• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hollow polyhedron structure of amorphous Ni-Co-S/Co(OH)2 for high performance supercapacitors

    2021-11-19 05:39:58XixiZhangGuangmengQuZonghuaWangGuotaoXiangShuhuaHaoXiaokeWangXijinXuWenxuanMaGangZhao
    Chinese Chemical Letters 2021年8期

    Xixi Zhang,Guangmeng Qu,Zonghua Wang,Guotao Xiang,Shuhua Hao,Xiaoke Wang,Xijin Xu*,Wenxuan Ma,Gang Zhao*

    School of Physics and Technology, University of Jinan, Ji’nan 250022, China

    ABSTRACT In power storage technology,ion exchange is widely used to modify the electronic structures of electrode materials to stimulate their electrochemical properties.Here, we proposed a multistep ion exchange(cation exchange and anion exchange)strategy to synthesize amorphous Ni-Co-S and β-Co(OH)2 hybrid nanomaterials with a hollow polyhedron structures.The synergistic effects of different components and the remarkable superiorities of hollow structure endow Ni-Co-S/Co(OH)2 electrode with outstanding electrochemical performance, including ultra-high specific capacity (1440.0 C/g at 1 A/g), superior capacitance retention rate(79.1%retention at 20 A/g)and long operating lifespan(81.4%retention after 5000 cycles).Moreover, the corresponding hybrid supercapacitor enjoys a high energy density of 58.4 Wh/kg at the power density of 0.8 kW/kg,and a decent cyclability that the capacitances are maintained at 80.8% compared with the initial capacitance.This research presents a high-performance electrode material and provides a promising route for the construction of electrode materials for supercapacitors with both structural and component advantages.

    Keywords:Ion exchange Amorphous β-Co(OH)2 Hollow polyhedron Supercapacitor

    In contemporary world energy consumption rose sharply,energy production and consumption has affected the global climate change, causing environmental pollution, ecological destruction and a series of energy security.Therefore, taking effective measures to develop clean and sustainable energy storage and conversion technology is imperative,such as supercapacitors,ion-batteries [1-5].As a burgeoning energy storage device between traditional electrolytic capacitors and batteries, supercapacitors with the virtues of high power density, ultrafast charging/discharging, long life and operating safety, have been widely applied in electronic and hybrid power equipment [6-9].However,compared with conventional rechargeable batteries,the crucial issue of lower energy density still limiting the application of supercapacitors.Hence, how to improve the energy density of supercapacitors without sacrificing inherent strengths has become the focus of researchhotspot [10,11].

    Electrode material is the most crucial factor that affects the performance of supercapacitors.In long-term studies, miscellaneous materials have been explored as the cathodes of asymmetric supercapacitors [12-14].Especially, transition metal oxide/hydroxide with inexpensive cost and abundant reserves have triggered intense attentions from researchers, due to their reversible dynamical reactions on the surface materials rooting from rich redox valence states.Among them, nickel-cobalt based oxide (e.g., Co3O4, NiO) is considered as one of the most valuable electrode materials for supercapacitors on account of their intrinsic superiorities of high theoretical specific capacitance and non-toxicity [15-17].However, owing to their poor conductivity and lower actual capacitance,the development and practical application of nickel-cobalt based oxide have been hindered to a large extent [18,19].Compare with corresponding oxides, transition metal sulfides can deliver more trustworthy electrochemical activity higher conductivity, since metal sulfides possesses superior electronic structures and the electronegativity (2.5) of S element is weaker than O element.Moreover, rich valence and synergistic effect from different metal ions in polymetallic sulfide structure can provide abundant redox reactions,resulting in better electrochemical performance for electrode materials.Therefore,polymetallic transition metal sulfides with compelling electrochemical performance have become powerful candidates to complement or even replace oxide/hydroxide electrode materials[20,21].Nonetheless, owing to the highly dependent on surfaceactive redox reaction, the charge storage process of available transition metal sulfide electrode materials tends to undergo a decreased reaction kinetics in higher rates, which result in unsatisfactory rate performance and charging-discharging stability [22].Designing and synthesizing amorphous bimetallic sulfide electrode materials have identified as a promising avenue to solve the forementioned problems [23-27].The reasons are that the amorphous phase materials hold a large random orientation bond with unsaturated electron configuration,which is beneficial to the adsorption of electrolyte ions [22].Furthermore, the amorphous phase materials possess higher chemical reactivity, because flexibility of local structure in the amorphous phase can accelerate the charge transfer between the active site and the intermediate[25].For example, Liu et al., by using hydrothermal method,synthesized an amorphous NixSy@CoS electrode that could deliver the capacitance of 1750 F/g and retained 71.6% after 2000 cycles[26].From the perspective of thermodynamics, the amorphous state is a metastable state of energy, and has inherent conditions for self-discharging heat and crystallization,so that the stability of amorphous materials during continuous charging and discharging operations is unreliable [23,24].Consequently, it is conceivable that constructing a nanomaterial which simultaneously combines crystalline and amorphous structures will be a promising approach for supercapacitor electrodes.

    Additionally, it is also necessary to design a reasonable structure to elevate the electrochemical performances of electrode materials.Bimetallic sulfides can be facilely reconstructed from their metal oxide/hydroxide precursors through ion exchange and the Kirkendall effect, and eventually establish a variety of forms such as nanosheets,nanowires,and hollow nanostructures[6,28-30].Thereinto, hollow nanostructures can provide plentiful electrochemical active site, kinetically advantageous open structure and larger contact area between the electrolyte and the materials surface, assisting to elevate the specific capacitance of the electrode material.Moreover, the internal cavities can effectively prevent the volume expansion in the reaction process to promote the cyclic properties of the materials [31-33].MOFs,featuring with porosity, high specific surface area and shape controllability, have been extensively used as a promising selfsacrificial template to construct hollow nanostructures in the fields of energy storage and conversion[34,35].For instance,Wang et al.synthesized amorphous CoNi2S4by reflux method [32], the electrode retained 71.6% compared to initial capacitance (1755 F/g)after 5000 cycles.Yu et al.synthesized polycrystalline NiCo2S4[33],which could deliver the capacitance of 1382 F/g at 1 A/g and retain 70%after 10000 cycles.Therefore,it is necessary to design a reasonable electrode structure to give full play to the advantages of hollow structure and polycrystalline amorphous hybrid composition.Encouraged by above considerations,it can be predicted that the electrochemical performance of electrode materials can be significantly improved via constructing an amorphous and crystallized mixed material with hollow structure derived from MOFs template by a viably reasonable method.

    Based on the conceptions, a multistep hydrothermal ionexchange method was proposed to synthesize amorphous Ni-Co-S and polycrystalline Co(OH)2hybrid hollow polyhedral nanostructures by coordinating the electrochemical activity and stability of amorphous and crystalline phases in this paper.The resultant Ni-Co-S/Co(OH)2nanomaterial fully integrates the structural advantages of hollow polyhedrons and the component advantages of crystalline and amorphous structures synergistic effect, showing outstanding electrochemical performances.Furthermore, the corresponding hybrid supercapacitor, composed of capacitor-type active carbon (AC) as the negative electrode and battery-type Ni-Co-S/Co(OH)2as the positive electrode, exhibits ultrahigh energy density of 58.4 Wh/kg at the power density of 0.8 kW/kg and prominent cycling stability (maintained 80.8% of initial capacity after 5000 cycles).

    Fig.S1(Supporting information)shows the schematic synthesis process of Ni-Co-S/Co(OH)2with multistep ion substitution.Firstly,the regular dodecahedron ZIF-67 is fabricated by coordination bond reactions of Co(NO3)2?6H2O and organic ligands (2-dimethylimidazole, C4H6N2) in methanol solvent [34,35].Then, the cation exchange(Ni2+and Co2+)process is implemented to prepare the Ni-Co LDH.During the step, the protons yielded by the hydrolysis of Ni2+etched the Co-ZIF polyhedron organic framework,resulting in the releases of Co2+.Since the solubility constant(Ksp)of Co(OH)2(2.5×10-16)is very close to Ni(OH)2(2.8×10-16)at 25°C, the released Co2+and Ni2+from the solution hydrolyzes almost simultaneously to form hydroxides and deposit on the surface of the ZIF-67 polyhedron to organize a shell,the NiCo-LDH yolk-shell structure is formed [26,34-36].

    Subsequently,Na2S?9H2O is employed as S2-source and etcherlike agent to accomplish anion (OH-) substitution and further etching.Under the hydrothermal condition, S2-and metal-ions diffuse in and out at different rates,respectively.To compensate for the uneven mobility of materials,the high diffusivity of metal ions from inside to outside will lead to the formation of internal hollow structure[37,38].While S2-reacts with the shell NiCo-LDH to form Ni-Co-S,the internal Co2+continues to diffuse outward due to the Kirkendall effect[6,33].After the sulfuration reaction is completed,the hydrothermal process continues resulted in the internal Co2+diffuses into the shell to form Co(OH)2.

    The SEM (Fig.1a) and TEM image (Fig.S2a in Supporting information) show that synthesized ZIF-67 template featuring with smooth surface and uniform size displays morphological characteristics of regular rhombic dodecahedron about 500 nm in diameter, which is consistent with the previous reports [39].The SEM and TEM images of the samples obtained after the cation exchange are illustrated in Fig.1b and Fig.S2b (Supporting information).Obviously, the Ni-Co LDH well inherits the regular polyhedral features of the ZIF-67 template, and the yolk-shell structure is constructed by the preliminary proton etching, in which the surface of the shell is decorated by uniformly and vertically anchored Ni-Co LDH nanosheets.The SEM images of comparison samples (Ni-Co-O) are shown in Figs.S3a and b(Supporting information),exhibiting the core-shell structure.After reacted with Na2S?9H2O by hydrothermal, Ni-Co-S/Co(OH)2is fabricated.According to SEM image(Fig.1c),it is obvious that the anion exchange and further etching do not change the polyhedral shape and rough surface.The TEM images in Fig.1d and Fig.S2c(Supporting information)show Ni-Co-S/Co(OH)2with completely hollow cavities and functional shells consisting of abundant nanosheets.The hollow structure shortens the distance of ion diffusion path and retards volume expands while reacting to prevent the structure from being damaged and guaranteed long life.Besides, the external abundant ultrathin nanosheets can enlarge specific surface area and provide a mass of active sites for redox reaction.In the HRTEM image of Ni-Co-S/Co(OH)2(Fig.1e),it can be observed that apparent lattice structure on the outside and blank disordered lattice part in the inner, indicating the Co(OH)2nanosheets with polycrystalline structure are distributed outside of the shell of hollow polyhedral,while the amorphous Ni-Co-S are distributed inside the shell.The spacing of the lattice is 1.59 nm,corresponding to (110) plane of β-Co(OH)2[40].The selected electron diffraction (SAED) pattern (Fig.1f) are assigned to (001),(100), (102) and (200) planes, which also reveals the polycrystalline structure of β-Co(OH)2.Elemental distribution of the Ni-Co-S/Co(OH)2are investigated by EDS mapping(Figs.1g-j and Fig.S4 in Supporting information), among which the C element originate from adsorption to the air.The elements of Ni, Co and S are distributed on the shell of the material, indicating the successful synthesis of hollow structure.Meanwhile, the small amount of N element means that the ligands in the ZIF-67 template were almost completely removed.

    Fig.1.SEM images:(a)ZIF-67;(b)Ni-Co LDH;(c)Ni-Co-S/Co(OH)2.(d)TEM image of Ni-Co-S/Co(OH)2.(e)HRTEM of Ni-Co-S/Co(OH)2.(f)SAED image of Ni-Co-S/Co(OH)2.(g) EDS of Ni-Co-S/Co(OH)2: (h) Ni, (i) Co, (j) S.

    The crystalline structure and phase composition of the samples(ZIF-67,Ni-Co LDH and Ni-Co-S/Co(OH)2)are determined by X-ray diffraction (XRD), which is presented in Fig.S5 (Supporting information).It can be observed that the prepared ZIF-67 and Ni-Co LDH match well with the crystal structures reported in the previous papers [41,42].All diffraction peaks of Ni-Co-S/Co(OH)2can be assigned to the standard Co(OH)2(PDF card No.30-0443).The peaks at 19.1°,32.5°,37.9°,38.7°,51.4°,57.9°are matched with planes of(001),(100),(101),(002),(102),(110)faultlessly[43].No diffraction peaks corresponding to Ni-Co-S compounds are observed in the XRD pattern, confirming its amorphous feature.The XRD image of contrast sample illustrated in Fig.S6(Supporting information),it shows the mixed crystal of NiCo2O4(PDF card No.20-0781) and NiO (PDF card No.44-1159), denoted as Ni-Co-O.

    XPS characterization is performed to analyze the chemical composition and valence state of the material.From the survey spectrum in Fig.2a,it can be found that Ni-Co-S/Co(OH)2consist of Co, Ni, S, O and C without other impurities.There are four main peaks existing in the interval of 856.2-880.9 eV in Ni 2p spectrum(Fig.2b), including Ni 2p3/2, Ni 2p1/2and two satellite peaks(indicated as “sat”).The two strong peaks located at 855.2 and 857.1 eV are ascribed to Ni2+and Ni3+, respectively [44].In the period of binding energy from 770.5 eV to 812.3 eV of Co 2p(Fig.2c), the four obvious peaks correspond to Co 2p3/2, Co 2p1/2and two satellite peaks.Two peaks at 781.2 eV and 783.4 eV refer to Co3+and Co2+,in addition,787.6 eV and 798.9 eV are Co3+and Co2+,severally [45].Three peaks centered at 162.5 eV, 163.9 eV and 169.2 eV of S 2p in Fig.2d correspond to S 2p3/2,S 2p1/2and satellite peak [46].

    Fig.2.(a) XPS spectra of Ni-Co-S/Co(OH)2.(b-d) XPS spectra of Ni-Co-S/Co(OH)2:(b) Ni spectrum; (c) Co spectrum; (d) S spectrum.

    Fig.S7 (Supporting information) shows nitrogen isothermal adsorption/desorption curve of the resultant sample,the isotherm can be classified as Ⅳ-type, which is a typical application of mesoporous materials.According to the Brunauer-Emmertt-Teller(BET) calculation method, the specific surface area of Ni-Co-S/Co(OH)2is calculated as 73.2 m2/g.Besides,according to the shape of isothermal adsorption line and the analysis of hysteretic shape,the slit structure of the adsorption hole can be observed.Barrett-Joyner-Halenda(BJH)was used to calculate the average aperture is 2.3 nm.Generally, materials with large specific surface area and porosity are favorable for electron and ion diffusion [47].

    To verify the application of Ni-Co-S/Co(OH)2electrode for supercapacitors,the electrochemical evaluates are implemented in a three electrode configuration.There is a pair of intense redox peaks in CV curves image(Fig.3a)at the scan rates from 5 mV/s to 50 mV/s, exhibiting the occurrence of Co3+/Co2+and Ni3+/Ni2+redox reaction [48].The corresponding redox reaction as follows:

    Amorphous Ni-Co-S and polycrystalline β-Co(OH)2simultaneously participate in redox reaction of the electrode, both contribute to electrode capacity.

    Accompanied with the scan rates increased,redox peaks intensity enhanced,and the oxidation and reductionpeaks moved to high and low potential respectively,which is due to the ions in the electrolyte are notenough to sufficiently stimulating the dense center inside the nano-architecture under high scan rates.And the quasi-symmetric profile of CV curves is well maintained,which indicates that battery electrode has ideal rate performance [49,50].For comparison,Fig.S8(Supporting information)are ascribed to the CV curves of Ni-Co-O.Particularly, there is a larger area of Ni-Co-S/Co(OH)2compared with contrast samples (Ni-Co-O) in Fig.3b, confirming that it has better electrochemical properties which is due to the uniques tructure and component of Ni-Co-S/Co(OH)2electrodes.On the one side, hollow structure of the materials guarantees the abundant internal voids,ensuring full electrolyte penetration and a short electron ion diffusion path [18,51].On the other side, the amorphous structure of Ni-Co-S can accelerate the transfer of charge and provide the larger surface area and more abundant redox active centers,which is conducive to be used as electrode materials with higher performance for electrochemical devices.

    To explore the kinetics of Ni-Co-S/Co(OH)2electrode in redox reaction,the relation between current density and scanning rate is analyzed by formula S1 (Supporting information).The reaction kinetics is a characteristic by capacitive control process when b value is 1, while b of 0.5 indicates diffusion determined behavior.Fig.3c represents the fitting lines and b-values at the scan rate from 5 mV/s to 50 mV/s, the slopes are 0.58 and 0.57 for anodic peaks and cathodic peaks.Which implies the charge storage process is mainly based ondiffusion process behavior[52]and the Ni-Co-S/Co(OH)2electrode possesses the fastest reaction kinetics.

    Fig.3.(a)CV curves of Ni-Co-S/Co(OH)2.(b)CV curves of Ni-Co-S/Co(OH)2 and Ni-Co-O at 10 mV/s.(c)Logarithm relationship between anodic scan rates and peak current.(d)GCD curves of Ni-Co-S/Co(OH)2 at different current densities from 1 A/g to 30 A/g.(e)Capacities rention of Ni-Co-S/Co(OH)2 and Ni-Co-O,the illustration is a comparison of GCD of Co-S/Co(OH)2 and Ni-Co-O at 1 A/g.(f) Cycling performance of Ni-Co-S/Co(OH)2 at the current densities of 10 A/g.(g) EIS of Ni-Co-S/Co(OH)2.

    The GCD curves of as-synthesized composite electrodes are demonstrated in Fig.3d, the existence of voltage platform is consistent with the peak value of CV curves,confirming that there is a faradaic redox reaction.GCD curves shows almost symmetric shape, indicting highly reversible redox reactions.

    Based on the formula S2 (Supporting information) of specific capacity under the three-electrode system,the specific capacity of Ni-Co-S/Co(OH)2electrode is 1440.0 C/g, 1385.3 C/g, 1303.2 C/g,1230.6 C/g,1181.3 C/g,1139.1 C/g,respectively(at 1 A/g,2 A/g,5 A/g,10 A/g,15 A/g, 20 A/g).There is a retention of 79.1% even at high current density of 20 A/g, while Ni-Co-O is 20.7%.The values of specific capacity for Ni-Co-S/Co(OH)2electrode,observably higher than the Ni-Co-O electrode as shown in the illustration of Fig.3e.After 5000 cycles(Fig.3f),the capacitance retention rate is as high as 81.4%.It follows that the amorphous and polycrystalline hybrid structure not only improves the capacity of the electrode material,but also enhances its stability.

    To gain more insight into the electrochemical behavior of supercapacitors based on different electrode materials, electrochemical impedance spectroscopy (EIS) measurements are performed, as shown in Fig.3g.The measured impedance data are analyzed by fitting to an equivalent electrical circuit (Fig.S9 in Supporting information), which is composed of equivalent series resistance (Rs), charge-transfer resistance (Rct), constant-phase element(Cd)[53].The Rsincludes the intrinsic resistance of active materials,ionic resistance of electrolyte,and contact resistance at the active material/current collector interface.The diameter of the semicircle corresponding to Rctdisplays the charge transfer process at the electrode-electrolyte interface.The impedance spectrum of the low-frequency region shows that Ni-Co-S/Co(OH)2has a large liner,which indicates the material has a lower diffusion limit.In the high-frequency region,Ni-Co-S has a smaller Rsand Rct.The smaller Rctshows the excellent dispersion of the material and the close combination of a large number of interstices with the base, resulting to the higher specific capacitance, indicating that the composite nanostructures electrode is a promising supercapacitor electrode [15,28].The excellent electrochemical performance is mainly attributed to its unique hollow structure and the mixed structure of amorphous and polycrystalline:(1)The hollow structure with large specific surface area can increase the contact area between active materials and electrolytes.Besides, the internal voids ensure the full diffusion coefficient of electrolyte penetration.(2) The hollow structure provides buffer space to moderate the volume change in the charge storage process.(3)The hybrid structure not only achieves the flexibility of internal structure of amorphous phase to accelerate the charge transfer between active site and intermediate,but also realizes the stability of crystal structure [31,32,54].

    In order to further investigate the practical properties of Ni-Co-S/Co(OH)2, electrochemical performances measurements of corresponding asymmetric supercapacitors were carried out.Fig.4a shows schematic illustration of the Ni-Co-S/Co(OH)2//AC hybrid supercapacitor assembled with Ni-Co-S/Co(OH)2as the positive electrode and AC as the negative electrode, PVA-KOH gel as the electrolyte.For purpose of optimizing the performance of the supercapacitor, the ratio of positive and negative mass was matched according to formula S3 (Supporting information).According to the CV and GCD images in Fig.S10 (Supporting information),AC/CF presents a specific capacitance of 161.9 F/g at 1 A/g;m-and m+refer to the mass of negative(15.5 mg)and positive electrodes (1 mg).

    The voltage of supercapacitor is obtained from the CV curves of Ni-Co-S/Co(OH)2and AC electrodes (Fig.4b).The voltage of two electrodes were -1~0 V and 0~0.6 V respectively, which proved that the operating voltage can reach to 1.6 V[54].CV curves of the asymmetric supercapacitor with a potential voltage of 1.2~1.7 V is shown in Fig.4c;moreover,no significant change of the CV curves,indicating that the voltage to reach was feasible.CV shapes in Fig.4d at 1.6 V are well maintained, indicating a favorable rate capability.The GCD curves at the voltage of 1.6 V of the asymmetric supercapacitor as shown Fig.4e, the specific capacitances of the device are 164.4 F/g,142.5 F/g,131.3 F/g,110.0 F/g,100.0 F/g at 1 A/g,2 A/g,5 A/g,8 A/g,10 A/g,respectively.The rate curve of the device(Fig.4f) showed that the specific capacitance can remain 60.8%compared with the initial value at the high current density of 10 A/g.To detect the stability of the device,we carried out a cyclic test(Fig.4g).After 5000 cycles,the specific capacitance remains 80.1%(137.7 F/g)compared with the initial value of 170 F/g.Furthermore,compared with recent reports (Fig.4h), the asymmetric supercapacitors of Ni-Co-S/Co(OH)2//AC excellent electrochemical performance (0.8 kW/kg at 210.4 Wh/kg), such as NiCo2S4//AC(0.8 kW/kg at 210.4 Wh/kg),NiCoS//AC(0.4 kW/kg at 128 Wh/kg),NiCo(OH)2//AC(0.8 kW/kg at 140 Wh/kg),CNT/Co3S4(0.8 kW/kg at 176 Wh/kg),NiCo LDH//AC(0.8 kW/kg at 192 Wh/kg),Co(OH)2//AC(0.35 kW/kg at 69.9 Wh/kg) [55-62].Fig.4i displays the practical application of single asymmetric supercapacitor, exhibiting promising application potential.

    Fig.4.(a)Schematic illustration of the Ni-Co-S/Co(OH)2//AC hybrid supercapacitor.(b)CV curves of the Ni-Co-S/Co(OH)2 and AC at 10 mV/s.(c) CV curves of the Ni-Co-S/Co(OH)2//AC hybrid supercapacitor at 10 mV/s ranging from 0~1.2 V to 0~1.7 V.(d)CV curves of the Ni-Co-S/Co(OH)2//AC hybrid supercapacitor with different scan rates in the voltage window of 0-1.6 V.(e)GCD curves of the as-assembled hybrid supercapacitor at different current densities.(f)The corresponding specific capacitances at different current densities.(g)Cycling performance of the assembled supercapacitor at a constant current density of 10 A/g.(h)Ragone plot of the as-assembled supercapacitor.(i)Light up an LED.

    In conclusion,the hollow structure of Ni-Co-S/Co(OH)2electrodes have been synthesized by multistep ion exchange,which yields excellent electrochemical performance, with ultra-high specific capacity(1440.0 C/g at 1 A/g),superior capacitance retention rate(79.1% retention at 20 A/g), and excellent cycling performance(81.4% retention after 5000 cycles).The corresponding supercapacitor has a high power density of 0.8 kW/kg when the energy density is 58.4 Wh/kg, and the capacitance was maintained at 80.8% compared with the initial capacitance.Our results will provide insights for the rational design of multicomponent transition metal sulfides and prominent electrodes for highperformance supercapacitors by manipulating cations and anions of metal compounds.

    Declaration of competing interest

    We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51802177, 51672109) and the Independent Cultivation Program of Innovation Team of Ji’nan City (No.2019GXRC011).All the authors discussed the results and commented on the manuscript.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.01.042.

    青青草视频在线视频观看| 久久韩国三级中文字幕| av视频在线观看入口| 亚洲成人久久爱视频| 高清毛片免费看| 亚洲人成网站在线观看播放| 欧美色视频一区免费| 高清av免费在线| 亚洲一级一片aⅴ在线观看| 欧美高清性xxxxhd video| 国产精品一区二区在线观看99 | 免费大片18禁| 亚洲在久久综合| 国产精品日韩av在线免费观看| 久久鲁丝午夜福利片| 午夜免费激情av| 久久久久久伊人网av| 少妇熟女aⅴ在线视频| 国产亚洲一区二区精品| 亚洲精品色激情综合| 亚洲最大成人中文| 熟女人妻精品中文字幕| 热99在线观看视频| 黄色欧美视频在线观看| 日韩av在线大香蕉| 亚洲欧美成人综合另类久久久 | 91av网一区二区| 内射极品少妇av片p| 久久久国产成人免费| 美女黄网站色视频| 日韩 亚洲 欧美在线| 精品人妻偷拍中文字幕| 中文乱码字字幕精品一区二区三区 | 性插视频无遮挡在线免费观看| 国产午夜精品论理片| 亚洲国产精品国产精品| 中文乱码字字幕精品一区二区三区 | 日本黄色片子视频| 国产成人免费观看mmmm| 日本-黄色视频高清免费观看| 久久久欧美国产精品| 极品教师在线视频| 成人无遮挡网站| 国产精品国产三级国产av玫瑰| 只有这里有精品99| h日本视频在线播放| 99热精品在线国产| 久热久热在线精品观看| 亚洲综合精品二区| 综合色av麻豆| 99久久精品热视频| 国产爱豆传媒在线观看| 久久久欧美国产精品| 女的被弄到高潮叫床怎么办| 美女cb高潮喷水在线观看| 亚洲熟妇中文字幕五十中出| 久久久亚洲精品成人影院| 黄色日韩在线| 午夜精品一区二区三区免费看| 人妻少妇偷人精品九色| 欧美一区二区国产精品久久精品| 免费看a级黄色片| 中文亚洲av片在线观看爽| 亚洲成av人片在线播放无| 啦啦啦啦在线视频资源| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久av| 国内精品美女久久久久久| 国产淫语在线视频| 亚洲国产成人一精品久久久| 午夜爱爱视频在线播放| 两个人视频免费观看高清| 国产精品,欧美在线| 欧美日韩在线观看h| 国产熟女欧美一区二区| 99热这里只有是精品50| 在现免费观看毛片| 国产精品一区二区三区四区久久| 中文字幕av成人在线电影| 精品国内亚洲2022精品成人| 在线免费观看不下载黄p国产| 亚洲va在线va天堂va国产| 中国国产av一级| 国产精品福利在线免费观看| 亚洲成av人片在线播放无| 女人被狂操c到高潮| 能在线免费看毛片的网站| 久久久精品94久久精品| 99久久精品热视频| 国内少妇人妻偷人精品xxx网站| 特级一级黄色大片| 又黄又爽又刺激的免费视频.| 欧美成人免费av一区二区三区| 久久6这里有精品| 亚洲18禁久久av| 日产精品乱码卡一卡2卡三| 一个人看视频在线观看www免费| 亚洲图色成人| 男人和女人高潮做爰伦理| 亚洲国产欧洲综合997久久,| 只有这里有精品99| 精品国产露脸久久av麻豆 | 免费av毛片视频| 日本免费在线观看一区| 久久久久免费精品人妻一区二区| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看 | 波多野结衣高清无吗| 久久久久精品久久久久真实原创| 桃色一区二区三区在线观看| 亚洲av免费在线观看| 国产精品av视频在线免费观看| 97在线视频观看| 欧美成人a在线观看| 卡戴珊不雅视频在线播放| 欧美性感艳星| 欧美一区二区亚洲| 99九九线精品视频在线观看视频| av视频在线观看入口| 日韩欧美精品免费久久| 久久精品夜色国产| 国产精华一区二区三区| 亚洲国产精品成人久久小说| 狂野欧美白嫩少妇大欣赏| 成人亚洲精品av一区二区| 亚洲欧洲国产日韩| 国产极品天堂在线| 美女大奶头视频| 2021天堂中文幕一二区在线观| 天天躁夜夜躁狠狠久久av| 天堂中文最新版在线下载 | 国产欧美另类精品又又久久亚洲欧美| 免费电影在线观看免费观看| 99热网站在线观看| 精品午夜福利在线看| 国模一区二区三区四区视频| 久99久视频精品免费| 2022亚洲国产成人精品| 国产高清国产精品国产三级 | 精华霜和精华液先用哪个| 只有这里有精品99| 欧美日韩精品成人综合77777| 草草在线视频免费看| 国产精品,欧美在线| or卡值多少钱| 国产黄片视频在线免费观看| 午夜老司机福利剧场| 丰满少妇做爰视频| 亚洲国产最新在线播放| 在线免费十八禁| 黄色日韩在线| 中文字幕亚洲精品专区| 国产成人aa在线观看| 非洲黑人性xxxx精品又粗又长| 三级毛片av免费| 国产精品蜜桃在线观看| 老司机福利观看| 久热久热在线精品观看| 精品99又大又爽又粗少妇毛片| 亚洲国产精品国产精品| 久久精品熟女亚洲av麻豆精品 | 亚洲精品色激情综合| 床上黄色一级片| 国产视频首页在线观看| 亚洲av福利一区| 一级二级三级毛片免费看| 桃色一区二区三区在线观看| 禁无遮挡网站| 欧美xxxx性猛交bbbb| 亚洲国产成人一精品久久久| 黄色欧美视频在线观看| 亚洲丝袜综合中文字幕| 亚洲人成网站在线观看播放| www.av在线官网国产| 人妻夜夜爽99麻豆av| 中文欧美无线码| av又黄又爽大尺度在线免费看 | 日韩亚洲欧美综合| av女优亚洲男人天堂| 国产av一区在线观看免费| 夫妻性生交免费视频一级片| 久久热精品热| 在线观看一区二区三区| 亚洲精品乱久久久久久| 欧美性猛交╳xxx乱大交人| 久久久精品欧美日韩精品| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 人妻系列 视频| 级片在线观看| 看片在线看免费视频| 日本熟妇午夜| 欧美一区二区精品小视频在线| 在线观看一区二区三区| АⅤ资源中文在线天堂| 99久久无色码亚洲精品果冻| 亚洲人与动物交配视频| 国产91av在线免费观看| 成人欧美大片| www.av在线官网国产| 日日啪夜夜撸| 国产亚洲91精品色在线| 天天躁日日操中文字幕| 亚洲成人久久爱视频| 国产91av在线免费观看| 国产高清三级在线| av专区在线播放| 国产精品1区2区在线观看.| 在线观看av片永久免费下载| 国产精品av视频在线免费观看| 亚洲18禁久久av| 免费搜索国产男女视频| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 一级爰片在线观看| 少妇熟女aⅴ在线视频| 两个人的视频大全免费| 亚洲性久久影院| 中文字幕人妻熟人妻熟丝袜美| 可以在线观看毛片的网站| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| 亚洲av男天堂| 九九热线精品视视频播放| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 一级毛片aaaaaa免费看小| 在线a可以看的网站| 中文欧美无线码| 国产精品99久久久久久久久| 99视频精品全部免费 在线| 久久精品国产鲁丝片午夜精品| 欧美xxxx性猛交bbbb| 亚洲国产精品国产精品| 亚洲国产日韩欧美精品在线观看| 亚洲第一区二区三区不卡| 3wmmmm亚洲av在线观看| 久久久久久久国产电影| 国产探花在线观看一区二区| 成年女人看的毛片在线观看| 久久国产乱子免费精品| 亚洲av福利一区| 亚洲aⅴ乱码一区二区在线播放| a级毛色黄片| 精品久久久久久久人妻蜜臀av| 我的老师免费观看完整版| 国产女主播在线喷水免费视频网站 | 女的被弄到高潮叫床怎么办| 成人午夜精彩视频在线观看| 97超视频在线观看视频| 搞女人的毛片| 午夜福利网站1000一区二区三区| 色综合亚洲欧美另类图片| 午夜老司机福利剧场| 午夜福利视频1000在线观看| 亚洲av成人精品一区久久| 精品久久久久久久人妻蜜臀av| 亚洲内射少妇av| 亚洲自偷自拍三级| 久久久久久久久大av| 国产黄色小视频在线观看| 狂野欧美白嫩少妇大欣赏| 精品99又大又爽又粗少妇毛片| 日韩一区二区视频免费看| 国产爱豆传媒在线观看| 变态另类丝袜制服| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 日韩精品有码人妻一区| 69人妻影院| 干丝袜人妻中文字幕| 国产伦在线观看视频一区| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 久久久久网色| 美女被艹到高潮喷水动态| 身体一侧抽搐| av又黄又爽大尺度在线免费看 | 一级黄片播放器| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 国产一区亚洲一区在线观看| 日韩高清综合在线| 级片在线观看| 欧美三级亚洲精品| 亚洲国产精品专区欧美| 欧美成人a在线观看| 亚洲不卡免费看| 精品酒店卫生间| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 免费在线观看成人毛片| kizo精华| 国产极品天堂在线| 综合色av麻豆| 国产乱来视频区| 日韩在线高清观看一区二区三区| 亚洲真实伦在线观看| 日韩强制内射视频| 三级国产精品片| 国产伦在线观看视频一区| 成人三级黄色视频| av卡一久久| 午夜福利成人在线免费观看| av在线亚洲专区| 日韩欧美精品v在线| 超碰av人人做人人爽久久| 国产单亲对白刺激| 日韩,欧美,国产一区二区三区 | 国产成人aa在线观看| 午夜精品一区二区三区免费看| 精品熟女少妇av免费看| 97超视频在线观看视频| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 高清午夜精品一区二区三区| 日本黄色视频三级网站网址| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩高清专用| 男女那种视频在线观看| 寂寞人妻少妇视频99o| 麻豆国产97在线/欧美| 三级国产精品片| 久久鲁丝午夜福利片| 日韩制服骚丝袜av| 欧美成人a在线观看| 久久精品国产亚洲av天美| 午夜激情欧美在线| 国产大屁股一区二区在线视频| 亚洲经典国产精华液单| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清| 久久草成人影院| 国产毛片a区久久久久| www.色视频.com| 久久6这里有精品| 色尼玛亚洲综合影院| 美女脱内裤让男人舔精品视频| 天堂中文最新版在线下载 | 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 少妇的逼好多水| 亚洲av电影在线观看一区二区三区 | 亚洲欧美成人综合另类久久久 | 亚洲丝袜综合中文字幕| 亚洲中文字幕一区二区三区有码在线看| 美女国产视频在线观看| 国产亚洲精品久久久com| 日本一本二区三区精品| 成人毛片a级毛片在线播放| 成年女人永久免费观看视频| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| av线在线观看网站| 高清午夜精品一区二区三区| 男女国产视频网站| 建设人人有责人人尽责人人享有的 | 麻豆成人av视频| 黄片无遮挡物在线观看| 天美传媒精品一区二区| 成年免费大片在线观看| 国产精品.久久久| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 一个人看视频在线观看www免费| 日本wwww免费看| 水蜜桃什么品种好| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品有码人妻一区| 国产精品久久视频播放| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 禁无遮挡网站| 人人妻人人看人人澡| av国产免费在线观看| 国产免费视频播放在线视频 | 成年免费大片在线观看| 精品酒店卫生间| 亚洲伊人久久精品综合 | av黄色大香蕉| 人妻夜夜爽99麻豆av| 熟女人妻精品中文字幕| 美女xxoo啪啪120秒动态图| 99热6这里只有精品| 亚洲av一区综合| 一级毛片久久久久久久久女| 51国产日韩欧美| 毛片一级片免费看久久久久| 午夜福利在线观看吧| 热99在线观看视频| 免费搜索国产男女视频| 欧美潮喷喷水| 人体艺术视频欧美日本| ponron亚洲| 午夜亚洲福利在线播放| 日本黄大片高清| 久久99精品国语久久久| 国产精品人妻久久久影院| 69人妻影院| 色综合站精品国产| 久久精品91蜜桃| 成人亚洲精品av一区二区| 麻豆成人午夜福利视频| 九色成人免费人妻av| videossex国产| 成人美女网站在线观看视频| 中文欧美无线码| 欧美成人一区二区免费高清观看| 国产免费又黄又爽又色| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 天堂网av新在线| 国产精品无大码| 18禁裸乳无遮挡免费网站照片| 少妇的逼水好多| 最新中文字幕久久久久| 97热精品久久久久久| 99热精品在线国产| av在线观看视频网站免费| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 亚洲成人中文字幕在线播放| 久久久色成人| 国产探花极品一区二区| 国产成年人精品一区二区| 韩国av在线不卡| 欧美区成人在线视频| 99九九线精品视频在线观看视频| 久久精品国产鲁丝片午夜精品| 国产爱豆传媒在线观看| 日本av手机在线免费观看| 老女人水多毛片| 久久欧美精品欧美久久欧美| 国产欧美另类精品又又久久亚洲欧美| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 国产精品一二三区在线看| 在线a可以看的网站| 亚洲精品国产成人久久av| 亚洲人与动物交配视频| 国产亚洲精品av在线| 七月丁香在线播放| 久久99热6这里只有精品| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人| 久久精品熟女亚洲av麻豆精品 | 国产一区有黄有色的免费视频 | 一边摸一边抽搐一进一小说| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 国产av在哪里看| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 国产美女午夜福利| 在线观看66精品国产| 舔av片在线| 一级爰片在线观看| 成人三级黄色视频| 国产真实乱freesex| 国产精品国产高清国产av| 国产一区二区亚洲精品在线观看| 国产91av在线免费观看| 久久精品人妻少妇| 一本久久精品| 在线免费十八禁| 欧美不卡视频在线免费观看| 日本免费a在线| 日韩欧美国产在线观看| 只有这里有精品99| 久久午夜福利片| 欧美日本视频| 精品午夜福利在线看| 国产久久久一区二区三区| 久久99精品国语久久久| 国产精品久久久久久精品电影小说 | 欧美色视频一区免费| 久久鲁丝午夜福利片| 欧美一区二区国产精品久久精品| 直男gayav资源| 亚洲成人精品中文字幕电影| 日韩亚洲欧美综合| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 可以在线观看毛片的网站| 色吧在线观看| 中文字幕制服av| 村上凉子中文字幕在线| 国产真实乱freesex| 欧美三级亚洲精品| 欧美激情在线99| 久久亚洲国产成人精品v| 亚洲av成人av| av在线老鸭窝| 国内揄拍国产精品人妻在线| 一级av片app| 亚洲真实伦在线观看| 成人性生交大片免费视频hd| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 亚洲性久久影院| 久久久久久久午夜电影| 久久人妻av系列| 国产一区二区在线av高清观看| 99热这里只有精品一区| 在线观看一区二区三区| 亚洲国产精品成人久久小说| 免费无遮挡裸体视频| 亚洲av电影在线观看一区二区三区 | 免费人成在线观看视频色| 久久婷婷人人爽人人干人人爱| 青春草国产在线视频| 一区二区三区高清视频在线| 国产精品嫩草影院av在线观看| 搞女人的毛片| 国产精品精品国产色婷婷| 国产精品一及| 蜜桃亚洲精品一区二区三区| 日日撸夜夜添| 亚洲人成网站在线播| 亚洲成人中文字幕在线播放| 青春草国产在线视频| 久久久午夜欧美精品| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版 | 国内揄拍国产精品人妻在线| 成人鲁丝片一二三区免费| 日韩一本色道免费dvd| 免费观看的影片在线观看| 国产精品一区二区在线观看99 | 久久婷婷人人爽人人干人人爱| 亚洲精品456在线播放app| 午夜福利在线在线| 国产中年淑女户外野战色| 神马国产精品三级电影在线观看| 久久综合国产亚洲精品| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 国产精品国产高清国产av| 国产亚洲最大av| 日韩欧美国产在线观看| 成人国产麻豆网| 婷婷色av中文字幕| 免费观看在线日韩| 欧美zozozo另类| 亚洲人成网站高清观看| 久久精品国产自在天天线| 午夜激情福利司机影院| 内地一区二区视频在线| 老司机影院毛片| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 欧美激情在线99| 伊人久久精品亚洲午夜| 日本免费a在线| 18+在线观看网站| 国产高清国产精品国产三级 | 日韩欧美国产在线观看| 亚洲怡红院男人天堂| 亚洲图色成人| 亚洲欧美成人综合另类久久久 | 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲av中文av极速乱| 国产成人aa在线观看| 22中文网久久字幕| 国产人妻一区二区三区在| 纵有疾风起免费观看全集完整版 | 日本午夜av视频| 国产精品蜜桃在线观看| 欧美日本亚洲视频在线播放| 少妇熟女欧美另类| av免费观看日本| 又爽又黄a免费视频| 国产男人的电影天堂91| kizo精华| 久久综合国产亚洲精品| 欧美人与善性xxx| 日本爱情动作片www.在线观看| 国产成人freesex在线| 免费观看性生交大片5| 女的被弄到高潮叫床怎么办| a级一级毛片免费在线观看| 床上黄色一级片| 日韩一区二区视频免费看| 综合色av麻豆| 伦精品一区二区三区| 一区二区三区四区激情视频| 99久久九九国产精品国产免费| 毛片一级片免费看久久久久| 插逼视频在线观看| 国产精华一区二区三区| 一区二区三区高清视频在线| 99热全是精品| 国产亚洲5aaaaa淫片| 久久草成人影院| 日本色播在线视频| 国产精品久久电影中文字幕| 男女下面进入的视频免费午夜| 国产乱人偷精品视频| 中文精品一卡2卡3卡4更新| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 国产成人freesex在线| 性插视频无遮挡在线免费观看| 亚洲第一区二区三区不卡| 免费观看的影片在线观看|