黃玉輝,蘇華,程卓一,侯國強(qiáng)
(西北工業(yè)大學(xué) 機(jī)電學(xué)院,西安 710072)
采用先進(jìn)密封技術(shù)來提高航空發(fā)動(dòng)機(jī)性能和效率是一項(xiàng)低投入和高收益的舉措[1-2]。在雙轉(zhuǎn)子渦扇發(fā)動(dòng)機(jī)中,高壓轉(zhuǎn)子通過中介軸承跨支于低壓轉(zhuǎn)子上,使得中介軸承的工況受兩轉(zhuǎn)子影響,其潤滑與密封問題尤為突出[3]。對于密封中介軸承的軸間密封而言,因兩轉(zhuǎn)子的跳動(dòng)和高轉(zhuǎn)速等惡劣工況,傳統(tǒng)剛性接觸式密封難以勝任,柔性接觸式密封需要避免金屬磨粒經(jīng)氣流卷入軸承滾道內(nèi)損傷軸承,因此多采用非接觸式密封?,F(xiàn)役的軸間篦齒密封,存在著因轉(zhuǎn)子跳動(dòng)而造成齒尖磨損后泄漏增大的問題,研究人員嘗試了多種其他改進(jìn)形式的軸間密封,包括以刷式密封為代表的柔性接觸式軸間密封[4-7]和以動(dòng)壓/靜壓原理為基礎(chǔ)的非接觸式軸間氣膜密封[8-9]。
氣膜密封因其無接觸磨損和長壽命的優(yōu)勢而受到青睞。自Dirusso[10]提出軸間氣膜密封形式后,對軸間氣膜密封進(jìn)行了不少有益的探索。Gamble[11]通過實(shí)驗(yàn)驗(yàn)證了端面氣膜密封應(yīng)用于雙轉(zhuǎn)子軸間的可行性。劉雨川[12]和吳寧興等[13]也通過實(shí)驗(yàn)驗(yàn)證了一種類似于Dirusso[10]所提密封結(jié)構(gòu)形式的軸間端面氣膜密封的性能。王之櫟等[14-15]分析了一種反轉(zhuǎn)軸間氣膜密封的密封性能和動(dòng)特性特征。劉曉玉等[16]對反轉(zhuǎn)軸間雙端面氣膜密封的動(dòng)特性規(guī)律進(jìn)行了理論探討。上述軸間氣膜密封的研究工作對認(rèn)識端面氣膜密封在雙轉(zhuǎn)子軸間的工作機(jī)制有著積極的意義。
針對一種端面軸間氣膜密封試驗(yàn)時(shí)可能發(fā)生密封環(huán)在外圓周面上的周向滑動(dòng)而導(dǎo)致密封環(huán)的過度磨損失效,而目前分析中對密封環(huán)周向滑動(dòng)的判定方法介紹較少,只能通過拆卸后觀察。鑒于此,本文提出了預(yù)測密封環(huán)與外層轉(zhuǎn)子之間周向相對滑動(dòng)的判定方法。本文的研究為端面軸間氣膜密封的工程設(shè)計(jì)分析提供了理論指導(dǎo)。
端面軸間密封的結(jié)構(gòu)形式如圖1所示,密封室與內(nèi)層轉(zhuǎn)子連接,密封環(huán)與外層轉(zhuǎn)子連接。密封室的兩側(cè)端面上開有動(dòng)壓槽,密封環(huán)與密封室兩側(cè)端面之間存在微小間隙,氣體沿此間隙通道泄漏。密封環(huán)與外層轉(zhuǎn)子為小過盈配合,工作時(shí),外層轉(zhuǎn)子帶動(dòng)密封環(huán)同步旋轉(zhuǎn),密封室與內(nèi)層轉(zhuǎn)子同步旋轉(zhuǎn)。正常工作下,高、低壓側(cè)密封室與密封環(huán)在端面上產(chǎn)生流體動(dòng)壓效應(yīng),依靠兩側(cè)端面的動(dòng)壓氣膜力使密封環(huán)處于軸向平衡狀態(tài),密封環(huán)的左右兩側(cè)端面與密封室端面不發(fā)生接觸。當(dāng)內(nèi)/外層轉(zhuǎn)子中任一或同時(shí)產(chǎn)生軸向跳動(dòng)時(shí),密封環(huán)與密封室相對應(yīng)端面上的間隙減小,而另一側(cè)端面上的間隙增大。這種端面間隙的變化引起動(dòng)壓效應(yīng)增強(qiáng)或削弱,作用于密封環(huán)兩側(cè)端面上的動(dòng)壓氣膜合力克服密封環(huán)與外層轉(zhuǎn)子間的摩擦力,推動(dòng)密封環(huán)在軸向產(chǎn)生“浮動(dòng)”,避免了因轉(zhuǎn)子軸向跳動(dòng)時(shí)密封環(huán)與密封室在端面上產(chǎn)生的摩擦。
圖1 軸間密封結(jié)構(gòu)示意圖Fig.1 Schematic of seal structure between shafts
密封環(huán)的設(shè)計(jì)準(zhǔn)則為:在允許泄漏的情況下,避免密封環(huán)與外層轉(zhuǎn)子產(chǎn)生周向相對滑動(dòng)而使密封環(huán)過度磨損失效。
分析密封環(huán)與外層轉(zhuǎn)子周向相對滑動(dòng)的特點(diǎn),二者只可能在外層轉(zhuǎn)子轉(zhuǎn)速突變時(shí)發(fā)生周向相對滑動(dòng)。也就是說,外層轉(zhuǎn)子加/減速時(shí),密封環(huán)與外層轉(zhuǎn)子的周向相對滑動(dòng)是由于二者間摩擦力的轉(zhuǎn)矩不足以帶動(dòng)密封環(huán)產(chǎn)生與外層轉(zhuǎn)子相同的角加速度。當(dāng)二者無相對滑動(dòng)時(shí),密封環(huán)外圓周向上的摩擦力帶動(dòng)密封環(huán)與外層轉(zhuǎn)子同步轉(zhuǎn)動(dòng),此時(shí)摩擦力產(chǎn)生的轉(zhuǎn)矩足以對密封環(huán)產(chǎn)生與外層轉(zhuǎn)子相同的角加速度,否則二者將產(chǎn)生滑動(dòng)。據(jù)此,密封環(huán)與外層轉(zhuǎn)子是否發(fā)生相對滑動(dòng)取決于密封環(huán)要保持與外層轉(zhuǎn)子同步轉(zhuǎn)動(dòng)所需的慣性力矩T與密封環(huán)外圓周上所受到摩擦力矩M 之間的關(guān)系,即周向相對滑動(dòng)的判定準(zhǔn)則為
2.2.1 密封環(huán)慣性力矩的計(jì)算
表1列出了密封環(huán)的有關(guān)參數(shù)。
表1 密封環(huán)參數(shù)Table 1 Param eters of seal ring
密封環(huán)繞軸線的轉(zhuǎn)動(dòng)慣量為
密封環(huán)的質(zhì)量為
式中:ρ1為密封環(huán)密度。
密封環(huán)在ω角速度下對應(yīng)的慣性力矩為
2.2.2 密封環(huán)摩擦力矩的計(jì)算
密封環(huán)外圓周面積為
最大靜摩擦力下的摩擦力矩為
式中:系數(shù)K為最大靜摩擦力與滑動(dòng)摩擦力之間的比例系數(shù);pe為旋轉(zhuǎn)時(shí)密封環(huán)外邊界上受到來自外層轉(zhuǎn)子的正壓力,可根據(jù)彈性力學(xué)的理論求解。離心效應(yīng)影響下的壓力pe受密封環(huán)和外層轉(zhuǎn)子的變形影響,需要求解密封環(huán)與外層轉(zhuǎn)子在離心效應(yīng)下的變形。
2.3.1 密封環(huán)的彈性變形
假定密封環(huán)符合彈性力學(xué)的各假設(shè)條件,密封環(huán)的寬度遠(yuǎn)小于其直徑,可以看作一個(gè)空心圓盤,如圖2所示,其中密封環(huán)的內(nèi)半徑為r1,外半徑為r2。密封環(huán)與外層轉(zhuǎn)子以相同的角速度ω旋轉(zhuǎn)時(shí),僅受徑向離心力的作用,軸向應(yīng)力和切應(yīng)力分量均為零[17-18],不計(jì)重力影響,可簡化為軸對稱平面應(yīng)力問題[19]。
圖2 密封環(huán)Fig.2 Seal ring
密封環(huán)繞其中心軸旋轉(zhuǎn)時(shí),單位體積內(nèi)的徑向離心力為
式中:r為密封環(huán)半徑。
在圓柱坐標(biāo)系下得到離心效應(yīng)影響下的平衡微分方程為
式中:σr為徑向應(yīng)力分量;σθ為切向應(yīng)力分量。
軸對稱下幾何方程為
式中:εr為徑向應(yīng)變分量;εθ為切向應(yīng)變分量;us為密封環(huán)徑向彈性變形。
軸對稱平面應(yīng)力問題的物理方程為
式中:E1為密封環(huán)彈性模量;ν1為密封環(huán)泊松比。將幾何方程(8)代入物理方程(9)得到位移表示的物理方程,再將位移表示的物理方程代入平衡微分方程(7),得到位移表示的平衡微分方程:
無旋轉(zhuǎn)時(shí),密封環(huán)外表面(r=r2)與外層轉(zhuǎn)子配合的部分受到正壓力p的作用,內(nèi)表面(r=r1)為自由面,因此邊界條件為
對二階變系數(shù)非齊次常微分方程(10)求解,得到高速旋轉(zhuǎn)過程中密封環(huán)在半徑r處的徑向膨脹位移為
2.3.2 外層轉(zhuǎn)子的彈性變形
因外層轉(zhuǎn)子的軸向尺寸較大,以角速度ω旋轉(zhuǎn),將轉(zhuǎn)子等效為等截面梁,假設(shè)任意截面都有相同的位移和應(yīng)力分布,可簡化為軸對稱平面應(yīng)變問題。
外層轉(zhuǎn)子繞其中心軸旋轉(zhuǎn)時(shí),單位體積內(nèi)的徑向離心力為Fc2=ρ2ω2r。圓柱坐標(biāo)系下離心效應(yīng)影響下的平衡微分方程為
式中:ρ2為外層轉(zhuǎn)子的密度。
幾何方程為
式中:ur為外層轉(zhuǎn)子徑向彈性變形。
軸對稱平面應(yīng)變問題的物理方程為
式中:E2為外層轉(zhuǎn)子彈性模量;ν2為外層轉(zhuǎn)子泊松比。
將幾何方程(14)代入物理方程(15)得到位移表示的本構(gòu)關(guān)系,再將位移表示的本構(gòu)關(guān)系代入平衡微分方程(13)得到位移表示的平衡微分方程:
無旋轉(zhuǎn)時(shí),外層轉(zhuǎn)子內(nèi)表面(r=R1)處受正壓力p的作用,外表面(r=R2)為自由面,因此邊界條件為
對二階變系數(shù)非齊次常微分方程(16)結(jié)合邊界條件(17)求解,得到高速旋轉(zhuǎn)過程中外層轉(zhuǎn)子在半徑r處的徑向膨脹位移為
2.3.3 外層轉(zhuǎn)子與密封環(huán)的連接狀態(tài)分析
密封環(huán)與外層轉(zhuǎn)子裝配后,為了保證裝配的可靠性(即外層轉(zhuǎn)子旋轉(zhuǎn)時(shí)能帶動(dòng)密封環(huán)同步旋轉(zhuǎn)),密封環(huán)與外層轉(zhuǎn)子之間的裝配過盈量所產(chǎn)生的徑向應(yīng)力不能為0。在圖1中,外層轉(zhuǎn)子的內(nèi)半徑為R1,外半徑為R2,密封環(huán)的內(nèi)半徑為r1,外半徑為r2。相應(yīng)地,在套裝處(r=r2=R1)密封環(huán)和外層轉(zhuǎn)子的徑向膨脹變形分別為us(r2)和ur(R1),可由式(12)和式(18)計(jì)算得到。
離心膨脹下的等效直徑過盈量為
式(20)為離心膨脹影響下在套裝面上的等效壓強(qiáng)的計(jì)算[20]:
式中:d為公稱直徑;d1為密封環(huán)的內(nèi)直徑;d2為外層轉(zhuǎn)子的外直徑。
離心效應(yīng)下,密封環(huán)與外層轉(zhuǎn)子接觸面上的正壓力pe產(chǎn)生的摩擦力矩M不足以克服突加減速時(shí)的慣性力矩,便產(chǎn)生了二者間周向相對滑動(dòng),稱在最大角加速度范圍內(nèi)產(chǎn)生周向相對滑動(dòng)時(shí)的最大轉(zhuǎn)速為臨界滑動(dòng)轉(zhuǎn)速。稱密封環(huán)與外層轉(zhuǎn)子在套裝面上的應(yīng)力為0時(shí)所對應(yīng)的轉(zhuǎn)速為過盈松脫轉(zhuǎn)速,當(dāng)轉(zhuǎn)速達(dá)到過盈松脫轉(zhuǎn)速后,密封環(huán)與外層轉(zhuǎn)子之間的過盈連接將失效,由式(20)知,在套裝處(r=r2=R1),Δ≤0時(shí)(即密封環(huán)的變形量小于外層轉(zhuǎn)子的變形量),過盈連接失效。需要指出,當(dāng)外層轉(zhuǎn)子穩(wěn)定運(yùn)轉(zhuǎn)時(shí)(即角加速度為0),臨界滑動(dòng)轉(zhuǎn)速即為過盈松脫轉(zhuǎn)速,當(dāng)存在加減速時(shí),產(chǎn)生周向相對滑動(dòng)的臨界滑動(dòng)轉(zhuǎn)速與過盈松脫轉(zhuǎn)速不同。
密封環(huán)和外層轉(zhuǎn)子的幾何和工況參數(shù)列于表2中。
表2 計(jì)算參數(shù)(部分幾何參數(shù)與圖1對應(yīng))Table 2 Com putational param eters(refer to Fig.1)
3.2.1 密封環(huán)的彈性模量和泊松比小于外層轉(zhuǎn)子
由表2和表3數(shù)據(jù)計(jì)算得到外層轉(zhuǎn)子與密封環(huán)在套裝處徑向膨脹變形隨轉(zhuǎn)速的變化關(guān)系如圖3所示。隨著轉(zhuǎn)速的升高,密封環(huán)的徑向膨脹變形遠(yuǎn)快于外層轉(zhuǎn)子,等效過盈量增大,因此,在高速時(shí),密封環(huán)在套裝面上所受的正壓力增大。這是因?yàn)殡x心膨脹受彈性模量和泊松比的影響,在離心效應(yīng)下,密封環(huán)膨脹變形大,外層轉(zhuǎn)子膨脹變形小,隨著轉(zhuǎn)速升高,相當(dāng)于二者在套裝面上越壓越緊。
表3 材料性能參數(shù)一Table 3 M aterial property param eters I
圖3 密封環(huán)彈性模量和泊松比小于外層轉(zhuǎn)子時(shí)套裝面上徑向膨脹變形Fig.3 Radial expansion deformation on the sleeve surface when elastic modulus and Poisson’s ratio of seal ring are smaller than outer rotor
3.2.2 密封環(huán)的彈性模量和泊松比大于外層轉(zhuǎn)子
由表2和表4數(shù)據(jù)計(jì)算得到二者在套裝面上的徑向變形隨轉(zhuǎn)速的變化關(guān)系如圖4所示。隨著轉(zhuǎn)速的增大,在套裝面上密封環(huán)的彈性變形小于外層轉(zhuǎn)子的彈性變形,等效過盈量減小,超過過盈松脫轉(zhuǎn)速后,二者間的過盈連接失效,即發(fā)生周向相對滑動(dòng)。這是因?yàn)槊芊猸h(huán)膨脹變形小,外層轉(zhuǎn)子的膨脹變形大,隨著轉(zhuǎn)速的升高,相當(dāng)于二者在套裝面上配合越來越松。
圖4 密封環(huán)彈性模量和泊松比大于外層轉(zhuǎn)子時(shí)套裝面上徑向膨脹變形Fig.4 Radial expansion deformation on sleeve surface when elastic modulus and Poisson’s ratio of seal ring are larger than outer rotor
表4 材料性能參數(shù)二Table 4 Material property param etersⅡ
3.2.3 密封環(huán)的彈性模量和泊松比與外層轉(zhuǎn)子相同
密封環(huán)和外層轉(zhuǎn)子材料性能相同時(shí)(按表2和表5數(shù)據(jù)計(jì)算),密封環(huán)與外層轉(zhuǎn)子在套裝面上的徑向變形隨轉(zhuǎn)速的關(guān)系如圖5所示。隨著轉(zhuǎn)速增大,二者的膨脹量都增大,超過過盈松脫轉(zhuǎn)速后,二者在配合面上亦產(chǎn)生過盈失效,發(fā)生周向相對滑動(dòng)。這與文獻(xiàn)[18](見圖6)中的轉(zhuǎn)子與軸承套裝時(shí)的徑向離心膨脹變形產(chǎn)生的規(guī)律一致。
表5 材料性能參數(shù)三Table 5 Material property param etersⅢ
圖5 密封環(huán)和外層轉(zhuǎn)子材料性能相同時(shí)套裝面上徑向膨脹變形Fig.5 Radial expansion deformation on sleeve surface with the same material properties of seal ring and outer rotor
圖6 轉(zhuǎn)子與軸承套裝面徑向膨脹變形比較[18]Fig.6 Comparison of radial expansion deformation of rotor and bearing on sleeve surface[18]
已知某發(fā)動(dòng)機(jī)的工作參數(shù)(見表2和表3),得到密封環(huán)產(chǎn)生周向相對滑動(dòng)時(shí)的臨界滑動(dòng)轉(zhuǎn)速隨角加速度的關(guān)系如圖7所示。在本文的密封結(jié)構(gòu)尺寸及工況范圍下,密封環(huán)與外層轉(zhuǎn)子出現(xiàn)周向相對滑動(dòng)的最小角加速度為147 rad/s2,小于該角加速度時(shí)的全部轉(zhuǎn)速范圍內(nèi)二者間無周向相對滑動(dòng),大于此角加速度時(shí)在低于臨界滑動(dòng)轉(zhuǎn)速時(shí)將產(chǎn)生周向相對滑動(dòng),即圖中的曲線與橫軸圍成的區(qū)域內(nèi)會(huì)產(chǎn)生周向相對滑動(dòng)。原因在于:隨著轉(zhuǎn)速的增大,離心膨脹作用使密封環(huán)與外層轉(zhuǎn)子之間配合更緊,二者間不易產(chǎn)生周向相對滑動(dòng),只有在較低轉(zhuǎn)速(二者間配合“略松”)且具有較大角加速度時(shí)容易產(chǎn)生二者間的周向相對滑動(dòng)。臨界滑動(dòng)轉(zhuǎn)速整體隨角加速度增大而增大。
圖7 外層轉(zhuǎn)子角加速度與臨界滑動(dòng)轉(zhuǎn)速的關(guān)系Fig.7 Relationship between angular acceleration of outer rotor and critical sliding speed
本文提出了一種用于密封環(huán)與外層轉(zhuǎn)子之間小過盈配合時(shí)因轉(zhuǎn)速突變而產(chǎn)生周向相對滑動(dòng)的判定方法。這一判定方法亦適用于轉(zhuǎn)子-軸承或軸-套筒等小過盈連接時(shí)周向相對滑動(dòng)問題的判定。分析了兩配合零件材料性能參數(shù)差異時(shí)離心膨脹產(chǎn)生的徑向變形量與轉(zhuǎn)速的關(guān)系。給出了某發(fā)動(dòng)機(jī)密封環(huán)與外層轉(zhuǎn)子產(chǎn)生周向相對滑動(dòng)的工況范圍,為密封環(huán)的過度磨損及失效提供了判定參考。主要結(jié)論如下:
1)在本文的計(jì)算參數(shù)下,密封環(huán)和外層轉(zhuǎn)子因材料性能調(diào)換而引起的彈性變形對二者間配合連接狀態(tài)影響顯著。當(dāng)密封環(huán)(被包容件)的彈性模量和泊松比小于外層轉(zhuǎn)子(包容件)時(shí),不會(huì)產(chǎn)生周向相對滑動(dòng);當(dāng)密封環(huán)(被包容件)的彈性模量和泊松比不小于外層轉(zhuǎn)子(包容件)時(shí),都會(huì)產(chǎn)生周向相對滑動(dòng)。
2)按本文的幾何及工況參數(shù),在外層轉(zhuǎn)子全轉(zhuǎn)速范圍內(nèi),當(dāng)外層轉(zhuǎn)子角加速度大于147 rad/s2,低于臨界滑動(dòng)轉(zhuǎn)速時(shí),密封環(huán)與外層轉(zhuǎn)子將產(chǎn)生周向相對滑動(dòng),除此工況范圍外的工況區(qū)域不會(huì)產(chǎn)生周向相對滑動(dòng)。