• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessing chromatin condensation for epigenetics with a DNA-targeting sensor by FRET and FLIM techniques

    2021-11-19 05:39:30XinfuZhangLuWangNingLiYiXiao
    Chinese Chemical Letters 2021年8期

    Xinfu Zhang,Lu Wang,Ning Li,Yi Xiao*

    State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

    ABSTRACT Here we propose a fluorescent sensor,Chroma-V,consisted of a Hoechst ligand(Hoe)to target chromatin DNA and a BODIPY rotor (BDP) to sense the local viscosity that reflects chromatin condensation state.Within Chroma-V, efficient FRET process from Hoe to BDP facilitated a single-excitation ratiometric imaging of nucleus DNA under fluorescence confocal microscope,which utilized the ratio of two channels to enable an intuitive visualization of chromatin condensation state.And fluorescence lifetime imaging(FLIM) based on fluorescent signal from BDP proved to be a more accurate method to quantify the changes of chromatin condensation state under different epigenetic states,including histone acetylation regulated by deacetylase inhibitors, cell apoptosis induced by DNA-bining drugs, and the epithelialmesenchymal transition of HUVEC cells induced by TGF-β.

    Keywords:

    Epigenetics represents molecular mechanisms causing changes in gene expression independent of DNA sequence,the key of which is the regulation of the reversible chromatin rearrangement[1,2].In nucleus, chromatin presents as “beads-on-string” form, with nucleosomes formed by wrapping DNA around histones as the first subunit[3].The tightness of packing between nucleosomes,or the condensation level of chromatin,is variable along lifespan of cells,and is closely related to gene regulation [2].Modifications of histones and DNA through methylation,citrullination,acetylation or phosphorylation can mediate condensation level of chromatin[3,4].For example,addition of an acetyl group on lysine of histones N-terminal tail will limit nucleosomes packing, and thus, turn chromatin loose and open for transcription[5,6].Such rearrangement of chromatin has been found to be the reason of numerous diseases, including the maintenance of drug addiction [7], type 2 diabetes [8], stem cell aging [9], several heart diseases [10], liver health [11] and neuronal tissues regeneration [12].Meanwhile,such epigenetic modifications have been proposed as early biomarkers for potential diagnosis of lung cancer [13,14].Therefore, how to quantitatively characterize such tightness within chromatin of live cells is an attractive and important topic in epigenetics.Nowadays, although the morphology of chromatin can be visualized through fluorescence microscope or electronic microscope[15-19],it remains a big challenge to detect micro-environment factors of chromatin at different epigenetic states [20].

    Since the tightness of chromosome packing directly affects the mobility/viscosity within chromatin, it is reasonable to use local viscosity as an indicator of the chromatin condensation level[21-24].The higher viscosity in chromatin, the higher the condensation level is.Then, the key question turns into how to monitor the changes of viscosity of chromatin in live cells.In this context,some attempts on chromatin viscosity measurement have been carried out through applying DNA-binding fluorescent dyes,e.g., Hoechst 33342 and EGFP [25] in combination with various techniques[21-23,25-29].From the aspect of viscosity sensor,the reliability and universality are two features for sensing chromatin viscosity [30-32].Actually, the conventional DNA-binding dyes represented by Hoechst 33342 should not be classified as viscosity sensors,in the strict sense.Although they indeed possess viscosity responsiveness, their fluorescence properties (brightness, wavelength, lifetime and etc.) are also highly dependent on other factors, such as the balance of binding and unbinding with DNA,polarity, pH.It is likely that, under certain conditions, the fluorescence signals of these dyes might not reflect the viscosity specifically.

    The aim of this work is to develop a reliable sensor specific toward chromatin viscosity,as a practical tool to assess chromatin condensation state for epigenetic research and diagnosis.Ideally,this molecular sensor should meet two requirements.Firstly, it must have high nucleus DNA targeting ability that helps to avoid background signals from non-chromatin areas.Secondly, it must respond to viscosity sensitively and exclusively, without being interfered by other environmental factors.Therefore,we decide to design an integrated molecule that simultaneously maintains above two individual functions without collision.We adopt a Hoechst ligand as the DNA-binding moiety because of its high affinity [33-40].But instead of using this Hoechst moiety for viscosity sensing,we introduce a BODIPY-based molecular rotor as the viscosity reporter.The advantage of BODIPY rotor over other common viscosity-sensitive dyes lies in that its fluorescence properties are sensitive only to viscosity,without any influence by pH and polarity [30-32,41-45].The intramolecular FRET from Hoechst to BODIPY will provide a method of ratiometric imaging for quantitatively indicating of viscosity changes of chromatin.More importantly, the fluorescence lifetime of BODIPY can accurately quantify the local viscosity by FLIM imaging.

    Herein,a molecular sensor,named as Chroma-V,is synthesized by conjugating the Hoechst ligand (Hoe) and BODIPY rotor (BDP)through a “click reaction” (Fig.1 and Scheme S1 in Supporting information).Hoe functions as a targeting ligand and fluorescent marker of DNA.BDP functions as a reporter of chromatin condensation state.Meanwhile, according to our former study on FRET system [46], we infer that this fluorophore dyad should have high intramolecular energy transfer efficiency(ETE)due to a good match of the emission of Hoe and the absorption of BDP.Therefore,Chroma-V may be recommendable for the two-channel ratiometric fluorescence imaging of nucleus DNA through a single excitation.In low-viscosity environment,the BODIPY rotor shows low fluorescence and short fluorescence lifetime due to the free rotation of phenyl group in the excitation state; whereas in highviscosity,the rotor shows high fluorescence and long fluorescence lifetime due to the restriction of rotation.In eukaryotic nucleus,DNA wraps around histones to form nucleosome as the first subunit of chromatin[5],which means the Hoechst ligand actually locates on nucleosomes,specifically on the A-T rich small groove of the 70%accessible surface of nucleosomal DNA[47].Therefore,as chromatin condensation state changes, the level of restriction on the rotation in BDP by nucleosomes packing changes accordingly.Taking into account the above considerations, we expect that Chroma-V is capable of indicating the chromatin condensation state in two ways:the fluorescence ratio between BDP and Hoe and the fluorescence lifetime of BDP.

    Fig.1.(a) The structure of Chroma-V.(b) When binding to loose chromatin, Hoe shows intense fluorescence, while BDP shows weak fluorescence and short fluorescence lifetime; when binding to tight chromatin, both Hoe and BDP shows intense fluorescence, and BDP shows longer fluorescence lifetime.

    In order to assess the sensitivity of Chroma-V towards restriction factors on the rotation of BDP, we first studied its photo-physical properties in solution.Classic viscosity system,water/glycerol,is used to imitate local restriction on BDP.We first treated the DNA with 2 μmol/L of Chroma-V for 60 min in mixtures of water and glycerol with gradient increase of the glycerol proportion.Details can be found in Supporting information.Chroma-V displays two emission peaks upon single excitation at 350 nm.As the restriction (glycerol proportion) increased, the fluorescence maximum of Hoe displays small extent of increase,while the fluorescence maximum of BDP displays significant increase (logarithmic trend).Thus the ratio between two fluorescence maximum (R515/410) exhibits logarithmic increase against viscosity(Figs.2a and b),which can be used as the standard curve for measuring viscosity in a same testing condition.As we infer,this fluorophore dyad shows ETE ranging from 94%to 97%against the viscosity from 14 cp to 409 cp, respectively, which demonstrates a weak dependency of ETE on viscosity.This result is in favor of ratiometric imaging of viscosity with single excitation wavelength.On the other hand, the fluorescence lifetime of BDP moiety also exhibits logarithmic increase against viscosity(Figs.2c and d, Table S1 in Supporting information), which can be used as universal standard curve for quantifying viscosity.These trends are in accordance with former reports on BODIPY rotor [30,41,45].Therefore, both the fluorescence ratio (R515/410) and the fluorescence lifetime can indicate the viscosity of microenvironment, as both of them are independent of concentration of probe.Compared to fluorescence ratio, fluorescence lifetime is an absolute quantitative way to reflect environment factors, which is independent of the devices used to measure it.Therefore, we use fluorescence lifetime for quantitative study of viscosity and use fluorescence ratio for qualitative study of viscosity.In addition,BDP part in Chroma-V is not sensitive to environmental polarity according to fluorescence spectra study (Fig.S1 in Supporting information) and literatures [30,32].These results show that Chroma-V is sensitive towards environmental viscosity or restriction factors on the rotation, which can be used for sensing of chromatin condensation state.

    Fig.2.(a) Changes of fluorescence spectra, and (b) fluorescence ratio (R515/410) of Chroma-V with gradient increase of viscosity; (c and d) changes of fluorescence lifetime of Chroma-V with gradient increase of viscosity.

    We then tested if Chroma-V could target nucleus DNA and report condensation level of chromatin in living cells.We first stained HeLa, MCF7, A549 and HUVEC cells with Chroma-V and then imaged on confocal fluorescence microscope.Chroma-V shows high DNA-specific localization in all these cell lines (Fig.3 and Fig.S2 in Supporting information).As shown in Fig.3,Chroma-V is able to target nucleus DNA in living cells at different stages of cell cycle, which indicates targeting ability is not affected by chromatin state.Specifically, cells in Figs.3c-f should be in prophase, metaphase, metaphase and anaphase, respectively,according to the shape of chromatin.We further incubated stained HeLa cells with Chroma-V for additional 24 h or 48 h.Fluorescence images (Figs.S4 and S5 in Supporting information) displays clear nucleus DNA at different stages of cell cycle at both time points,which demonstrates the ability of Chroma-V to track nucleus DNA for at least 48 h(up to three cell cycles).Moreover,Chroma-V also targets nucleus DNA even in apoptosis cells(Figs.4d and e),which will be described in detail later.MTT test shows 87%cells viability and cells maintain normal cell cycles 48 h post staining, both of which indicate low toxicity of Chroma-V (Fig.S3 in Supporting information).These results prove that Chroma-V could target nucleus DNA specifically and stably.

    Fig.4.Histones or DNA modifications studies with Chroma-V:(a-e)Fluorescence ratio images(RBDP/Hoe)and(g-k)fluorescence lifetime images of HeLa cells treated with(a and g) none, (b and h) TSA, (c and i) VA, (d and j) Etoposide and (e and k) Cisplatin; (f) average fluorescence ratio in a-e; (l) average fluorescence lifetime in g-k.(**, 0.001

    We further collected fluorescence ratio images and fluorescence lifetime images of the same HeLa cells shown in Fig.3.Due to efficient FRET, single excitation with 405 nm laser generates two emission ranges in the Hoe channel and the BDP channel that further produces the ratio images(RBDP/Hoe).As shown in Figs.3mr and s-x,cells show fluorescence ratios ranging from 1.7 to 2.3 and fluorescence lifetime ranging from 2.9 ns to 3.2 ns (170-360 cp)under standard culture condition.When chromatin condensed into chromosome(M phase),as shown in Figs.3o-r and u-x,cells show fluorescence ratio ranging from 1.7 to 2.3 and fluorescence lifetime close to 3.2 ns (~360 cp).Representative fluorescence lifetime fitting decays and distribution histograms are shown in Fig.S6 (Supporting information).According to photophysical properties, Chroma-V displays high fluorescence intensity in BDP channel and long fluorescence lifetime against high viscosity.During mitosis,chromatins are highly condensed,and supposed to perform strong restriction on BDP rotor.As shown in Figs.3m and s,both fluorescence ratio and lifetime images show slight cell-to-cell variations,probably due to differences in chromatin condensation state at different stage of cell cycles.In addition, there are also intranuclear variation, probably due to the distribution of heterochromatin and euchromatin in cells.Thus, we ascribe the differences in fluorescence ratio (RBDP/Hoe) and fluorescence lifetime to the differences of packing affinity between nucleosomes.Although,fluorescence ratio imaging provides opportunity for quantitative detection, the ratio highly depends on the device that generates the data.Unless the standard curve of detected factor against the ratio value is determined with the same device keeping the identical parameters, it is not usable for quantitative calibration.Meanwhile,other processes,such as PET,could affect/interfere fluorescence signal.As shown in Fig.3,the ratio in Figs.3q and r is slightly smaller than that in Figs.3o and p.We infer that PET process from Hoe to BDP in highly compacted chromatin affects the fluorescence intensity of BDP,which further affects the ratio.By contrast,FLIM imaging is a quantitative detection method independent of devices, because fluorescence lifetime is a molecular property generally independent of fluorophore concentration,laser intensity,instrument parameters,or photobleaching[48].Therefore, in this paper, we utilize FLIM imaging for quantitative detection of condensation level of chromatin, while use ratiometric imaging for visual observation and complementary evaluation.

    We finally applied Chroma-V to monitor changes of chromatin condensation state in living cells during epigenetic modifications under various stimulations.In epigenetics, modifications of histones or DNA will affect packing affinity between nucleosomes due to alteration of electrostatic attraction or steric hindrance.To regulate histones modifications,HeLa cells were treated with two histone deacetylase inhibitors(TSA and valproic acid(VA));also,to interrupt DNA functions without sequence alternation, HeLa cells are incubated with two clinical antitumor drugs (Cisplatin and Etoposide).These drug-stimulated cells were stained with Chroma-V,and were evaluated through fluorescence ratio imaging and fluorescence lifetime imaging.As shown in Figs.4a-f, Hela cells treated with TSA, VA, Cisplatin (CP), and Etoposide (ET), all show lower fluorescence ratio than the untreated ones, which indicates a decrease of condensation level of chromatin.Accordingly,cells show shorter fluorescence lifetime than untreated cells(Figs.4g-l).These lifetimes can correspond the condensation level of chromatin to viscosity quantitatively.As histone deacetylase inhibitors, TSA and VA selectively inhibit histone deacetylase(HDAC) to interfering with the removal of acetyl groups from Nterminal tail of H2B histone, which will reduce the net positive charge of N-terminal tail of H2B histone and further inhibit the side-by-side packing between two nucleosomes [4,5].Thus,compared the long fluorescence lifetime of 3.2 ns (and corresponding higher chromatin viscosity of ~360 cp), the drugstimulated cells display much shorter fluorescence lifetime of 2.25±0.03 ns (low viscosity of ~27 cp) and 2.39±0.04 ns (low viscosity of ~43 cp) for TSA and VA groups respectively.For etoposide, it generally inhibits DNA topoisomerase by complexed with enzyme and DNA.In Etoposide group, Chroma-V indicates a decrease of condensation level of chromatin as the fluorescence lifetime decreases to 2.33±0.05 ns (low viscosity of ~32 cp)post treatment by Etoposide.We infer that the formation of Etoposide-enzyme-DNA complex would interfere the formation of nucleosomes or the interaction between nucleosomes due to steric hindrance.As for Cisplatin group,treated cells also exhibit shorter fluorescence lifetime of 2.37±0.08 ns (low viscosity of ~41 cp),which indicates low condensation level of chromatin.Similar with Etoposide, cisplatin can bind to nucleophilic groups in DNA,inducing intrastrand and interstrand DNA cross-links at GC-rich sites.These site-specific cross-links will set steric hindrance against the formation of nucleosomes, which will decrease the viscosity.Representative fluorescence lifetime fitting decays and distribution histograms are shown in Fig.S7 (Supporting information).The above results demonstrate that Chroma-V can quantify condensation level of chromatin through fluorescence lifetime imaging, and indicate the effect of these drugs on chromatin in living cells.

    Fig.5.Epithelial-mesenchymal transition study with Chroma-V: (a-c) Fluorescence ratio images (RBDP/Hoe) and (e-g) fluorescence lifetime images of HUVES cells treated with(a and e)none,(b an f)TGF-β for 48 h and(c and g)96 h;(d)average fluorescence ratio in a-c;(h)average fluorescence lifetime in e-g.(n.s.,P>0.05;*,P< 0.05;***,P<0.001; t test, double-tailed).Scale bar=10 nm.

    Besides histones or DNA modifications, cell transitions as another important type of epigenetic processes should also generate or accompany the variation of chromatin condensation state.To further confirm the applicability of Chroma-V,it is applied in the study of epithelial-mesenchymal transition(EMT)of HUVEC cells stimulated with TGF-β(transforming growth factor-β)[49].As an extracellular signal TGF-β will active one conserved class of transcription factors, called “the Smads” that affect gene expression and further induce long-term changes in cell function.As shown in Fig.5, cells treated with TGF-β for 48 h and 94 h show higher fluorescence ratio of 1.31±0.16 and 3.98±0.34 respectively than control group of 1.11±0.14, which indicates an increase of condensation level of chromatin.Correspondingly, cells show significant increase in fluorescence lifetime from 2.84±0.07 ns(control group) to 3.02±0.14 ns (48 h group) and 3.12±0.06 ns(96 h group),which means an increase in chromatin viscosity from 150 cp to 240 cp and 300 cp.Representative fluorescence lifetime fitting decays and distribution histograms are shown in Fig.S8(Supporting information).As former studies revealed that chromatin underwent significant remodeling in EMT, which is a multi-regulation, including DNA methylation, histone acetylation and histone methylation [50].According to our results, the EMT results in higher degree of chromatin condensation,which,to our knowledge, has not been demonstrated through fluorescence imaging previously.The results further demonstrate that TGF-β induces a molecular pathway that turned chromatin from“l(fā)oose”conformation into “tight” conformation as the cell transition proceeds.The above results demonstrate that Chroma-V is a potential sensor to report condensation level of chromatin during epigenetic transformation.

    In summary, we aim to develop a method for quantitative evaluation of chromatin condensation level in epigenetic processes of living cells.Our idea is to utilize the local viscosity as the indicator of chromatin condensation state.To realize this idea,we design a DNA targetable viscosity fluorescent probe,Chroma-V,by conjugating a Hoechst ligand to a BODIPY rotor.The Hoe part enables the chromatin targeting by binding to DNA.The sensitivity of BDP’s fluorescence lifetime to viscosity enables the accurate quantification of chromatin condensation state through fluorescence lifetime imaging.Also importantly,the intramolecular FRET from Hoe to BDP part facilitates the single-excitation two-channel ratiometric imaging of nucleus DNA and quantitatively sensing of chromatin condensation state.Firstly, fluorescence imaging test shows that Chroma-V is able to target nucleus DNA of diverse cell lines specifically and exhibit morphology changes of chromatin in different stages of cell cycle.Further,fluorescence lifetime imaging displays the changes of chromatin condensation state during epigenetics changes of HeLa cells by drugs stimulation, including histone acetylation induced by HDAC inhibitors, cell apoptosis induced by chemotherapy drugs.Lastly, we induced epithelialmesenchymal transition of HUVEC by stimulating with TGF-β.By using Chroma-V, we, for the first time, quantitatively monitor an increase of condensation level of chromatin during this type of cell transitions through fluorescence lifetime imaging, which may indicate a decrease of gene activity in the resulting cells.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21421005, 21576040, 21776037,21901031 and 22078047), Science and Technology Foundation of Liaoning Province (No.2020-YQ-08), Dalian Science and Technology Innovation Fund (No.2020JJ25CY014) and the Fundamental Research Funds for the Central Universities (Nos.DUT18RC(3)027 and DUT20RC(5)024).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.02.031.

    男人的好看免费观看在线视频| 非洲黑人性xxxx精品又粗又长| 噜噜噜噜噜久久久久久91| 精华霜和精华液先用哪个| 神马国产精品三级电影在线观看| 亚洲国产高清在线一区二区三| 精品不卡国产一区二区三区| 免费看光身美女| 日韩国内少妇激情av| av在线亚洲专区| 亚洲av成人精品一区久久| 久久草成人影院| 亚洲人成网站在线播| 久久精品国产99精品国产亚洲性色| 最近2019中文字幕mv第一页| 亚洲人与动物交配视频| 久久午夜亚洲精品久久| 欧美成人a在线观看| 校园人妻丝袜中文字幕| a级毛片免费高清观看在线播放| 久久久精品94久久精品| 99在线人妻在线中文字幕| 国产亚洲91精品色在线| 美女国产视频在线观看| 国产精品,欧美在线| 亚洲av男天堂| 九九久久精品国产亚洲av麻豆| 日韩欧美一区二区三区在线观看| 国产精品一及| 国产高清激情床上av| 中文欧美无线码| 97人妻精品一区二区三区麻豆| 国产一区二区三区av在线 | 舔av片在线| 乱人视频在线观看| 狠狠狠狠99中文字幕| 国产黄色小视频在线观看| 观看美女的网站| 69av精品久久久久久| 午夜亚洲福利在线播放| 精品免费久久久久久久清纯| 国产高清有码在线观看视频| 国产精品久久久久久av不卡| 丝袜美腿在线中文| 亚洲高清免费不卡视频| 好男人在线观看高清免费视频| 人妻系列 视频| 国产单亲对白刺激| 中文字幕免费在线视频6| 日韩欧美国产在线观看| 黄色欧美视频在线观看| 国产精品人妻久久久久久| 小蜜桃在线观看免费完整版高清| 欧美日本视频| 国产午夜精品论理片| 国产精品一区二区三区四区免费观看| 欧美日韩一区二区视频在线观看视频在线 | 国产三级中文精品| 欧美又色又爽又黄视频| 国产欧美日韩精品一区二区| 联通29元200g的流量卡| 久久人妻av系列| 国内精品久久久久精免费| 成人欧美大片| 尾随美女入室| 一个人看视频在线观看www免费| 国产精品.久久久| 免费av不卡在线播放| 亚洲人成网站在线播放欧美日韩| 欧美最新免费一区二区三区| 亚洲成人久久性| 日产精品乱码卡一卡2卡三| 久久国产乱子免费精品| 精品一区二区免费观看| 国产精品,欧美在线| 婷婷六月久久综合丁香| 精品日产1卡2卡| 欧美+日韩+精品| 久久精品国产99精品国产亚洲性色| 亚洲婷婷狠狠爱综合网| 亚洲美女视频黄频| 草草在线视频免费看| 黑人高潮一二区| 国国产精品蜜臀av免费| 综合色丁香网| 亚洲婷婷狠狠爱综合网| 国产成人aa在线观看| 嘟嘟电影网在线观看| 中文字幕人妻熟人妻熟丝袜美| 99精品在免费线老司机午夜| 欧美人与善性xxx| 网址你懂的国产日韩在线| 亚洲中文字幕一区二区三区有码在线看| 日本成人三级电影网站| 麻豆久久精品国产亚洲av| 午夜福利在线在线| 亚洲国产精品sss在线观看| 一区福利在线观看| 久久久久久伊人网av| 91久久精品国产一区二区三区| 超碰av人人做人人爽久久| 六月丁香七月| 国产老妇伦熟女老妇高清| 美女高潮的动态| 老女人水多毛片| 欧美变态另类bdsm刘玥| 人妻制服诱惑在线中文字幕| 99视频精品全部免费 在线| 国产熟女欧美一区二区| 精品人妻偷拍中文字幕| 国产亚洲5aaaaa淫片| 午夜a级毛片| 爱豆传媒免费全集在线观看| 激情 狠狠 欧美| 免费搜索国产男女视频| 一本久久精品| 国产精品久久久久久精品电影小说 | 中文字幕制服av| 人妻久久中文字幕网| 国产一级毛片在线| 欧美高清性xxxxhd video| 十八禁国产超污无遮挡网站| 日韩视频在线欧美| 18+在线观看网站| 人妻制服诱惑在线中文字幕| 成人亚洲欧美一区二区av| 熟女电影av网| 三级国产精品欧美在线观看| 久久人人精品亚洲av| 最新中文字幕久久久久| 国产精品人妻久久久影院| a级毛片a级免费在线| 中国国产av一级| 亚洲七黄色美女视频| 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 成熟少妇高潮喷水视频| 乱码一卡2卡4卡精品| 中文资源天堂在线| 国产精品乱码一区二三区的特点| 午夜福利在线观看免费完整高清在 | 最新中文字幕久久久久| 国产精品一区二区三区四区久久| 天美传媒精品一区二区| 69av精品久久久久久| 春色校园在线视频观看| 能在线免费观看的黄片| 成人二区视频| 亚洲国产精品久久男人天堂| 一级毛片aaaaaa免费看小| 免费av不卡在线播放| 国产精品久久久久久亚洲av鲁大| 日韩欧美一区二区三区在线观看| 最近视频中文字幕2019在线8| 国模一区二区三区四区视频| 99热6这里只有精品| 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久久久丰满| 日本一本二区三区精品| 欧美日韩国产亚洲二区| 在线天堂最新版资源| 99国产极品粉嫩在线观看| 少妇被粗大猛烈的视频| 久久久成人免费电影| 精品久久久久久久久av| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 国产一级毛片在线| 99久久精品一区二区三区| 黄色一级大片看看| 国产乱人视频| 日韩欧美一区二区三区在线观看| 亚洲18禁久久av| 日韩成人av中文字幕在线观看| 免费观看的影片在线观看| 女人被狂操c到高潮| 级片在线观看| 中国美白少妇内射xxxbb| 你懂的网址亚洲精品在线观看 | 精品一区二区三区人妻视频| 久久精品国产自在天天线| 亚洲国产欧洲综合997久久,| 91在线精品国自产拍蜜月| 亚洲av免费高清在线观看| 日本黄色片子视频| 午夜精品一区二区三区免费看| 国产精品国产高清国产av| 一区二区三区高清视频在线| 国产高清激情床上av| 偷拍熟女少妇极品色| 午夜免费激情av| 久久久国产成人精品二区| 亚洲人成网站高清观看| 少妇高潮的动态图| 国产精品一区二区性色av| 欧美bdsm另类| 哪里可以看免费的av片| 嫩草影院入口| 蜜桃亚洲精品一区二区三区| 18+在线观看网站| 成人特级黄色片久久久久久久| 黄片无遮挡物在线观看| 99在线人妻在线中文字幕| 一区二区三区免费毛片| 成人二区视频| 人人妻人人看人人澡| av在线蜜桃| 美女黄网站色视频| 91久久精品国产一区二区成人| 久99久视频精品免费| 午夜久久久久精精品| 看免费成人av毛片| 日本与韩国留学比较| 97在线视频观看| 精品欧美国产一区二区三| 精品日产1卡2卡| 尾随美女入室| 12—13女人毛片做爰片一| 99热网站在线观看| 岛国在线免费视频观看| 桃色一区二区三区在线观看| 午夜视频国产福利| 亚洲中文字幕日韩| 久久亚洲精品不卡| 舔av片在线| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久 | 一本久久中文字幕| 99久国产av精品| 国产伦在线观看视频一区| 只有这里有精品99| 久久久久久久久久黄片| 亚洲va在线va天堂va国产| 午夜福利成人在线免费观看| 日韩欧美在线乱码| 在线观看av片永久免费下载| 亚洲精品色激情综合| 亚洲四区av| 久久久久久久亚洲中文字幕| 人体艺术视频欧美日本| 久久久久久伊人网av| 中国美女看黄片| 高清毛片免费看| 国产成人freesex在线| 欧美日本亚洲视频在线播放| 黑人高潮一二区| 99riav亚洲国产免费| 亚洲av不卡在线观看| 伦精品一区二区三区| 国产精品无大码| 乱人视频在线观看| 久久人人爽人人片av| 国产伦精品一区二区三区四那| 国内精品美女久久久久久| av免费在线看不卡| 午夜福利视频1000在线观看| 九九爱精品视频在线观看| 国产成人freesex在线| 欧美日韩在线观看h| а√天堂www在线а√下载| 特大巨黑吊av在线直播| 国内精品一区二区在线观看| 亚洲成人中文字幕在线播放| 中文字幕熟女人妻在线| 国产日本99.免费观看| 中文资源天堂在线| 22中文网久久字幕| 国国产精品蜜臀av免费| 秋霞在线观看毛片| 国产av麻豆久久久久久久| 男的添女的下面高潮视频| 色综合站精品国产| 人妻少妇偷人精品九色| avwww免费| 高清日韩中文字幕在线| 欧美xxxx黑人xx丫x性爽| av黄色大香蕉| 国产女主播在线喷水免费视频网站 | 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| h日本视频在线播放| 久久这里只有精品中国| 久久午夜福利片| 99久久人妻综合| 亚洲人成网站在线播放欧美日韩| 五月玫瑰六月丁香| 老司机影院成人| 可以在线观看毛片的网站| 不卡一级毛片| 有码 亚洲区| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片在线播放无| 免费看a级黄色片| 国产一区二区亚洲精品在线观看| 少妇熟女欧美另类| 久久久久久久久久成人| 男人舔女人下体高潮全视频| 亚洲婷婷狠狠爱综合网| 午夜精品一区二区三区免费看| 国内少妇人妻偷人精品xxx网站| 精品久久国产蜜桃| 桃色一区二区三区在线观看| 老熟妇乱子伦视频在线观看| 99久久精品热视频| 亚洲欧美日韩高清专用| 赤兔流量卡办理| 国产午夜精品久久久久久一区二区三区| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 午夜福利在线观看免费完整高清在 | 国产亚洲5aaaaa淫片| 嫩草影院精品99| 国产老妇伦熟女老妇高清| 小蜜桃在线观看免费完整版高清| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 免费av毛片视频| 久久久国产成人免费| 亚洲欧美成人精品一区二区| www日本黄色视频网| 丝袜美腿在线中文| 国产大屁股一区二区在线视频| 一进一出抽搐gif免费好疼| 乱人视频在线观看| 精品无人区乱码1区二区| 美女大奶头视频| 久久久成人免费电影| 久久午夜福利片| 亚洲激情五月婷婷啪啪| 麻豆久久精品国产亚洲av| 日日啪夜夜撸| 久久国产乱子免费精品| 国产亚洲91精品色在线| 草草在线视频免费看| 国产乱人视频| 此物有八面人人有两片| 欧美日本亚洲视频在线播放| 成人国产麻豆网| 久久精品国产亚洲av香蕉五月| 国产一区亚洲一区在线观看| 欧美性感艳星| 嫩草影院精品99| 99九九线精品视频在线观看视频| 欧美zozozo另类| 午夜老司机福利剧场| 色播亚洲综合网| 老司机影院成人| 日本一本二区三区精品| 老司机福利观看| 亚洲第一电影网av| 中文在线观看免费www的网站| 美女被艹到高潮喷水动态| 亚洲无线观看免费| 成人午夜精彩视频在线观看| 在线a可以看的网站| 亚洲一区二区三区色噜噜| 午夜福利在线观看免费完整高清在 | 少妇猛男粗大的猛烈进出视频 | 日本与韩国留学比较| 欧美日韩在线观看h| 亚洲国产精品sss在线观看| 成人国产麻豆网| 97在线视频观看| 国产高清有码在线观看视频| 搡老妇女老女人老熟妇| 国产成人影院久久av| 日本黄色片子视频| 蜜桃久久精品国产亚洲av| 国内精品久久久久精免费| 中文资源天堂在线| 欧美最新免费一区二区三区| 2021天堂中文幕一二区在线观| 久久这里只有精品中国| 丰满乱子伦码专区| 好男人视频免费观看在线| 一级黄片播放器| 久久精品国产亚洲av天美| 又爽又黄a免费视频| 看黄色毛片网站| 亚洲一区二区三区色噜噜| 亚洲av中文av极速乱| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 老司机影院成人| 亚洲av电影不卡..在线观看| 中文资源天堂在线| 欧美日韩一区二区视频在线观看视频在线 | 小说图片视频综合网站| 亚洲成人精品中文字幕电影| 久久人人爽人人爽人人片va| videossex国产| 亚洲欧美精品综合久久99| 大又大粗又爽又黄少妇毛片口| 国产伦一二天堂av在线观看| 永久网站在线| 搡女人真爽免费视频火全软件| 一级毛片久久久久久久久女| 好男人在线观看高清免费视频| 日本黄色片子视频| 97超碰精品成人国产| 日韩av不卡免费在线播放| 我的女老师完整版在线观看| 一个人免费在线观看电影| 99久久精品国产国产毛片| 女人被狂操c到高潮| 日韩大尺度精品在线看网址| 亚洲成人av在线免费| 精品久久久久久久久亚洲| 国产成人福利小说| 午夜福利在线观看吧| 蜜桃久久精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 国产一级毛片七仙女欲春2| 日日撸夜夜添| 69av精品久久久久久| 青春草国产在线视频 | 亚洲人成网站高清观看| 精品不卡国产一区二区三区| 色噜噜av男人的天堂激情| 欧美一区二区亚洲| 国产精品久久久久久精品电影小说 | 夜夜爽天天搞| 午夜福利成人在线免费观看| 一级二级三级毛片免费看| 简卡轻食公司| 亚洲三级黄色毛片| 小说图片视频综合网站| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久 | 大型黄色视频在线免费观看| 久久久久久久久久黄片| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说 | 美女脱内裤让男人舔精品视频 | 亚洲欧美日韩无卡精品| 日本免费a在线| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美日韩东京热| 美女黄网站色视频| 日韩一区二区三区影片| 日韩成人伦理影院| 高清日韩中文字幕在线| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 亚洲国产欧洲综合997久久,| 国产探花在线观看一区二区| 亚洲精品乱码久久久v下载方式| 国产高潮美女av| 日日干狠狠操夜夜爽| 国内精品久久久久精免费| 搡女人真爽免费视频火全软件| 免费在线观看成人毛片| 国产熟女欧美一区二区| 两个人视频免费观看高清| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 国产精品一区二区性色av| 日韩av在线大香蕉| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 又爽又黄无遮挡网站| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 欧美高清成人免费视频www| 国产高清视频在线观看网站| 中文字幕制服av| 亚洲av中文av极速乱| 麻豆国产av国片精品| 一个人看的www免费观看视频| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 亚洲国产精品sss在线观看| 可以在线观看的亚洲视频| 国产亚洲精品久久久久久毛片| 一夜夜www| 亚洲精华国产精华液的使用体验 | 男人和女人高潮做爰伦理| 国产成人freesex在线| 久久久久久国产a免费观看| 日韩欧美国产在线观看| 久久国产乱子免费精品| 久久久久性生活片| 我的老师免费观看完整版| 成人无遮挡网站| 免费看光身美女| 成人漫画全彩无遮挡| 一级毛片aaaaaa免费看小| 免费av毛片视频| 成人亚洲精品av一区二区| 久久久午夜欧美精品| 久久国内精品自在自线图片| 色综合色国产| 青青草视频在线视频观看| 免费一级毛片在线播放高清视频| 免费不卡的大黄色大毛片视频在线观看 | 搞女人的毛片| 听说在线观看完整版免费高清| 亚洲在线观看片| www.色视频.com| 特大巨黑吊av在线直播| 亚洲激情五月婷婷啪啪| 午夜爱爱视频在线播放| 免费观看在线日韩| 久久午夜福利片| 成年版毛片免费区| 亚洲av第一区精品v没综合| 亚洲,欧美,日韩| 久久久久久大精品| 美女被艹到高潮喷水动态| 亚洲国产欧美在线一区| 国产精品永久免费网站| 美女大奶头视频| 麻豆av噜噜一区二区三区| 国产极品天堂在线| 亚洲国产精品成人久久小说 | 最后的刺客免费高清国语| 国产精品国产高清国产av| 中国国产av一级| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 高清在线视频一区二区三区 | 亚洲人成网站在线播放欧美日韩| av视频在线观看入口| 国产精品99久久久久久久久| 淫秽高清视频在线观看| 亚洲在线自拍视频| 美女国产视频在线观看| 久久人人爽人人片av| 一进一出抽搐gif免费好疼| 亚洲国产色片| 不卡一级毛片| 国产成人影院久久av| av天堂中文字幕网| av卡一久久| 黄色一级大片看看| 日本免费a在线| 国产伦理片在线播放av一区 | 一级黄片播放器| 91午夜精品亚洲一区二区三区| 欧美色视频一区免费| 熟女电影av网| 午夜老司机福利剧场| 在线观看免费视频日本深夜| 久久6这里有精品| 欧美激情国产日韩精品一区| 我要看日韩黄色一级片| 国产在线男女| a级毛片a级免费在线| 少妇的逼水好多| 国产一区二区亚洲精品在线观看| 美女被艹到高潮喷水动态| 亚洲无线在线观看| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 色5月婷婷丁香| 深爱激情五月婷婷| 亚洲无线观看免费| 日本av手机在线免费观看| 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 久久亚洲国产成人精品v| 狂野欧美激情性xxxx在线观看| 中文字幕av在线有码专区| 淫秽高清视频在线观看| 中文资源天堂在线| 在线观看美女被高潮喷水网站| 国产伦在线观看视频一区| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 97在线视频观看| 日韩欧美在线乱码| 97在线视频观看| 欧美高清成人免费视频www| 乱人视频在线观看| 国产精品不卡视频一区二区| a级毛片a级免费在线| 97超碰精品成人国产| 国产精品精品国产色婷婷| 久久精品国产亚洲av涩爱 | 精品久久久噜噜| 国产男人的电影天堂91| 日韩视频在线欧美| 成年女人永久免费观看视频| 少妇的逼水好多| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 特级一级黄色大片| 国产黄片视频在线免费观看| 伦理电影大哥的女人| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 国产成人精品一,二区 | 在线播放国产精品三级| 免费电影在线观看免费观看| 免费人成在线观看视频色| 亚洲精品国产成人久久av| 不卡视频在线观看欧美| 中国美女看黄片| 国产精品一区二区性色av| 乱系列少妇在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 亚洲精品成人久久久久久| 久久精品国产亚洲av天美| 91麻豆精品激情在线观看国产| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热|