sodium storage,respectively(Fig.S14 in Supporting information).This suggests BFC-2 has great potential for practical applications in LIBs and SIBs.Meanwhile,the cut-off voltage has a small effect on the electrochemical activity of BFC-2 electrodes.The chargedischarge curves of BFC-2 cycled between 0.01-2 V coincide well with that of BFC-2 with an upper cut-off voltage of 3 V(Fig.S15 in Supporting information).However, Bi/C is subjected to obvious capacity loss between 0.01 V and 2 V in Na half cells,which may be accounted for the poor reversibility of alloying reaction of Bi and aggregation of Bi nanoparticles during cycling[24].

    In order to demonstrate the pinning effect of Fe2O3nanoparticles, SEM and TEM were used to examine post-cycling BFC-2 and Bi/C electrodes.Fig.S16 (Supporting information) shows the structural degradation of Bi/C in Li and Na half cells.The surface of Bi/C fibers becomes rough and uneven after cycling in Li half cells,indicating the aggregation of Bi nanoparticles or even the leakage of Bi from the carbon matrix.In Na half cells, Bi/C fibers are cracking into nanoparticles after cycling, leading to poor cycling performance of Bi/C,which can be accounted for the severe volume expansion of Bi nanoparticles.In contrast, BFC-2 can maintain its original structure both in Li and Na half cells(Fig.S17 in Supporting information).The good structural stability of BFC-2,indicating that the introduction of Fe2O3nanoparticles can confine the volume expansion of Bi nanoparticles.Meanwhile, due to the pinning effect, Bi and Fe2O3nanoparticles can still distribute uniformly in carbon fibers after cycling (Fig.S18 in Supporting information).However, significant growth and aggregation of Bi nanoparticles are shown in TEM images of post-cycling Bi/C, causing the breakage of Bi/C fibers (Fig.S19 in Supporting information).The good structural maintenance of BFC-2 guarantees its good cyclability and demonstrates the effectiveness of the Fe2O3pinning effect.

    In conclusion, we propose a strategy to improve the cycling performance of Bi-based anode materials by introducing Fe2O3pinning.The Fe2O3nanoparticle-pinning Bi-encapsulated carbon fiber composites were prepared via electrospinning.Bi and Fe2O3nanoparticles in carbon fibers can prevent each other from further aggregating during cycling, thus leading to cycling stability and rate capability.Meanwhile, the introduction of Fe2O3is also beneficial for elevating the specific capacity of the composite.Hence, the optimized composite (BFC-2) presents outstanding long-term cycling stability and excellent rate capability, demonstrating itself as a potential anode material for LIBs and SIBs.Besides, this Fe2O3nanoparticle-pinning strategy shows great promise in electrode design for rechargeable batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge the financial support by the National Natural Science Foundation of China (NSFC, Nos.52073212,51772205, 51772208) and General Program of Municipal Natural Science Foundation of Tianjin(Nos.17JCYBJC17000,17JCYBJC22700).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.01.049.

    国产成人aa在线观看| 又大又爽又粗| 九九热线精品视视频播放| 成年女人永久免费观看视频| 国产高清视频在线观看网站| 免费av毛片视频| 男女下面进入的视频免费午夜| 国产精品av视频在线免费观看| 一级a爱片免费观看的视频| 久久久国产欧美日韩av| 成人三级黄色视频| 18禁黄网站禁片免费观看直播| 国产真人三级小视频在线观看| 99久久精品热视频| av欧美777| 国产一区在线观看成人免费| 国产真人三级小视频在线观看| 亚洲av美国av| a级毛片a级免费在线| 舔av片在线| cao死你这个sao货| 性色avwww在线观看| 久久久久国内视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩卡通动漫| 男女之事视频高清在线观看| 一夜夜www| 国产成人精品无人区| 一本久久中文字幕| 久久午夜亚洲精品久久| 最近在线观看免费完整版| 午夜精品在线福利| 中文字幕精品亚洲无线码一区| 99久久精品国产亚洲精品| 色视频www国产| 亚洲国产中文字幕在线视频| 级片在线观看| 精品久久久久久久久久免费视频| 亚洲在线观看片| 国产伦精品一区二区三区四那| 亚洲国产日韩欧美精品在线观看 | 蜜桃久久精品国产亚洲av| 丰满人妻熟妇乱又伦精品不卡| 国产综合懂色| 精品一区二区三区av网在线观看| 免费在线观看日本一区| 中文字幕高清在线视频| 国产成人精品久久二区二区免费| 免费在线观看视频国产中文字幕亚洲| 黄色成人免费大全| 亚洲 欧美 日韩 在线 免费| 神马国产精品三级电影在线观看| 黑人操中国人逼视频| 亚洲中文日韩欧美视频| 精品久久久久久久人妻蜜臀av| 欧美日本视频| 手机成人av网站| 曰老女人黄片| 999精品在线视频| 久久欧美精品欧美久久欧美| 每晚都被弄得嗷嗷叫到高潮| av天堂在线播放| avwww免费| 欧美黄色片欧美黄色片| 亚洲中文av在线| 18禁美女被吸乳视频| 免费看十八禁软件| 熟女人妻精品中文字幕| 又爽又黄无遮挡网站| 亚洲国产精品久久男人天堂| 大又大粗又爽又黄少妇毛片口| 久久久久久久久中文| 国产免费男女视频| 在线观看66精品国产| 国产成人精品久久久久久| 久久久午夜欧美精品| 欧美日韩精品成人综合77777| 草草在线视频免费看| 亚洲精品乱久久久久久| 综合色av麻豆| 一二三四中文在线观看免费高清| 日韩亚洲欧美综合| 干丝袜人妻中文字幕| 高清毛片免费看| 亚洲三级黄色毛片| 久久亚洲国产成人精品v| 国语自产精品视频在线第100页| 国产熟女欧美一区二区| 亚洲精品乱码久久久久久按摩| 精品人妻视频免费看| 国产亚洲5aaaaa淫片| 两个人的视频大全免费| 成人亚洲欧美一区二区av| 伦理电影大哥的女人| av.在线天堂| 国产真实伦视频高清在线观看| 亚洲伊人久久精品综合 | 一区二区三区四区激情视频| 久久久久久大精品| 免费看美女性在线毛片视频| 免费观看的影片在线观看| 好男人在线观看高清免费视频| 日韩 亚洲 欧美在线| 中文字幕亚洲精品专区| 成人美女网站在线观看视频| 日日摸夜夜添夜夜添av毛片| 久久久久国产网址| 日本黄色视频三级网站网址| 国产爱豆传媒在线观看| 精华霜和精华液先用哪个| 99热网站在线观看| 变态另类丝袜制服| 久久精品久久精品一区二区三区| av卡一久久| 国产老妇伦熟女老妇高清| 少妇熟女欧美另类| 国产在视频线在精品| 精品久久久久久久人妻蜜臀av| 国产精品国产高清国产av| 中文天堂在线官网| av国产免费在线观看| 日韩欧美三级三区| 国产高清视频在线观看网站| 一个人免费在线观看电影| 亚洲精品影视一区二区三区av| 国产精品美女特级片免费视频播放器| 嘟嘟电影网在线观看| 免费观看精品视频网站| 97超碰精品成人国产| 国产黄片美女视频| 精品一区二区三区人妻视频| 精华霜和精华液先用哪个| 国产一区二区在线av高清观看| 99国产精品一区二区蜜桃av| 国产精品熟女久久久久浪| 特大巨黑吊av在线直播| 99久久精品一区二区三区| www.av在线官网国产| 大话2 男鬼变身卡| 婷婷色综合大香蕉| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一区二区三区免费毛片| 精品人妻熟女av久视频| 99热这里只有精品一区| 国产色爽女视频免费观看| 亚洲,欧美,日韩| 欧美一区二区精品小视频在线| 色噜噜av男人的天堂激情| 乱人视频在线观看| 美女cb高潮喷水在线观看| 麻豆精品久久久久久蜜桃| 天堂网av新在线| 看免费成人av毛片| 1000部很黄的大片| 菩萨蛮人人尽说江南好唐韦庄 | 国产人妻一区二区三区在| 18禁动态无遮挡网站| 国产在线男女| 老师上课跳d突然被开到最大视频| 高清在线视频一区二区三区 | 男的添女的下面高潮视频| av免费在线看不卡| 99国产精品一区二区蜜桃av| 久久人人爽人人片av| 国产av一区在线观看免费| 日韩成人伦理影院| 亚洲国产高清在线一区二区三| 国产精品福利在线免费观看| 高清av免费在线| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 国产又色又爽无遮挡免| 九九在线视频观看精品| 欧美又色又爽又黄视频| 长腿黑丝高跟| 午夜老司机福利剧场| 如何舔出高潮| 亚洲成av人片在线播放无| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| 欧美性猛交╳xxx乱大交人| 老司机影院成人| 成年av动漫网址| 看片在线看免费视频| 日本黄色视频三级网站网址| 精品人妻视频免费看| 亚洲国产欧美在线一区| 女人十人毛片免费观看3o分钟| 韩国av在线不卡| 真实男女啪啪啪动态图| 不卡视频在线观看欧美| av在线蜜桃| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲一区二区精品| 国产精品麻豆人妻色哟哟久久 | 中文亚洲av片在线观看爽| 日本五十路高清| 亚洲熟妇中文字幕五十中出| 欧美成人a在线观看| 三级国产精品片| 久久精品国产鲁丝片午夜精品| 国产精品99久久久久久久久| 永久网站在线| 久久亚洲精品不卡| 美女xxoo啪啪120秒动态图| 自拍偷自拍亚洲精品老妇| av免费观看日本| 国国产精品蜜臀av免费| 一边摸一边抽搐一进一小说| 久热久热在线精品观看| 亚洲人成网站在线观看播放| 欧美三级亚洲精品| 久久婷婷人人爽人人干人人爱| av在线天堂中文字幕| 麻豆成人午夜福利视频| 国产免费又黄又爽又色| 欧美最新免费一区二区三区| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 热99re8久久精品国产| av在线老鸭窝| 成年版毛片免费区| 亚洲精品,欧美精品| 久久久久久久久久黄片| 18禁在线无遮挡免费观看视频| 久久精品国产99精品国产亚洲性色| 精品久久久噜噜| 黄色日韩在线| av播播在线观看一区| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 成年av动漫网址| 国产成人freesex在线| 亚洲精品,欧美精品| 色综合站精品国产| 国产片特级美女逼逼视频| 亚洲天堂国产精品一区在线| 人人妻人人澡人人爽人人夜夜 | 国产黄片美女视频| 国产一区二区三区av在线| 男女国产视频网站| 老司机影院成人| 精品人妻一区二区三区麻豆| 免费无遮挡裸体视频| 日韩中字成人| 免费观看性生交大片5| 国产乱来视频区| 欧美一级a爱片免费观看看| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 久久99热这里只频精品6学生 | 欧美+日韩+精品| 国产av在哪里看| 男女国产视频网站| 免费黄色在线免费观看| 久久精品熟女亚洲av麻豆精品 | 国产免费又黄又爽又色| 国产高清不卡午夜福利| 五月伊人婷婷丁香| 国产高清有码在线观看视频| 久热久热在线精品观看| 国内精品一区二区在线观看| 国产一区二区在线观看日韩| 少妇猛男粗大的猛烈进出视频 | 日本猛色少妇xxxxx猛交久久| 国产真实乱freesex| 可以在线观看毛片的网站| 寂寞人妻少妇视频99o| 国产精品一区二区三区四区久久| 最后的刺客免费高清国语| 亚洲欧美日韩高清专用| 亚洲图色成人| 一级黄色大片毛片| 色综合亚洲欧美另类图片| 日韩高清综合在线| 日韩欧美国产在线观看| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 欧美成人一区二区免费高清观看| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| av免费在线看不卡| 久久国内精品自在自线图片| 国产色爽女视频免费观看| 亚洲精品aⅴ在线观看| 天堂√8在线中文| 国产精品嫩草影院av在线观看| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 有码 亚洲区| 国产精品国产三级国产专区5o | 亚洲精品色激情综合| 简卡轻食公司| 91精品一卡2卡3卡4卡| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| av播播在线观看一区| 丝袜美腿在线中文| 国产大屁股一区二区在线视频| 高清午夜精品一区二区三区| 国产成人精品婷婷| 亚洲成人久久爱视频| 在线播放无遮挡| 日本与韩国留学比较| 在线观看美女被高潮喷水网站| 亚洲精品456在线播放app| 九九在线视频观看精品| 国产一区亚洲一区在线观看| 老司机影院成人| 日韩欧美在线乱码| 97人妻精品一区二区三区麻豆| 性插视频无遮挡在线免费观看| 国产综合懂色| 国产免费一级a男人的天堂| 九色成人免费人妻av| 国产精品一二三区在线看| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 2021少妇久久久久久久久久久| 国产在线男女| 国产精品福利在线免费观看| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | 久久久a久久爽久久v久久| 边亲边吃奶的免费视频| 亚洲人成网站在线播| 国产精品一区二区在线观看99 | 最近中文字幕2019免费版| 长腿黑丝高跟| 国产精品一二三区在线看| 国产精品.久久久| 精品一区二区免费观看| 2021少妇久久久久久久久久久| 国产淫语在线视频| 亚洲自拍偷在线| 国模一区二区三区四区视频| 国产大屁股一区二区在线视频| 永久免费av网站大全| 久久久久久久午夜电影| 91精品国产九色| 人人妻人人澡人人爽人人夜夜 | 国产乱人视频| 中国国产av一级| 久久久久久久国产电影| 亚洲经典国产精华液单| 变态另类丝袜制服| 一级av片app| 最近中文字幕2019免费版| 有码 亚洲区| 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 亚洲av免费在线观看| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| www.色视频.com| 国产精品久久久久久精品电影小说 | 床上黄色一级片| 青春草国产在线视频| 白带黄色成豆腐渣| 国产av不卡久久| 久久人人爽人人片av| 国内精品一区二区在线观看| 国产一区亚洲一区在线观看| 国产乱来视频区| 免费无遮挡裸体视频| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影| 国产美女午夜福利| 亚洲在久久综合| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 看十八女毛片水多多多| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| av福利片在线观看| 亚州av有码| 国产中年淑女户外野战色| 国产成人午夜福利电影在线观看| 村上凉子中文字幕在线| 成人午夜高清在线视频| 亚洲不卡免费看| 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 人人妻人人澡人人爽人人夜夜 | 国产av不卡久久| 日本wwww免费看| 中文字幕av成人在线电影| 精品人妻视频免费看| 日本av手机在线免费观看| 日韩欧美国产在线观看| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频| 三级国产精品欧美在线观看| 国产成人91sexporn| 在线免费观看不下载黄p国产| 大香蕉久久网| 免费av毛片视频| 三级国产精品片| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 最近中文字幕2019免费版| 欧美一区二区国产精品久久精品| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 在线观看美女被高潮喷水网站| 成人美女网站在线观看视频| 亚洲自拍偷在线| 亚洲欧美清纯卡通| 亚洲性久久影院| 亚洲精品乱久久久久久| 男人和女人高潮做爰伦理| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 亚洲综合精品二区| 小蜜桃在线观看免费完整版高清| 男女下面进入的视频免费午夜| 免费黄色在线免费观看| 亚洲色图av天堂| 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 一区二区三区高清视频在线| 亚洲av一区综合| 国产大屁股一区二区在线视频| 亚洲精品亚洲一区二区| 精品久久久久久久末码| 亚洲三级黄色毛片| 精品国产三级普通话版| 午夜激情欧美在线| 色网站视频免费| 我要搜黄色片| 久久精品熟女亚洲av麻豆精品 | 成人高潮视频无遮挡免费网站| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 国产熟女欧美一区二区| 偷拍熟女少妇极品色| 夜夜爽夜夜爽视频| 国产私拍福利视频在线观看| 国产精品久久视频播放| 天堂av国产一区二区熟女人妻| 热99在线观看视频| 久久久国产成人免费| 亚洲色图av天堂| 嫩草影院精品99| 99热这里只有是精品50| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 日韩一区二区视频免费看| 久久久久久久久大av| 超碰97精品在线观看| 三级国产精品欧美在线观看| 91精品伊人久久大香线蕉| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站 | 日韩国内少妇激情av| 亚洲最大成人av| 亚洲三级黄色毛片| 美女国产视频在线观看| 亚洲一区高清亚洲精品| 国产女主播在线喷水免费视频网站 | 男女下面进入的视频免费午夜| 久热久热在线精品观看| 亚洲精品,欧美精品| 成人av在线播放网站| 三级经典国产精品| 日韩成人av中文字幕在线观看| 看片在线看免费视频| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 亚洲欧美一区二区三区国产| 精品熟女少妇av免费看| 日韩av在线大香蕉| 精品少妇黑人巨大在线播放 | 国产成人a区在线观看| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 精品一区二区三区人妻视频| 插阴视频在线观看视频| 亚洲色图av天堂| 国产黄片视频在线免费观看| av在线亚洲专区| 久久久久久国产a免费观看| 十八禁国产超污无遮挡网站| 99久久中文字幕三级久久日本| 直男gayav资源| 欧美bdsm另类| 免费看日本二区| 国产三级在线视频| 中文字幕精品亚洲无线码一区| 国产免费福利视频在线观看| 18禁裸乳无遮挡免费网站照片| .国产精品久久| 天天躁日日操中文字幕| 国产亚洲精品av在线| 变态另类丝袜制服| 国产免费又黄又爽又色| 99久久精品热视频| 久久精品国产鲁丝片午夜精品| 精品久久久久久电影网 | 日韩中字成人| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| a级毛色黄片| 亚洲真实伦在线观看| 久久久久性生活片| 久久久亚洲精品成人影院| 能在线免费观看的黄片| 国产高潮美女av| 国产成人a∨麻豆精品| 精品酒店卫生间| 91久久精品国产一区二区成人| 久久久久免费精品人妻一区二区| 男女国产视频网站| 欧美变态另类bdsm刘玥| 男女边吃奶边做爰视频| 99久久精品一区二区三区| 国产精品三级大全| 免费观看精品视频网站| 又粗又硬又长又爽又黄的视频| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 国产一区有黄有色的免费视频 | 搞女人的毛片| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 国产一区有黄有色的免费视频 | 男的添女的下面高潮视频| 中文乱码字字幕精品一区二区三区 | 真实男女啪啪啪动态图| 久久久久久伊人网av| 又爽又黄a免费视频| 日韩制服骚丝袜av| 高清毛片免费看| 国产成人91sexporn| 久久人妻av系列| 亚洲av福利一区| 成年av动漫网址| 国产真实伦视频高清在线观看| 人妻系列 视频| 国产精品福利在线免费观看| 亚洲欧美日韩高清专用| 亚洲中文字幕一区二区三区有码在线看| 大香蕉97超碰在线| 亚洲电影在线观看av| 免费观看的影片在线观看| 永久网站在线| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 麻豆成人午夜福利视频| 国产精品综合久久久久久久免费| 精品一区二区三区视频在线| 久久热精品热| 热99re8久久精品国产| 人人妻人人澡欧美一区二区| 韩国av在线不卡| 汤姆久久久久久久影院中文字幕 | 一夜夜www| 一个人看的www免费观看视频| av国产久精品久网站免费入址| 日本黄色视频三级网站网址| 一本一本综合久久| 神马国产精品三级电影在线观看| 麻豆乱淫一区二区| 国产三级中文精品| 干丝袜人妻中文字幕| 亚洲精品成人久久久久久| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 一级爰片在线观看| 久久久久久国产a免费观看| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 亚洲成色77777| 亚洲精品国产av成人精品| 日本免费在线观看一区| 1024手机看黄色片| av.在线天堂| 成人性生交大片免费视频hd| 精品人妻偷拍中文字幕| 免费看av在线观看网站| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| av又黄又爽大尺度在线免费看 | 中文天堂在线官网| 在线免费十八禁| 亚洲精品日韩在线中文字幕| 久久精品久久久久久久性| 哪个播放器可以免费观看大片| 国产91av在线免费观看| 美女黄网站色视频| 国产综合懂色| 国产精品三级大全| 亚洲国产日韩欧美精品在线观看| 日本免费a在线| 亚洲经典国产精华液单| 春色校园在线视频观看| 国产精品一区二区性色av| 最近的中文字幕免费完整| 亚洲成人中文字幕在线播放| 国产在线一区二区三区精 | 亚洲精品国产av成人精品| 精品一区二区三区人妻视频| 热99re8久久精品国产| 蜜臀久久99精品久久宅男| 免费看日本二区| 菩萨蛮人人尽说江南好唐韦庄 | 91久久精品电影网|