• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of 3D ordered needle-like polyaniline@hollow carbon nanofibers composites for flexible supercapacitors

    2021-11-19 05:39:54XuepengNiYngJingHoyuChenKunmingLiHuifngChenQilinWuAnqiJu
    Chinese Chemical Letters 2021年8期

    Xuepeng Ni,Yng Jing,Hoyu Chen,Kunming Li,Huifng Chen,b,Qilin Wu,b,Anqi Ju,b,*

    a College of Materials Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University,Shanghai 201620, China

    b Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China

    c Zhejiang Provincial Key Laboratory of Yarn Material Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, China

    ABSTRACT Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(acrylonitrile-co-β-methylhydrogen itaconate)copolymer was prepared and used to synthesize flexible hollow carbon nanofibers (HCNFs) via an electrospinning method without breaking after multiple bending.Subsequently,the inner and outer surfaces of HCNFs were evenly covered with ordered needlelike polyaniline (PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites, which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability(90.1% retention at 5 A/g after 3000 cycles).The symmetrical supercapacitor based on the HCNFs/PANI composites also delivered an outstanding electrochemical performance with high energy/power density(60.28 Wh/kg at 1000 W/kg) and superior cycling durability (90% capacitance retention after at 5 A/g 3000 cycles), which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices.

    Keywords:Flexible Polyaniline Electrospinning Hollow carbon nanofibers Supercapacitors

    With the development of portable electronic products, it is particularly important to design and manufacture lightweight and flexible energy storage devices in order to cater to and meet market demand.As an energy storage device, flexible supercapacitor has attracted much attention in recent years due to its long cycle life,moderate energy/power density and stable operation performance.On the basis of the energy storage mechanism,supercapacitors were split into two different types: electrical double-layer capacitors(EDLCs)and pseudo-capacitors,which accumulated energy through fast physical adsorption/desorption ions on the electrode/electrolyte interface and rapid and reversible redox reactions,respectively.Upto date, the electrode material is still a vital factor to determine the performance of supercapacitors.

    Graphene, carbon nanotubes (CNTs), carbon sphere, and other carbon materials with a variety of nanostructures and high accessible surface area have been widely used in EDLCs electrode materials.However, the materials mentioned above do not have high specific capacity and excellent rate capability, which made them unable to be directly used as flexible electrode materials.Additionally,the high cost of carbon nanotubes and graphene also limited their large-scale industrial application.The electrode with high specific capacity and good rate performance become the key factor of ideal flexible supercapacitor.In contrast,the freestanding carbon nanofibers (CNFs) with low cost, high conductivity, and flexibility were easier to be synthesized and used as flexible electrodes directly.Liu et al.[1] prepared a flexible composite carbon nanofiber membrane based on polypyrrole/polyimide with a specific capacitance of 172.44 F/g at 200 mA/g.Subsequently, a flexible micro-/mesoporous carbon nanofiber was synthesized as electrodes with a specific capacitance of ~241.4 F/g at 1 A/g [2].These research results also exposed the defect that carbon nanofiber electrodes have lower specific capacitance.Generally,the combination of carbon nanofibers and conductive polymers or transition metal oxides was used to increase the specific capacitances in order to effectively solve this problem [3-6].Among them,polyaniline(PANI),which has the advantages of low cost, high conductivity, large energy storage capacity as well as controllable conductivity, has been selected as a promising candidate material [7-9].For example, Yan et al.[10] reported a CNFs/PANI nanoparticles composite with high specific capacitances of 1050 F/g at 1 A/g.

    However, when the current density is up to 5 A/g, the specific capacitance quickly decreases to 350 F/g.Song et al.[11]synthesized needle-like polyaniline nanowire on the coal-based carbon nanofibers with a low specific capacitance of 458 F/g at 0.5 A/g,the retention of specific capacitance is only 87%at 2 A/g after 1000 cycles.Tian et al.[7] prepared a hybrid carbon nanofiber composite/polyaniline by electrospinning and in-situ polymerization methods,which exhibits a specific capacitance of 318.0 F/g at 0.5 A/g.The symmetric supercapacitor of Ni-G-CNFs/PANI only maintains the capacitance retentions of 76.3% after 1000 cycles 1 A/g.For instance, Ke et al.[12] reported aminated triazine functionalized carbon fiber/PANI composites (PANI/ATFCF) as an electrode for supercapacitors,which show a specific capacitance of 456.73 F/g at 1A/g and 84.19% capacitance retentions after 1500 cycles at 100 mV/s.The flexible PVA/CNT/PANI membrane was prepared as supercapacitor electrodes with 89.3% capacitance retention after 2000 cycles [13].Apparently, both the specific capacity and cycling stability of CNFs/PANI composites is not good enough for wearable electronics.Hence, to get flexible supercapacitors with high specific capacity and ultra-long cycle performance, it is extremely essential to establish a hollow connectivity channel for PANI that could promote the fast kinetics diffusion of the electrolyte ions in contact electrodes.

    In this work, a flexible hollow carbon nanofiber was designed via an electrospinning method.The hollow structure in the interconnected carbon nanofibers can only improve the mass loading of PANI but also increase the effective contact area between the electrodes and the electrolytes and confine the volume expansion of PANI during the electrochemical process[14,15].The ordered needle-shaped PANI were grown on the inside and outside of HCNFs uniformly by in-situ polymerization to prepare flexible the HCNFs/PANI composites.The HCNFs/PANI composites revealed a high capacity 1196.7 F/g at 1 A/g and good cycling stability with 90.1%retention at a higher current density of 5 A/g after 3000 cycles.More importantly, the symmetric supercapacitor (SC) assembled using HCNFs/PANI composites as electrodes displayed a high energy density of 60.28 Wh/kg at 1000 W/kg and superior cycling stability with 90% retention after 3000 cycles at 5 A/g.

    Scheme 1 typically shows the preparation of HCNFs/PANI composites.First of all,a piece of fibrous film was synthesized by a coaxial electrospinning method (Scheme 1a).After that, the electrospun film was subjected to peroxidation in air and carbonization in N2to obtain HCNFs.The resultant HCNFs was further etched in 1 mol/L H2SO4aqueous solution by an electrochemical etching method to active HCNFs.Finally, the freestanding HCNFs/PANI composite was synthesized through the in-situ polymerization method (Scheme 1b), which exhibited excellent flexibility in Fig.S1 (Supporting information).

    Scheme 1.(a) Schematic of the electrospinning process of P(AN-co-MHI)/SAN composited fibers.(b)Schematic illustration of preparing HCNFs/PANI composites.

    As illustrated in Fig.1, the morphology and structure of CNFs,HCNFs, CNFs/PANI and HCNFs/PANI composites were characterized by SEM.It could be observed from Figs.1a and b that CNFs and HCNFs present typically interconnection networks with diameters of 600 nm and 700 nm, respectively, which provided a good conductive path for electrons.Furthermore, the acid-treated HCNFs showed a clear hollow structure compared with CNFs(observed in the inset in Fig.1b).As depicted in Figs.1c and d,the needle-like PANI was vertically anchored on the outer surface of CNFs and HCNFs respectively after in-situ polymerization of aniline.Obviously, both the inside and outside of HCNFs are covered by PANI,which could effectively improve the mass loading of PANI.The hollow structures have displayed great structural superiority for supercapacitors because the hollow structure of HCNFs can provide a high surface area and short transportation distance for both mass and charge.Based on TG data in Fig.S2(Supporting information),the mass loading of PANI in CNFs/PANI,and HCNFs/PANI composites were 39.37 wt% and 46.52 wt%,respectively.The specific surface area of HCNFs was 2.03 times of CNFs(Fig.S3 in Supporting information).The microstructure of CNFs/PANI and HCNFs/PANI composites were characterized by TEM and shown in Fig.S4 (Supporting information).The needlelike PANI was homogeneously decorated on the surface of CNFs and HCNFs.The hollow structure of HCNFs/PANI with diameter ca.450 nm can be clearly seen in the Fig.S4b and this unique hollow structure can alleviate the volume expansion during charging/discharging process effectively.Besides, before polymerization of aniline, the CNFs and HCNFs were electrochemical etched, the water contact angle decreases from 141°to 65°as shown in Fig.S5(Supporting information),indicating that electrochemical etching could increase the hydrophilicity of HCNFs.More importantly,the electrochemical etching could provide abundant nucleation points for aniline polymerization.

    Fig.1.SEM images of (a and inset) CNFs, (b and inset) HCNFs, (c and inset) CNFs/PANI, and (d and inset) HCNFs/PANI composites.

    The XRD patterns of CNFs,HCNFs,PANI,CNFs/PANI and HCNFs/PANI were presented in Fig.2a.Both CNFs and HCNFs reveal two broad diffraction peaks at 25.3°and 42.4°,which were in keeping with amorphous carbon[11,16].The crystalline peaks of pure PANI emerging at 2θ = 19.0°and 25.7°are ascribed to (020) and (200)diffraction planes of PANI, respectively [17,18].Compared with pure PANI, the HCNFs/PANI and CNFs/PANI composites present similar characteristic peaks,indicating PANI were coated on carbon nanofibers successfully.The Raman spectra of samples are shown in Fig.2b, there are two obvious characteristic peaks at 1323 and 1581 cm-1for CNFs and HCNFs, corresponding to the disordered carbonaceous matrix (D peak) and ordered graphitized structure(G peak) [14,19].For PANI, the characteristic peaks appearing at 1169 cm-1, 1349 cm-1, 1505 cm-1and 1590 cm-1belong to C-H stretching of the benzene ring, protonated CN stretching, C=N stretching vibration,and C--C stretching of benzene/quinoid ring,respectively [20,21].Furthermore, similar characteristic peaks were also shown in HCNFs/PANI and CNFs/PANI composites,confirming PANI was composited with CNFs and HCNFs successfully.The FTIR spectra of resultant samples are presented in Fig.2c,the absorption peaks around 3429 cm-1of all samples belong to the-OH.There are two stretching vibration peaks at 1641 cm-1(C=C) and 1384 cm-1(C-C) for CNFs and HCNFs [11].The absorption peaks at 1585,1507,1300 and 1045 cm-1are attributed to the stretching vibrations of C=C in the benzene/quinoid ring,aromatic C--N,and C-H stretching vibrations in the FTIR spectrum of PANI [22,23].The characteristic peaks of PANI can be clearly observed in HCNFs/PANI and CNFs/PANI.The XPS spectrum of HCNFs/PANI composites is shown in Fig.2d.Obviously, there are three peaks of C,N and O elements in the XPS full spectrum.In the C 1s spectrum(Fig.2e),there are three main peaks at 284.7,285.6 and 286.6 eV, which belong to the C-C/C=C, C-N/C=N and C-O bands, respectively [7,24].For N 1s spectrum (Fig.2f), the peak with binding energy at 399.9 eV is attributed to quinoid imine(=N-),and the typical characteristic peak at 401.4 eV belongs to benzenoid amine (-NH-) [7,25,26].The XPS results further confirm the successful preparation of HCNFs/PANI composites.

    Fig.2.(a)XRD curves,(b)Raman spectra and(c)FTIR spectra of all the samples.XPS spectra of the HCNFs/PANI composites:(d)the full survey spectrum,(e)C 1s,(f)N 1s.

    The electrochemical performance of the HCNFs/PANI and CNFs/PANI composites were measured in a three-electrode configuration.Figs.3a-c show the typical cyclic voltammetry(CV) profile and galvanostatic charge/discharge (GCD) curves of the HCNFs/PANI and CNFs/PANI composite electrodes.The CV curves of HCNFs/PANI and CNFs/PANI composites at various sweep rates from 20 mV/s to 100 mV/s were performed (Fig.3a and Fig.S6 in Supporting information)and the current response increases with the increase of sweep rates.Besides, the CV profiles for both HCNFs/PANI and CNFs/PANI are almost rectangular shapes, indicating excellent capacitive characteristics and rapid response on the reverse voltage at each end potential[27,28].The representative CV curves of the CNFs/PANI and HCNFs/PANI composites at the scan rate of 100 mV/s are shown in Fig.S7 (Supporting information).Obviously, the areas under the CV curve of HCNFs/PANI composites are much larger than the CNFs/PANI composites, indicating larger specific capacitance and enhanced energy storage ability of HCNFs/PANI, which is ascribed to the enlarged accessible surface areas of PANI with electrolyte.

    The GCD curves of the HCNFs/PANI and CNFs/PANI composites at various current densities from 1 A/g to 5 A/g are presented in Fig.3b and Fig.S8 (Supporting information).The GCD curves of two electrodes exhibit a symmetrical triangle shape without an obvious IR drop, implying that excellent reversibility and small internal resistance[29].The HCNFs/PANI composites achieve much longer discharge time and higher specific capacitance (1196.7 F/g) compared with CNFs/PANI composites (607.5 F/g) at 1 A/g (Fig.3c), corresponding to the results given in Fig.S7, which also is the largest capacitance among the reported PANI-based electrode(Table S1 in Supporting information).Even at a large current density of 5 A/g, the HCNFs/PANI electrodes also present a high specific capacitance(578.7 F/g)as shown in Fig.3d,which is attributed to the hollow structure of HCNFs and the large contact area between electrodes and electrolyte.Moreover, the HCNFs/PANI composites exhibit long-term cycling stability with capacitance retention of 90.1% (3000thversus 1st) at 5 A/g after 3000 cycles(Fig.3e), which is larger than that (85.3%) of the CNFs/PANI because the hollow structure of HCNFs can confine the volume expansion of PANI during the charging/discharging process.The Nyquist plots of CNFs/PANI and HCNFs/PANI composites were split into a high-frequency semicircle and low-frequency straight line[2,30]as shown in Fig.S9(Supporting information),which were in accordance with interfacial charge transfer resistance (Rct) and Warburg resistance (Rw), respectively.Obviously, the Rctof CNFs/PANI composites is larger than that of HCNFs/PANI composites,revealing the ideal capacitive behavior.This may be ascribed to the needle-like PANI uniformly distributed on the inner and outside of HCNFs, which offers more exposed active sites of HCNFs/PANI to the electrolyte and establish a hollow connectivity channel for the fast kinetics diffusion of the electrolyte ions in contact electrodes.From the low-frequency region, HCNFs/PANI shows a nearly vertical line in the Warburg region without kinetic limitation of fast ion transport at the electrode-electrolyte interface,which is a key factor of fast energy storage capabilities.

    Fig.3.(a)CV curves of HCNFs/PANI composites at different scan rates.(b)GCD curves of HCNFs/PANI composites at different current densities.(c)GCD curves of CNFs/PANI and HCNFs/PANI composites at 1 A/g.(d)Specific capacitances of CNFs/PANI and HCNFs/PANI composites at different current densities.(e)Cycling stability of CNFs/PANI and HCNFs/PANI composites at 5 A/g.(f)CV curves of the SC at different potential ranges at 60 mV/s.(g)CV curves of the SC at various scan rates from 20 mV/s to 100 mV/s.(h)GCD curves of the SC at various current densities.(i) Ragone plots of the SC and other previously reported PANI-based symmetric supercapacitor.

    To verify its application as electrodes for supercapacitor, a symmetrical supercapacitor(SC)was fabricated using two pieces of HCNFs/PANI composites (2×1 cm2) as anodic and cathodic electrodes in 1 mol/L H2SO4aqueous electrolyte.The CV profiles of SC at 60 mV/s at various potential ranges are presented in Fig.3f, all the curves almost exhibit rectangular shape in the voltage of 0.6~1.2 V,indicating that the SC shows ideal capacitive behavior with a fast I-V response and low equivalent series resistance of electrodes.The HCNFs/PANI were tested at different scaring rates (20-100 mV/s) in Fig.3g, the CV profiles of SC can hold rectangular shape without obvious change even up to 100 mV/s, which further demonstrates an ideal capacitive behavior and efficient charge transfer kinetics of the SC.The GCD curves of SC at different current densities are demonstrated in Fig.3h.The curves of SC are nearly triangular shapes,which demonstrates the excellent electrochemical reversibility of SC.The energy density and power density were calculated based on Fig.3i, the SC can deliver a high energy density of 60.28 Wh/kg at 1000 W/kg,which are much larger than that of other reported works [7,31-37].The hollow structure of HCNFs can increase the deposition of PANI and offer fast kinetic diffusion of the electrolyte ion in compact electrodes.The cycling durability of the SC was conducted at 5 A/g up to 3000 cycles (Fig.S10 in Supporting information),which shows good long-life cycling stability with a retention of 90% (3000thversus 1st).

    In summary,the flexible HCNFs/PANI composites were synthesized via simple electrospinning and in-situ polymerization methods and exhibited good electrochemical performance with the capacitance of 1196.7 F/g at 1 A/g and 90.1%capacity retention after 3000 cycles at a large current density of 5 A/g.The needle-like PANI,which was uniformly distributed on the inner and outside of HCNFs, provided more exposed active sites to the electrolyte and established a hollow connectivity channel that could promote the fast kinetics diffusion of the electrolyte ions in contact electrodes.Additionally,the symmetrical supercapacitor using HCNFs/PANI as electrodes delivered a high energy density of 60.28 Wh/kg at 1000 W/kg and superior cycling durability with a retention of 90%(3000thversus 1st)after 3000 cycles at 5 A/g.Therefore,the HCNFs/PANI composites could be served as prospective electrode material in energy storage.

    Declaration of competing interest

    The authors declared that they have no conflicts of interest to this work.

    Acknowledgments

    This work was supported by Fundamental Research Funds for the Central Universities (No.2232019A3-11), National Natural Science Foundation of China (No.51503086), Zhejiang Provincial Natural Science Foundation (No.LQ19E030014), and Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province(No.MTC2019-13).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.01.043.

    看免费av毛片| 三上悠亚av全集在线观看| 毛片一级片免费看久久久久| 免费观看性生交大片5| 国产成人精品婷婷| 成人二区视频| 午夜激情av网站| 999精品在线视频| 久久久久久人人人人人| 男女午夜视频在线观看| 久久国产精品男人的天堂亚洲| 久久久国产欧美日韩av| 青春草视频在线免费观看| 1024香蕉在线观看| 日本黄色日本黄色录像| 亚洲,欧美,日韩| 亚洲av欧美aⅴ国产| 成年女人毛片免费观看观看9 | 伦理电影大哥的女人| 一区二区三区精品91| 国产精品 欧美亚洲| 色婷婷久久久亚洲欧美| 国产精品香港三级国产av潘金莲 | 久久精品国产亚洲av涩爱| 亚洲av国产av综合av卡| 中国国产av一级| 狂野欧美激情性bbbbbb| 宅男免费午夜| 成人手机av| 国产男女内射视频| 精品一区在线观看国产| 国产成人av激情在线播放| 两个人看的免费小视频| 久久 成人 亚洲| 亚洲av免费高清在线观看| 一级黄片播放器| 欧美 日韩 精品 国产| 天天影视国产精品| 18禁国产床啪视频网站| 精品酒店卫生间| 亚洲欧美精品自产自拍| 亚洲精品,欧美精品| 日韩制服骚丝袜av| av天堂久久9| 国产在视频线精品| 中文字幕亚洲精品专区| 黄色一级大片看看| 少妇被粗大猛烈的视频| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 老司机影院毛片| 亚洲国产av影院在线观看| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 永久网站在线| 成人影院久久| 久久久久久久大尺度免费视频| 91精品三级在线观看| 国产精品成人在线| 人人澡人人妻人| 性色av一级| 亚洲男人天堂网一区| 青草久久国产| 美女福利国产在线| 91成人精品电影| 欧美日韩一区二区视频在线观看视频在线| 久久久久国产一级毛片高清牌| 最近手机中文字幕大全| 久久这里有精品视频免费| 亚洲av欧美aⅴ国产| 欧美国产精品一级二级三级| 91精品国产国语对白视频| 久久久久久久亚洲中文字幕| 国产不卡av网站在线观看| 成年人免费黄色播放视频| 国产精品av久久久久免费| 久久精品久久久久久噜噜老黄| 精品久久蜜臀av无| 校园人妻丝袜中文字幕| 一二三四在线观看免费中文在| 乱人伦中国视频| 日韩欧美一区视频在线观看| 国产成人精品福利久久| 成人毛片a级毛片在线播放| 99热国产这里只有精品6| 日韩av免费高清视频| 9色porny在线观看| 亚洲国产欧美网| 侵犯人妻中文字幕一二三四区| 午夜精品国产一区二区电影| 成年动漫av网址| 免费大片黄手机在线观看| 天天操日日干夜夜撸| 久久精品国产自在天天线| 午夜久久久在线观看| 精品卡一卡二卡四卡免费| 国产精品一二三区在线看| 在线观看一区二区三区激情| 精品人妻熟女毛片av久久网站| 欧美精品一区二区大全| 91久久精品国产一区二区三区| 建设人人有责人人尽责人人享有的| 国产毛片在线视频| 久久久久久伊人网av| 午夜福利影视在线免费观看| 波多野结衣av一区二区av| 纵有疾风起免费观看全集完整版| 国产一区二区 视频在线| 欧美亚洲日本最大视频资源| 一级毛片黄色毛片免费观看视频| 欧美另类一区| 久久久久久久国产电影| 制服丝袜香蕉在线| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻丝袜一区二区 | av片东京热男人的天堂| 久久这里只有精品19| 国产视频首页在线观看| 精品久久久精品久久久| 久热久热在线精品观看| 精品国产国语对白av| 国产乱来视频区| 亚洲欧美色中文字幕在线| 免费大片黄手机在线观看| 亚洲精品久久久久久婷婷小说| xxx大片免费视频| 热re99久久国产66热| 蜜桃国产av成人99| 国产xxxxx性猛交| 国产福利在线免费观看视频| 青青草视频在线视频观看| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 国产男女内射视频| 自线自在国产av| 欧美xxⅹ黑人| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 麻豆av在线久日| 校园人妻丝袜中文字幕| 欧美在线黄色| 18在线观看网站| 久久97久久精品| 久久久a久久爽久久v久久| 午夜福利,免费看| 国产精品av久久久久免费| 日产精品乱码卡一卡2卡三| 国产亚洲欧美精品永久| 国产免费一区二区三区四区乱码| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区 | 亚洲精品日韩在线中文字幕| 黑人欧美特级aaaaaa片| 秋霞在线观看毛片| 亚洲,欧美精品.| 如日韩欧美国产精品一区二区三区| 亚洲情色 制服丝袜| 久久精品久久久久久久性| 精品视频人人做人人爽| 国产黄色免费在线视频| 青青草视频在线视频观看| 久热久热在线精品观看| 精品酒店卫生间| 国产熟女午夜一区二区三区| 欧美少妇被猛烈插入视频| 韩国av在线不卡| 少妇的逼水好多| 亚洲国产精品一区二区三区在线| 十分钟在线观看高清视频www| 国产1区2区3区精品| 香蕉精品网在线| 不卡视频在线观看欧美| 中文字幕人妻熟女乱码| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 国产成人精品无人区| 国产精品三级大全| 国产精品免费视频内射| 日韩熟女老妇一区二区性免费视频| 色94色欧美一区二区| 亚洲精品久久成人aⅴ小说| 午夜福利,免费看| 伦精品一区二区三区| 成人亚洲欧美一区二区av| 高清黄色对白视频在线免费看| 岛国毛片在线播放| 熟女电影av网| 国产欧美日韩综合在线一区二区| 大香蕉久久成人网| 日韩一卡2卡3卡4卡2021年| 亚洲第一区二区三区不卡| 如日韩欧美国产精品一区二区三区| 国产精品国产三级专区第一集| 国产不卡av网站在线观看| av国产久精品久网站免费入址| 国产精品国产三级国产专区5o| av卡一久久| 九色亚洲精品在线播放| 80岁老熟妇乱子伦牲交| 香蕉国产在线看| 国产成人av激情在线播放| 久久精品国产鲁丝片午夜精品| 日本-黄色视频高清免费观看| 久久久精品国产亚洲av高清涩受| 只有这里有精品99| 婷婷色麻豆天堂久久| a级毛片在线看网站| 可以免费在线观看a视频的电影网站 | 蜜桃国产av成人99| 大陆偷拍与自拍| 成年女人毛片免费观看观看9 | 丰满迷人的少妇在线观看| 免费黄网站久久成人精品| 在线看a的网站| 国产麻豆69| 亚洲一区二区三区欧美精品| 少妇人妻精品综合一区二区| 97精品久久久久久久久久精品| 一级a爱视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 精品国产露脸久久av麻豆| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 成人18禁高潮啪啪吃奶动态图| a 毛片基地| 秋霞伦理黄片| 纵有疾风起免费观看全集完整版| 欧美精品一区二区免费开放| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 久久ye,这里只有精品| 久久精品国产亚洲av天美| 满18在线观看网站| videossex国产| 少妇的逼水好多| 日韩一本色道免费dvd| 一区二区三区精品91| 久久精品国产亚洲av高清一级| 看免费成人av毛片| 汤姆久久久久久久影院中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲国产av影院在线观看| 丰满迷人的少妇在线观看| 丝袜脚勾引网站| 久久久久久久亚洲中文字幕| 99精国产麻豆久久婷婷| 少妇人妻 视频| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 亚洲经典国产精华液单| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 又大又黄又爽视频免费| 老汉色∧v一级毛片| 男女下面插进去视频免费观看| 亚洲av电影在线观看一区二区三区| 少妇精品久久久久久久| 欧美bdsm另类| 建设人人有责人人尽责人人享有的| 最近中文字幕2019免费版| 亚洲综合色网址| 老汉色∧v一级毛片| 伊人亚洲综合成人网| 久久韩国三级中文字幕| 亚洲男人天堂网一区| 日韩中文字幕视频在线看片| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 两个人看的免费小视频| 久久久精品免费免费高清| 制服诱惑二区| 夫妻午夜视频| 在线免费观看不下载黄p国产| 国产色婷婷99| www.自偷自拍.com| 下体分泌物呈黄色| 久久精品国产亚洲av涩爱| 亚洲av成人精品一二三区| www.熟女人妻精品国产| 啦啦啦在线免费观看视频4| 99久国产av精品国产电影| 久久国产精品男人的天堂亚洲| 女性生殖器流出的白浆| 天天操日日干夜夜撸| 欧美中文综合在线视频| 国产精品久久久久久精品电影小说| 午夜精品国产一区二区电影| 中文字幕另类日韩欧美亚洲嫩草| 国产精品秋霞免费鲁丝片| 午夜日韩欧美国产| 97在线人人人人妻| 99国产精品免费福利视频| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 久热久热在线精品观看| 91精品国产国语对白视频| 亚洲人成电影观看| 精品一区二区三区四区五区乱码 | 1024香蕉在线观看| 国产女主播在线喷水免费视频网站| 99香蕉大伊视频| 91在线精品国自产拍蜜月| 欧美亚洲日本最大视频资源| 黄色配什么色好看| 国产精品偷伦视频观看了| 又粗又硬又长又爽又黄的视频| 亚洲精品日本国产第一区| 日韩av免费高清视频| 久久99热这里只频精品6学生| 午夜精品国产一区二区电影| 1024香蕉在线观看| 欧美xxⅹ黑人| 午夜激情久久久久久久| 青春草国产在线视频| 99国产精品免费福利视频| 国产一区二区在线观看av| av天堂久久9| 欧美成人午夜精品| 精品酒店卫生间| 大码成人一级视频| 少妇人妻精品综合一区二区| 亚洲中文av在线| 日韩三级伦理在线观看| 少妇 在线观看| 国产一区二区三区综合在线观看| 久久精品久久久久久噜噜老黄| 亚洲精品在线美女| 亚洲熟女精品中文字幕| 国产乱来视频区| 交换朋友夫妻互换小说| 男人爽女人下面视频在线观看| 免费观看在线日韩| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 精品第一国产精品| 亚洲第一青青草原| 日韩成人av中文字幕在线观看| 亚洲,欧美精品.| 国产精品三级大全| 亚洲人成网站在线观看播放| 国产精品免费大片| 亚洲第一av免费看| 777米奇影视久久| 男女午夜视频在线观看| 女人精品久久久久毛片| 老熟女久久久| 精品久久久久久电影网| 高清在线视频一区二区三区| av片东京热男人的天堂| 涩涩av久久男人的天堂| 中国三级夫妇交换| 丝袜喷水一区| 精品午夜福利在线看| 在线观看人妻少妇| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 日韩一卡2卡3卡4卡2021年| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看av| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 国产 精品1| 亚洲精品美女久久久久99蜜臀 | 美国免费a级毛片| 久久精品国产亚洲av天美| 伊人亚洲综合成人网| 国产免费视频播放在线视频| 国产av一区二区精品久久| 26uuu在线亚洲综合色| 亚洲一区中文字幕在线| 99re6热这里在线精品视频| 欧美精品国产亚洲| av线在线观看网站| 国产一区二区三区av在线| 精品少妇一区二区三区视频日本电影 | 伊人久久国产一区二区| 少妇被粗大猛烈的视频| 精品国产超薄肉色丝袜足j| 欧美精品一区二区免费开放| 久久久久久久大尺度免费视频| 欧美日韩成人在线一区二区| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看 | 1024香蕉在线观看| 精品少妇久久久久久888优播| 日韩视频在线欧美| 午夜久久久在线观看| 久久久a久久爽久久v久久| 国产国语露脸激情在线看| 久久精品久久久久久久性| 久久99精品国语久久久| 性色av一级| 欧美日韩成人在线一区二区| 亚洲国产欧美日韩在线播放| 国产麻豆69| videos熟女内射| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| av在线观看视频网站免费| av不卡在线播放| 免费大片黄手机在线观看| 97在线视频观看| 久久久久久久国产电影| 男女下面插进去视频免费观看| 久久热在线av| 亚洲图色成人| 午夜福利网站1000一区二区三区| 久久精品久久精品一区二区三区| 精品人妻在线不人妻| 国产成人91sexporn| 飞空精品影院首页| 男女免费视频国产| 啦啦啦视频在线资源免费观看| 男人添女人高潮全过程视频| 国产极品粉嫩免费观看在线| 亚洲精品第二区| 在线观看免费日韩欧美大片| 男人舔女人的私密视频| av片东京热男人的天堂| 成年女人在线观看亚洲视频| 丰满迷人的少妇在线观看| 国产一区二区三区综合在线观看| 午夜91福利影院| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| 日韩伦理黄色片| 九九爱精品视频在线观看| 精品一区二区免费观看| 青春草视频在线免费观看| 精品一区在线观看国产| 欧美人与善性xxx| 91精品国产国语对白视频| 美女脱内裤让男人舔精品视频| 中文字幕精品免费在线观看视频| 免费观看在线日韩| 亚洲精品第二区| 波多野结衣一区麻豆| 男人舔女人的私密视频| 亚洲天堂av无毛| 午夜精品国产一区二区电影| 少妇的丰满在线观看| 美女中出高潮动态图| 成人二区视频| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 人体艺术视频欧美日本| 久久青草综合色| 美女午夜性视频免费| 日韩中文字幕视频在线看片| 日日啪夜夜爽| 亚洲国产av影院在线观看| 免费黄网站久久成人精品| 在线观看www视频免费| 亚洲av日韩在线播放| 亚洲欧美一区二区三区久久| 久久av网站| 99热网站在线观看| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 最近2019中文字幕mv第一页| 人成视频在线观看免费观看| 天天躁日日躁夜夜躁夜夜| 女性生殖器流出的白浆| 久久国产亚洲av麻豆专区| 国产成人精品福利久久| √禁漫天堂资源中文www| 国产乱人偷精品视频| 国产精品国产三级专区第一集| 卡戴珊不雅视频在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇人妻 视频| 国产爽快片一区二区三区| 亚洲美女黄色视频免费看| 欧美日韩av久久| 不卡视频在线观看欧美| 国产片内射在线| 久久这里有精品视频免费| 亚洲综合色网址| 巨乳人妻的诱惑在线观看| 少妇被粗大猛烈的视频| 2021少妇久久久久久久久久久| 久久久久网色| 日韩精品免费视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久精品古装| 黄频高清免费视频| 国产综合精华液| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| 在线观看免费高清a一片| 宅男免费午夜| 在线观看三级黄色| 一二三四在线观看免费中文在| 国产av码专区亚洲av| 久久 成人 亚洲| 国产伦理片在线播放av一区| 亚洲av福利一区| 欧美成人午夜免费资源| 国产熟女午夜一区二区三区| 热re99久久精品国产66热6| 一级片免费观看大全| 2021少妇久久久久久久久久久| 午夜福利在线观看免费完整高清在| 咕卡用的链子| 美女脱内裤让男人舔精品视频| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 国产亚洲av片在线观看秒播厂| 男女边吃奶边做爰视频| av有码第一页| 水蜜桃什么品种好| 日韩不卡一区二区三区视频在线| 久久这里有精品视频免费| 国产av国产精品国产| 捣出白浆h1v1| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 国产男女内射视频| 久久久久久久大尺度免费视频| 丝袜人妻中文字幕| 欧美 亚洲 国产 日韩一| 你懂的网址亚洲精品在线观看| av不卡在线播放| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 男女免费视频国产| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| 久久精品亚洲av国产电影网| 国产日韩欧美亚洲二区| 亚洲情色 制服丝袜| 中文字幕人妻丝袜制服| 曰老女人黄片| 最新的欧美精品一区二区| 免费在线观看视频国产中文字幕亚洲 | 国产成人91sexporn| 亚洲精品国产av蜜桃| 99香蕉大伊视频| 女人高潮潮喷娇喘18禁视频| 日韩av免费高清视频| 一区二区日韩欧美中文字幕| 精品久久久久久电影网| 男人舔女人的私密视频| 极品人妻少妇av视频| 丁香六月天网| 成人国产av品久久久| 亚洲成国产人片在线观看| 91成人精品电影| 精品久久蜜臀av无| 国产精品久久久av美女十八| 欧美精品国产亚洲| 国产一区二区三区综合在线观看| 曰老女人黄片| 久久久精品国产亚洲av高清涩受| 国产不卡av网站在线观看| av电影中文网址| 欧美xxⅹ黑人| 国产欧美日韩一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 宅男免费午夜| 2021少妇久久久久久久久久久| av免费观看日本| 亚洲国产看品久久| 国产精品久久久久久av不卡| 日韩av不卡免费在线播放| 男人舔女人的私密视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品不卡视频一区二区| 一级毛片我不卡| 制服诱惑二区| 午夜福利乱码中文字幕| videossex国产| 黄片无遮挡物在线观看| 日韩电影二区| 国产免费一区二区三区四区乱码| 国产精品偷伦视频观看了| 久久国产精品男人的天堂亚洲| 日日摸夜夜添夜夜爱| 亚洲精品日韩在线中文字幕| 久久精品国产鲁丝片午夜精品| 亚洲av电影在线观看一区二区三区| 免费观看在线日韩| 久久久久久久国产电影| 久久ye,这里只有精品| 免费女性裸体啪啪无遮挡网站| 女的被弄到高潮叫床怎么办| 精品一区在线观看国产| 免费观看av网站的网址| 国产一级毛片在线| 欧美少妇被猛烈插入视频| 免费高清在线观看日韩| 欧美人与性动交α欧美软件| 欧美精品人与动牲交sv欧美| 中文字幕av电影在线播放| 久久精品夜色国产| 欧美xxⅹ黑人| 老司机影院成人| 欧美精品人与动牲交sv欧美| 久久久久精品性色| 美女大奶头黄色视频| 国产精品一二三区在线看| 香蕉国产在线看| 女人高潮潮喷娇喘18禁视频| 国产亚洲午夜精品一区二区久久| 深夜精品福利| 美女福利国产在线| 免费观看av网站的网址| 秋霞在线观看毛片| 亚洲欧美成人综合另类久久久| tube8黄色片| 欧美精品av麻豆av| 看免费成人av毛片| 在现免费观看毛片|