• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response

    2021-11-19 05:39:30JieXuJunminLiWenchengZhongMengyoWenGlebSukhorukovLiShng
    Chinese Chemical Letters 2021年8期

    Jie Xu,Junmin Li,Wencheng Zhong,Mengyo Wen,Gleb Sukhorukov,Li Shng,b,*

    a State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China

    b NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an 710072, China

    c Materials Research Institute, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom

    ABSTRACT The fascinating luminescence properties of gold nanoclusters(AuNCs)have drawn considerable research interests, and been widely harnessed for a wide range of applications.However, a fundamental understanding towards ligand density’s role in the luminescence properties of these ultrasmall AuNCs remains unclear yet.In this communication, through systematic investigation of surface chemistries of glutathione-protected AuNCs(GSH-AuNCs)with different density of GSH as well as other thiolates,it is discovered that the density of surface ligands can significantly regulate the luminescence properties of AuNCs.Fluorescence lifetime spectroscopy and X-ray photoelectron spectroscopy showed that AuNCs with a higher density of electron-rich ligands facilitate their luminescence generation.Moreover,differences in the surface coverage of AuNCs can also affect their interactions with foreign species, as illustrated by significantly different fluorescence quenching capability of GSH-AuNCs with different ligand density towards Hg2+.This study provides new insight into the intriguing luminescence properties of metal NCs, which is hoped to stimulate further research on the design of metal NCs with strong luminescence and sensitive/specific responses for promising optoelectronic, sensing and imaging applications.

    Keywords:Gold nanoclusters Luminescence enhancement Ligand density Thermal treatment Metal ion

    Metal nanoclusters (NCs) as a novel type of luminescent nanomaterials have attracted extensive attention because of their unique properties such as ultrasmall size, low toxicity, excellent biocompatibility and good photostability [1-3].Until now,luminescent metal NCs have been widely used in the fields of optical sensing [4-7], bioimaging [8,9], light energy conversion[10],light-emitting devices(LED)[11,12]and biomedical research[13-15].Nevertheless,the luminescence quantum yield(QY)of the most currently reported metal NCs (usually < 10%) is relatively lower than many other fluorophores such as organic dyes and quantum dots.Therefore,a great deal of efforts have been devoted in recent years to improve their luminescence QY via different strategies, and more importantly to understand the origin and underlying luminescence mechanism.

    Among the various types of metal NCs, gold nanoclusters(AuNCs) stabilized with thiolate ligands, have been a topic of intense research [16-18].These thiolated AuNCs typically exhibit excellent stability owing to strong gold-sulfur bonds, tunable emission wavelength and easy purification after the synthesis,making them promising for many biological applications.These thiolate ligands not only provide a good protection for stabilizing AuNCs, but also regulate their physicochemical properties and subsequent utilization.In particular, recent studies revealed that the luminescence of thiolated AuNCs is strongly influenced by their surface ligands [19-21].For example, Jin et al.[22] reported that the surface ligands can influence the luminescence of AuNCs in two different ways:(i)charge transfer from the ligands to the metallic core (i.e., ligand-to-metal charge transfer, LMCT) through Au-S bonds, and (ii) direct donation of delocalized electrons from electron-rich atoms/groups of the ligands to the metal core.

    Indeed,both experimental and theoretical studies indicate that highly luminescent AuNCs can be obtained by reasonably engineering ligand-Au core interactions [23,24].One commonly adopted approach is the design of optimal ligands that can promote the luminescence generation process.In contrast, recent studies underlined the potential role of ligand coverage on the luminescence properties of thiolated AuNCs[25].For example,Liu et al.[26] reported that different coverage of ligands on gold nanoparticles (AuNPs) can exhibit different emission colors independent of core sizes.Moreover, researchers found that the coverage density of surface ligands significantly influences the biological activity [27] and stimuli-responsive performances of AuNPs[28].Despite considerable efforts in these previous studies,fundamental understanding towards the role of surface ligands’density on the optical properties of AuNCs remains mystery yet,but of immense importance [29,30].Herein, with glutathioneprotected AuNCs (GSH-AuNCs) as the example, we systematically exploited the role of ligand density on the optical properties of AuNCs with a library of different thiolate ligands.Moreover, we investigated the effect of ligand density on the optical response behaviors of GSH-AuNCs towards metal ions (i.e., Hg2+).

    GSH-AuNCs with different ligand densities were first synthesized based on well-established strategies.GSH-AuNCs with a relatively lower density (denoted as l-GSH-AuNCs, Fig.1a) were directly prepared through the reduction of HAuCl4in the presence of GSH.Further thermal treatment of l-GSH-AuNCs with excess amount of GSH at 50°C for 6 h yields AuNCs with a higher ligand density (denoted as h-GSH-AuNCs,Fig.S1 in Supporting information).X-ray photoelectron spectroscopy (XPS) was first employed to semi-quantitatively estimate the relative density of GSH on the surface of AuNCs (Fig.1b).The relative ligand density of l-GSHAuNCs,calculated based on the ratio of the integrated peak areas of Au and S in XPS spectra(nS/nAu),was 0.89,which is lower than that of h-GSH-AuNCs(0.96).Further characterization with ICP-OES also revealed a higher density of GSH on the surface of h-GSH-AuNCs than that of l-GSH-AuNCs.Meanwhile, TEM images showed the core size of l-GSH-AuNCs and h-GSH-AuNCs is 1.7±0.2 nm and 1.6±0.2 nm,respectively( Figs.1c and d).This result suggests that the size of GSH-AuNCs remain essentially unchanged upon thermal treatment.Together,the above characterization confirmed successful synthesis of two GSH-AuNCs with different ligand density as expected.

    Fig.1.(a) Schematic illustration of the synthesis of GSH-AuNCs with different ligand densities.(b)Characterization of the relative ligand density of GSH-AuNCs by XPS and ICP-OES.(c, d) are representative HR-TEM images of l-GSH-AuNCs and h-GSH-AuNCs,respectively.Insets in the upper right are size histograms based on TEM images.

    We next investigated the effect of the ligand density on the optical properties of these GSH-AuNCs.As shown in Fig.S2(Supporting information), the absorption spectra of l-GSH-AuNCs and h-GSH-AuNCs both display a featureless decay in the UV-vis region.Compared with the absorption spectra of l-GSH-AuNCs,there is only a slight decrease in the region below 500 nm for h-GSH-AuNCs,which is likely due to the difference in the electronic interactions between the surface ligand and the kernel.In stark contrast, the fluorescence properties of both GSH-AuNCs are significantly different.As seen in Fig.2a,the fluorescence intensity of h-GSH-AuNCs is about 2.2 fold stronger than that of l-GSHAuNCs.Note that the fluorescence intensity has been normalized by the absorbance value at the excitation wavelength, thus this increase reflects the QY enhancement directly.Meanwhile, the maximum excitation and emission wavelength remain almost unchanged independent of their surface ligand density,which is in good agreement with previous studies on the luminescence mechanism of AuNCs.Particularly, Xie et al.[31] revealed that the kernel structure of AuNCs is the primary factor to determine the energy of the luminescence, while the surface Au-ligand interactions are the key to determine the QY of AuNCs.

    Fig.2.(a)Fluorescence excitation(dotted line)and emission(solid line)spectra of the l-GSH-AuNCs(black line)and h-GSH-AuNCs(red line)in aqueous solution.(b)Photoluminescence decay profiles of l-GSH-AuNCs (black line) and h-GSH-AuNCs(red line)in aqueous solution,and the corresponding fitted curves by biexponential decay functions.(c) Summary of lifetimes of both GSH-AuNCs (λem=638 nm and λex=412 nm).

    Fluorescence lifetime was further measured to understand the underlying reason contributing to their different fluorescence intensity.As seen in Fig.2b, concomitant with the intensity increase, the fluorescence decay of h-GSH-AuNCs is longer than that of l-GSH-AuNCs.Further fitting the decay with a biexponential decay function yields two lifetime components.Compared with that of l-GSH-AuNCs, the fraction of the long lifetime component(τ2) for h-GSH-AuNCs is significantly increased from 54.75% to 71.69%, together with a decrease in the short lifetime component(τ1) from 45.25%-28.31% (Fig.2c).The microsecond radiative lifetimes of these AuNCs suggested that their emission could be attributed to a LMCT [S→Au(I)] effect from the sulfur atom in the thiolate ligands to the Au center [32].Such a LMCT process is believed to affect the excited state radiative relaxation dynamics[33].Because of more GSH ligands on the surface of h-GSH-AuNCs,they possess a stronger LMCT effect than that of l-GSH-AuNCs,thus the electron radiative relaxation dynamics of h-GSH-AuNCs are slower.Meanwhile, the existence of more surface ligands can provide a better passivation of the surface defects,which will also likely enhance the luminescence of AuNCs via diminishing nonradiative processes.

    In order to evaluate the possible effect of ligand density on the chemical structure of AuNCs,XPS spectra of both GSH-AuNCs were measured(Fig.S3 in Supporting information).The binding energy(BE) of Au 4f7/2and Au 4f5/2for l-GSH-AuNCs falls in 84.5 eV and 88.2 eV, respectively, which is characteristic of AuNCs with the coexistence of Au(0) and Au(I) in the clusters [34,35].The BE of Au 4f for h-GSH-AuNCs remains almost unchanged, suggesting a negligible influence of ligand density on the valence states of Au.Moreover,a similar behavior was observed for the S 2p spectra of GSH-AuNCs,where the BE of the doublet peak attributing to S 2p3/2and S 2p1/2at 162.6 eV and 164.1 eV remain unchanged for both AuNCs(Fig.S3b in Supporting information).However,we note that the relative percentage of oxidized sulfur,locating at 168.2 eV,in h-GSH-AuNCs (22%) is higher than that of l-GSH-AuNCs (18%),indicating the presence of more oxidized sulfur species in AuNCs with a higher ligand density.This is reminiscent of recent finding by Wang et al.that oxidation of lipoic acid-protected AuNCs upon dialysis treatment led to an enhanced luminescence[36],which is in good agreement with our present result.The underlying reason is believed to be similar as the introduction of a positive charge at ligand terminal groups [22,37].The presence of more oxidized sulfur species (i.e., SOx) will increase the oxidation-induced polarization at the core-ligand interfaces.

    The above results clearly demonstrated the important role of ligand density in defining the optical properties of AuNCs, and those with higher surface coverage exhibit enhanced luminescence.Our next question is whether the chemical structure of introduced foreign ligands on the cluster surfaces will influence the properties of final AuNCs.To clarify this question,we replaced GSH with other three custom-designed tripeptides: Lys-Cys-Gly(KCG), Glu-Cys-Lys (ECK) and Glu-Ala-Gly (EAG), during the thermal treatment of l-GSH-AuNCs (Fig.3a).Since both KCG and ECK possess cysteine residues,thermal treatment of l-GSH-AuNCs in the presence of 10-fold excess amount of KCG and ECK will also result in AuNCs with higher ligand density.Indeed,as seen in Fig. 3b and Fig.S4(Supporting information), fluorescence intensity of AuNCs was increased with the emission maximum unchanged for KCG and ECK,which is similar as that of h-GSH-AuNCs.In contrary,almost no change in the fluorescence of GSH-AuNCs was observed in the case of EAG.The main difference in the structure of EAG compared with GSH is the absence of the thiol group, suggesting the important role of cysteine in ensuring effective binding to gold surfaces.The difference in the fluorescence enhancement effect among GSH, KCG and ECK is apparently related to their chemical structures.Interestingly, we found that the fluorescence intensity of final AuNCs upon thermal treatment of these three tripeptides is parallel with their capability of donating electrons to the metal core via the Au-S bond(i.e.,charge transfer capability of the ligand)[22].Ligand containing more electron-rich atoms(e.g.,N)or groups(e.g., NH2) has strong electron donating capability, and is more capable of pushing electron density to the sulfur atom (i.e., Sδ-)and hence affects the Au core through the Au-S bond,resulting in stronger fluorescence enhancement.Herein, compared with GSH,KCG replaces one of its electrophilic carboxylic acid with a primary amine group,thus leading to stronger fluorescence enhancement.While for ECK,despite containing one more amine group than that of GSH, it possesses relatively high steric hindrance of amine groups and produces relatively weak influence on the emission of AuNCs [28].As a result, the fluorescence enhancement effect of ECK on l-GSH-AuNCs is less than that of GSH.In accordance with this mechanism,we found that thermal treatment of l-GSH-AuNCs with short-chain thiolates such as L-penicillamine(LPA), L-cysteine(L-Cys),mercaptosuccinic acid(MSA)and tiopronin(Tio)lead to a significantly decreased fluorescence (Fig.3c and Fig.S5 in Supporting information).Note that these small thiolates possess less electron-rich groups than that of tripeptides like GSH.Thus possible ligand exchange of original GSH on the cluster surfaces with these small thiolates during the thermal treatment will cause fluorescence quenching.

    Fig.3.(a)Chemical structures of GSH and other three GSH analogues.The main difference in the structure of these three analogues from GSH is labeled with dotted blue square.(b)Fluorescence emission spectra of l-GSH-AuNCs in aqueous solution before and after thermal treatment with 10×excess free tripeptides,taken with excitation at 412 nm.(c) The corresponding fluorescence intensity of GSH-AuNCs before and after thermal treatment with different thiolate ligands.

    Owing to their distinct fluorescence property and good biocompatibility,metal NCs have been widely exploited for various sensing applications [38,39].In most sensing applications, the recognition of analytes greatly relies on their direct interactions with the surface of metal NCs.Thus, for AuNCs with different density of surface ligands, their recognition behavior towards foreign species is expected to be different.To testify whether this is the truth,we investigated the fluorescence response of both l-GSHAuNCs and h-GSH-AuNCs towards one of the most commonly studied metal ions,Hg2+.Previously,AuNCs protected by different ligands such as BSA[40],GSH [41] and lipoid acid [42] have been found to possess highly sensitive fluorescence response towards Hg2+.According to these reports,Hg2+can significantly quench the fluorescence of AuNCs via the high-affinity d10-d10metallophilic interaction between Au+on the cluster surface and Hg2+[40].Indeed, as shown in Fig.4a, the fluorescence intensity of l-GSHAuNCs significantly decreased with the addition of Hg2+.In the presence of 1 mmol/L Hg2+,the fluorescence intensity decreased by over 80%, which can be clearly visualized upon illuminating the solution by UV light.However, when adding the same amount of Hg2+into the aqueous solution of h-GSH-AuNCs that possess a higher ligand density,the phenomena is significantly different.As seen in Fig.4b,the fluorescence intensity of h-GSH-AuNCs exhibit only slight decrease upon the addition of Hg2+.Actually, in the presence of 1 mmol/L Hg2+, the fluorescence intensity of h-GSHAuNCs decreased by ca. 20%,which is much less than that of l-GSHAuNCs (Fig.4c).Apparently, the surface coverage of GSH-AuNCs has a strong influence on their interactions with Hg2+.For those AuNCs with a high ligand density, contact of foreign species with the surfaces will be more difficult owing to steric hindrance effect.As a result, their binding affinity to these foreign species such as Hg2+will be much weaker (Fig.4d).We note that Hg2+may also interact with the surface ligands directly and result in fluorescence quenching, but its effect is negilible compared with the strong metallophilic interactions.Our results suggest the possibility of engineering the surface responsive properties of metal NCs by controlling their surface chemistry,i.e.,ligand density.Particularly,when developing metal NC-based sensors, one can enhance the sensitivity by reasonably shrinking the surface ligands’density as long as sufficient stability can be ensured.Furthermore,the density of surface ligands is also expected to alter the formation of protein corona on the surfaces of these AuNCs, which will further affect their subsequent biological fates.

    Fig.4.Changes in fluorescence emission spectra of the as-prepared l-GSH-AuNCs (a) and h-GSH-AuNCs (b) with the addition of increasing concentrations of Hg2+ (from 0 nmol/L to 1 mmol/L),the inset displays the photos of GSH-AuNCs solution under 365 nm UV lamp irradiation in the absence(left)and presence(right)of 1 mmol/L Hg2+.(c)Changes in F/F0 value of l-GSH-AuNCs(black)and h-GSH-AuNCs(red)with the[Hg2+],where F0 and F are the fluorescence intensities of AuNCs at 638 nm in the absence and presence of Hg2+, respectively.(d) Schematic illustration of the distinct fluorescence response of l-GSH-AuNCs and h-GSH-AuNCs towards Hg2+.

    In summary,we showed that the ligand density on the surface of thiolated AuNCs plays an important role in defining their luminescence properties and their response towards foreign metal ions.AuNCs with a higher density of electron-rich ligands such as GSH and those GSH analogues facilitate their luminescence generation.However, the presence of other small thiolates with weak electron-donating capabilities will quench the luminescence of AuNCs,underlying the essential role of the chemical structure of ligands besides their density.Meanwhile,differences in the surface coverage of these ultrasmall AuNCs will affect their further interactions with foreign species such as Hg2+ions.These findings not only advance our understanding about the structure-property relationship of these emerging luminescent metal NCs, but also provide important new avenues for designing robust metal NCs with better performances in applications such as fluorescence sensing, biocatalysis as well as theranostic agents.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.21705129), the Fundamental Research Fund for the Central University (Nos.3102019jcc005,3102019GHJD001), the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (No.2020-QZ-01).The authors would like to thank the Analytical and Testing Center of Northwestern Polytechnical University for the TEM measurements.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the on line version,at doi:https://doi.org/10.1016/j.cclet.2021.02.037.

    多毛熟女@视频| 国产精品久久久久成人av| 成年免费大片在线观看| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 青青草视频在线视频观看| 成年人午夜在线观看视频| 欧美成人午夜免费资源| 色网站视频免费| 少妇丰满av| 18禁在线播放成人免费| 三级国产精品片| 在线观看免费视频网站a站| 九九在线视频观看精品| 中国三级夫妇交换| 国产免费一区二区三区四区乱码| 精品亚洲成a人片在线观看 | 99九九线精品视频在线观看视频| 国产乱来视频区| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 日本vs欧美在线观看视频 | 亚洲精品国产av蜜桃| 国产伦理片在线播放av一区| 久久国产乱子免费精品| 啦啦啦视频在线资源免费观看| 色视频www国产| 赤兔流量卡办理| 日韩欧美 国产精品| 国产精品国产三级国产av玫瑰| 好男人视频免费观看在线| 精品99又大又爽又粗少妇毛片| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 日韩欧美精品免费久久| av在线老鸭窝| 久久热精品热| 精品一区在线观看国产| 国产无遮挡羞羞视频在线观看| 97超碰精品成人国产| 日韩av在线免费看完整版不卡| 日本av手机在线免费观看| 舔av片在线| 高清欧美精品videossex| 大码成人一级视频| 国产av精品麻豆| 亚洲成人av在线免费| av在线蜜桃| 国产亚洲5aaaaa淫片| 搡女人真爽免费视频火全软件| xxx大片免费视频| 91久久精品国产一区二区三区| 啦啦啦中文免费视频观看日本| 国产高清有码在线观看视频| 亚洲成人手机| 青春草国产在线视频| 中文字幕亚洲精品专区| 久久久久久久亚洲中文字幕| 中国美白少妇内射xxxbb| 亚洲欧美日韩东京热| 亚洲第一区二区三区不卡| 亚洲精品,欧美精品| 亚洲一级一片aⅴ在线观看| 少妇高潮的动态图| 欧美成人a在线观看| 国产成人免费无遮挡视频| 婷婷色综合www| 免费在线观看成人毛片| 国产男人的电影天堂91| 亚洲成人av在线免费| 久久精品人妻少妇| 哪个播放器可以免费观看大片| 国产一区亚洲一区在线观看| 综合色丁香网| 毛片女人毛片| 国产精品伦人一区二区| 欧美97在线视频| 伊人久久精品亚洲午夜| 赤兔流量卡办理| 亚洲国产日韩一区二区| av天堂中文字幕网| 国产av码专区亚洲av| 免费人妻精品一区二区三区视频| 免费播放大片免费观看视频在线观看| 人人妻人人添人人爽欧美一区卜 | 久久ye,这里只有精品| 18禁在线播放成人免费| 女人十人毛片免费观看3o分钟| 欧美成人a在线观看| 欧美成人一区二区免费高清观看| 毛片一级片免费看久久久久| 亚洲精品国产色婷婷电影| 午夜激情久久久久久久| 我要看黄色一级片免费的| 99热这里只有是精品在线观看| 午夜精品国产一区二区电影| av视频免费观看在线观看| 国产毛片在线视频| 你懂的网址亚洲精品在线观看| 纵有疾风起免费观看全集完整版| 26uuu在线亚洲综合色| 汤姆久久久久久久影院中文字幕| 欧美日韩精品成人综合77777| 你懂的网址亚洲精品在线观看| 国产黄色免费在线视频| 美女国产视频在线观看| 男女国产视频网站| 卡戴珊不雅视频在线播放| 国产精品久久久久成人av| 欧美高清性xxxxhd video| 中国美白少妇内射xxxbb| 久久女婷五月综合色啪小说| 亚洲av欧美aⅴ国产| 在线观看免费日韩欧美大片 | 国产深夜福利视频在线观看| 中文资源天堂在线| 亚洲电影在线观看av| 日韩伦理黄色片| 亚洲国产精品一区三区| 成年人午夜在线观看视频| 伊人久久国产一区二区| 在线播放无遮挡| 国产淫语在线视频| 亚洲经典国产精华液单| 国产精品一区二区性色av| 草草在线视频免费看| 亚洲国产精品一区三区| av女优亚洲男人天堂| 免费在线观看成人毛片| 精品久久久噜噜| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| 成人影院久久| 女性被躁到高潮视频| 久久精品国产亚洲av天美| 久热这里只有精品99| 国产欧美亚洲国产| 国产在线免费精品| av网站免费在线观看视频| 国产精品福利在线免费观看| 最近最新中文字幕免费大全7| 成人特级av手机在线观看| 国产在视频线精品| av.在线天堂| 美女主播在线视频| 成人特级av手机在线观看| 国内精品宾馆在线| 高清在线视频一区二区三区| 人妻制服诱惑在线中文字幕| 日本与韩国留学比较| 国产精品三级大全| 国产精品熟女久久久久浪| 亚洲精品一区蜜桃| 成人免费观看视频高清| 日本色播在线视频| 一区二区三区四区激情视频| 18禁动态无遮挡网站| 中国美白少妇内射xxxbb| 国产精品一区二区性色av| 男女边摸边吃奶| 亚洲成人一二三区av| 欧美 日韩 精品 国产| 久久这里有精品视频免费| 成年美女黄网站色视频大全免费 | 极品少妇高潮喷水抽搐| h日本视频在线播放| 欧美bdsm另类| 超碰av人人做人人爽久久| 欧美xxxx性猛交bbbb| 国产日韩欧美在线精品| 欧美日韩一区二区视频在线观看视频在线| 国产精品av视频在线免费观看| 午夜免费鲁丝| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 亚洲精品视频女| 有码 亚洲区| 男人爽女人下面视频在线观看| 成人美女网站在线观看视频| 亚洲中文av在线| 99国产精品免费福利视频| 日本欧美国产在线视频| 午夜激情福利司机影院| 国产成人精品一,二区| 欧美区成人在线视频| 又大又黄又爽视频免费| 91在线精品国自产拍蜜月| 啦啦啦啦在线视频资源| kizo精华| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 国产高清三级在线| 亚洲av欧美aⅴ国产| 高清不卡的av网站| 少妇的逼水好多| 久久精品国产自在天天线| 色婷婷久久久亚洲欧美| 久久久久久久久久久免费av| 99九九线精品视频在线观看视频| 男女无遮挡免费网站观看| av免费观看日本| 色婷婷久久久亚洲欧美| 黄色日韩在线| 综合色丁香网| 日韩一区二区视频免费看| 精品国产三级普通话版| 国产人妻一区二区三区在| 伦理电影大哥的女人| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 日韩av不卡免费在线播放| 欧美成人a在线观看| 赤兔流量卡办理| 亚洲伊人久久精品综合| 乱系列少妇在线播放| 日韩电影二区| a 毛片基地| 三级国产精品片| 少妇精品久久久久久久| 免费大片黄手机在线观看| 在线观看免费日韩欧美大片 | 日本vs欧美在线观看视频 | 国产成人一区二区在线| 国产男女内射视频| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 丰满少妇做爰视频| 日日摸夜夜添夜夜添av毛片| 有码 亚洲区| 国产久久久一区二区三区| 日韩av不卡免费在线播放| av卡一久久| 欧美变态另类bdsm刘玥| 国产欧美另类精品又又久久亚洲欧美| 女的被弄到高潮叫床怎么办| 22中文网久久字幕| 插阴视频在线观看视频| 亚洲中文av在线| 91久久精品国产一区二区三区| 国产乱人偷精品视频| 天天躁夜夜躁狠狠久久av| 99九九线精品视频在线观看视频| 丝瓜视频免费看黄片| 午夜福利网站1000一区二区三区| 男女边吃奶边做爰视频| 成年免费大片在线观看| 内射极品少妇av片p| 高清黄色对白视频在线免费看 | 久久99热这里只频精品6学生| 中文字幕制服av| 亚洲av二区三区四区| 一级毛片 在线播放| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 久久 成人 亚洲| 午夜免费男女啪啪视频观看| 高清av免费在线| 高清毛片免费看| 日产精品乱码卡一卡2卡三| 国产精品熟女久久久久浪| 五月开心婷婷网| 亚洲国产精品一区三区| 人人妻人人看人人澡| 爱豆传媒免费全集在线观看| 中文字幕人妻熟人妻熟丝袜美| 中文欧美无线码| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 97在线视频观看| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 高清黄色对白视频在线免费看 | 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 成人一区二区视频在线观看| 国产精品偷伦视频观看了| 国产一区有黄有色的免费视频| 女人久久www免费人成看片| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| a级一级毛片免费在线观看| freevideosex欧美| 精品少妇久久久久久888优播| 亚洲图色成人| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 亚洲精品自拍成人| 好男人视频免费观看在线| 精品视频人人做人人爽| 久久99蜜桃精品久久| 欧美日韩国产mv在线观看视频 | 深夜a级毛片| 国模一区二区三区四区视频| 大又大粗又爽又黄少妇毛片口| 久久久久久九九精品二区国产| 欧美一区二区亚洲| 亚洲美女搞黄在线观看| 三级国产精品欧美在线观看| 丰满迷人的少妇在线观看| 亚洲人成网站在线播| 1000部很黄的大片| 免费大片18禁| 久久av网站| 多毛熟女@视频| 精品久久久噜噜| 最近最新中文字幕免费大全7| 国产深夜福利视频在线观看| 精品久久久久久电影网| 亚洲av在线观看美女高潮| 欧美日韩在线观看h| 一级黄片播放器| 在线观看av片永久免费下载| 丝袜脚勾引网站| 三级国产精品欧美在线观看| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 99久国产av精品国产电影| 插逼视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| 黄色怎么调成土黄色| 欧美高清成人免费视频www| 有码 亚洲区| 中文字幕久久专区| 一级a做视频免费观看| 欧美一级a爱片免费观看看| 日韩大片免费观看网站| 一级爰片在线观看| 亚州av有码| 老师上课跳d突然被开到最大视频| 亚洲怡红院男人天堂| 久久久久久久大尺度免费视频| 中文欧美无线码| 久久99热6这里只有精品| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 日韩欧美精品免费久久| 免费观看在线日韩| 国产精品熟女久久久久浪| 成年美女黄网站色视频大全免费 | 久久6这里有精品| 日本黄色日本黄色录像| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜 | 免费久久久久久久精品成人欧美视频 | 久久久a久久爽久久v久久| 亚洲av男天堂| 免费少妇av软件| xxx大片免费视频| 国产精品麻豆人妻色哟哟久久| 亚洲综合色惰| av在线老鸭窝| 精品久久久久久久久av| 欧美变态另类bdsm刘玥| 久久综合国产亚洲精品| 麻豆成人av视频| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 五月开心婷婷网| 嫩草影院入口| 肉色欧美久久久久久久蜜桃| 中文乱码字字幕精品一区二区三区| 大话2 男鬼变身卡| 51国产日韩欧美| 国产精品一区二区性色av| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 午夜激情福利司机影院| 少妇人妻一区二区三区视频| 纯流量卡能插随身wifi吗| 最新中文字幕久久久久| av黄色大香蕉| av又黄又爽大尺度在线免费看| 亚洲国产毛片av蜜桃av| 一级a做视频免费观看| 午夜视频国产福利| 国产综合精华液| 人妻制服诱惑在线中文字幕| 欧美xxxx黑人xx丫x性爽| 国产男女超爽视频在线观看| 美女cb高潮喷水在线观看| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 中文欧美无线码| 国产精品蜜桃在线观看| 亚洲av.av天堂| 国产精品麻豆人妻色哟哟久久| 丰满人妻一区二区三区视频av| 国产免费又黄又爽又色| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 91aial.com中文字幕在线观看| 久热久热在线精品观看| 久久精品国产自在天天线| 99热6这里只有精品| 两个人的视频大全免费| 国产视频内射| 最黄视频免费看| 亚洲国产精品国产精品| 中文精品一卡2卡3卡4更新| 男女无遮挡免费网站观看| a级毛片免费高清观看在线播放| 亚洲欧美成人精品一区二区| 高清不卡的av网站| 肉色欧美久久久久久久蜜桃| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 婷婷色av中文字幕| 美女国产视频在线观看| 一级毛片aaaaaa免费看小| 国产精品一区二区在线不卡| 大香蕉久久网| 亚洲四区av| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类| 观看av在线不卡| 内地一区二区视频在线| xxx大片免费视频| 赤兔流量卡办理| 午夜免费鲁丝| 夫妻性生交免费视频一级片| 中文乱码字字幕精品一区二区三区| 亚洲精品亚洲一区二区| 亚洲成人一二三区av| 国产又色又爽无遮挡免| 亚洲自偷自拍三级| 赤兔流量卡办理| 午夜免费鲁丝| 精品国产露脸久久av麻豆| 日本欧美国产在线视频| 亚洲av中文av极速乱| 香蕉精品网在线| 免费播放大片免费观看视频在线观看| 妹子高潮喷水视频| 一区二区三区精品91| 中文字幕精品免费在线观看视频 | 久久国产精品大桥未久av | 久久97久久精品| 人人妻人人爽人人添夜夜欢视频 | 日本vs欧美在线观看视频 | 久久国产精品男人的天堂亚洲 | 2021少妇久久久久久久久久久| h日本视频在线播放| 亚洲色图综合在线观看| 亚洲,欧美,日韩| 亚洲精品国产成人久久av| 成年女人在线观看亚洲视频| 国产成人精品婷婷| 国产成人a区在线观看| 中国三级夫妇交换| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 久久久久久久国产电影| 18禁裸乳无遮挡动漫免费视频| 80岁老熟妇乱子伦牲交| 国产黄片视频在线免费观看| av.在线天堂| 午夜激情福利司机影院| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 久久久久久久精品精品| 亚洲国产高清在线一区二区三| 久久久久国产精品人妻一区二区| 日本午夜av视频| 免费黄频网站在线观看国产| 成人18禁高潮啪啪吃奶动态图 | 久久精品国产亚洲av天美| 啦啦啦在线观看免费高清www| 欧美高清成人免费视频www| 久久国产亚洲av麻豆专区| 肉色欧美久久久久久久蜜桃| 建设人人有责人人尽责人人享有的 | 91在线精品国自产拍蜜月| 高清午夜精品一区二区三区| 少妇 在线观看| 免费播放大片免费观看视频在线观看| 男女无遮挡免费网站观看| 午夜免费鲁丝| 永久网站在线| 男人狂女人下面高潮的视频| 日韩三级伦理在线观看| 欧美人与善性xxx| 国语对白做爰xxxⅹ性视频网站| 日韩av不卡免费在线播放| 亚洲国产成人一精品久久久| 啦啦啦在线观看免费高清www| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品成人av观看孕妇| 最新中文字幕久久久久| av专区在线播放| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 日本色播在线视频| 欧美日韩视频高清一区二区三区二| 色5月婷婷丁香| 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 国产成人freesex在线| 午夜免费鲁丝| 岛国毛片在线播放| 欧美xxxx黑人xx丫x性爽| 免费观看在线日韩| 97精品久久久久久久久久精品| 亚洲欧美精品专区久久| 精品人妻熟女av久视频| 亚洲欧美精品专区久久| 免费黄网站久久成人精品| 日韩三级伦理在线观看| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看| 男女无遮挡免费网站观看| 中国国产av一级| 国产探花极品一区二区| 六月丁香七月| 亚洲欧美一区二区三区黑人 | xxx大片免费视频| 国产淫语在线视频| 搡老乐熟女国产| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 全区人妻精品视频| 欧美精品亚洲一区二区| 久久99蜜桃精品久久| 免费在线观看成人毛片| 精华霜和精华液先用哪个| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 久久精品国产鲁丝片午夜精品| 久久久久精品久久久久真实原创| 特大巨黑吊av在线直播| 欧美日韩精品成人综合77777| 丝瓜视频免费看黄片| 美女国产视频在线观看| 在线观看一区二区三区激情| 免费久久久久久久精品成人欧美视频 | 久久精品久久久久久久性| 亚洲欧美日韩无卡精品| 特大巨黑吊av在线直播| 久久久成人免费电影| 日本欧美视频一区| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 女人久久www免费人成看片| 18禁裸乳无遮挡免费网站照片| 国产免费一级a男人的天堂| 国产中年淑女户外野战色| av播播在线观看一区| 如何舔出高潮| 国产伦精品一区二区三区视频9| 一级爰片在线观看| 亚洲欧洲日产国产| 99re6热这里在线精品视频| 午夜福利视频精品| 夜夜看夜夜爽夜夜摸| 国产 精品1| 日本av免费视频播放| 欧美高清性xxxxhd video| 十分钟在线观看高清视频www | 丝袜脚勾引网站| 久久99蜜桃精品久久| 免费黄网站久久成人精品| 97超视频在线观看视频| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 成人亚洲欧美一区二区av| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 亚洲av不卡在线观看| 十分钟在线观看高清视频www | 精品人妻一区二区三区麻豆| 日韩av免费高清视频| 日日摸夜夜添夜夜添av毛片| 91久久精品国产一区二区成人| 欧美日韩综合久久久久久| 简卡轻食公司| 亚洲天堂av无毛| 国产 一区 欧美 日韩| 国产亚洲午夜精品一区二区久久| 日韩国内少妇激情av| 性色avwww在线观看| 天天躁夜夜躁狠狠久久av| 晚上一个人看的免费电影| 十分钟在线观看高清视频www | videos熟女内射| 一级毛片 在线播放| 人人妻人人看人人澡| 卡戴珊不雅视频在线播放| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片| 午夜免费男女啪啪视频观看| 天天躁日日操中文字幕| av网站免费在线观看视频| 国产欧美日韩一区二区三区在线 | 国产免费一级a男人的天堂|