• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    2016-03-22 05:36:17ChenchenZhouYutingLiuXiaobingLiJingZouandShujuanZou
    Bone Research 2016年3期

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    ALKBH1 was recently discovered as a demethylase for DNA N6-methyladenine(N6-mA),a new epigenetic modi f i cation,and interacts with the core transcriptional pluripotency network of embryonic stem cells. However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown. In this study,we demonstrated that the expression of ALKBH1 in human mesenchymal stem cells(MSCs) was upregulated during osteogenic induction.Knockdown of ALKBH1 increased the genomic DNA N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,alkaline phosphatase activity,and mineralization.ALKBH1-depleted MSCs also exhibited a restricted capacity for bone formation in vivo. By contrast,the ectopic overexpression of ALKBH1 enhanced osteoblastic differentiation.Mechanically, we found that the depletion of ALKBH1 resulted in the accumulation of N6-mA on the promoter region of ATF4,which subsequently silenced ATF4 transcription.In addition,restoring the expression of ATP by adenovirus-mediated transduction successfully rescued osteogenic differentiation.Taken together,our results demonstrate that ALKBH1 is indispensable for the osteogenic differentiation of MSCs and indicate that DNA N6-mA modi f i cations area new mechanism for the epigenetic regulation of stem cell differentiation.

    INTRODUCTION

    Stem cells are characterized by two features:the ability to differentiate into multiple cell types and the ability to selfrenew.1–2Mesenchymal stem cells(MSCs)are one type of postnatal stem cell with a pluripotent differentiation potential that is broader than originally envisioned or perhaps as broad as that of embryonic stem cells.2MSCs have the ability to differentiate into different mesenchymal lineages,such as osteoblasts,chondrocytes,adipocytes, fi broblasts,and adventitial reticular cells.3Consequently, MSCs can be seen as bona fi de cells for all tissues in which they induce osteoprogenitors and then transform into osteoblasts,which are crucial for the mineralization of the extracellular matrix(ECM)of bone.4–6

    The osteogenic differentiation of MSCs is regulated by multiple mechanisms,such as key transcription factors,including runt-related transcription factor 2 and Osterix,2,5,7as well as other hormones.1,8–10In addition, epigenetic regulations have an important role in mammalian biology11–12and regulate tissue-speci fi c gene expression.13–14Recently,DNA methylation,which is an epigenetic regulation,was found to have a pivotal role in stem cell differentiation.15DNA methylation occurs on the fi fth position of cytosine(5mC).16DNA cytosines experience a series of modi fi cations performed by a variety of enzymes,including DNA methyltransferases,17which add a methyl group on the fi fth position of cytosine to form 5mC;TET family dioxygenases(TET1,TET2,and TET3),18–19which then oxidize the methyl group to create 5-hydroxymethylcytosine;20and 5-formylcytosine and 5-carboxyl cytosine,which complete the cycle.21The epigenetic activation of bone-spec i fi c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts,22and the inhibition of stem-cell-speci fi c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.23

    Very recently,the methylation of N6-methyladenine (N6-mA)has been reported as another DNA methylationevent,and ALKBH1 was discovered as a demethylase for DNA N6-mA.11,24ALKBH1,a member of the AlkB family,is a 2-oxoglutarate and Fe2+-dependent hydroxylase.25–26ALKBH1 has an important role in epigenetic regulation by accommodating the expression of pluripotency markers and genes related to neural differentiation during embryogenesis.27ALKBH1 is involved in f i ne-tuning the level of a core transcriptional network and regulating the developmental regulatory microRNAs involved in pluripotency and differentiation.21Most of the Alkbh1?/?mice died during embryogenesis,and survivors exhibit tissue developmental defects,including prolonging the expression of pluripotency markers,28and multiple defects in eyes, craniofacial,sternum,and limb skeleton,26which suggests that ALKBH1 is indispensable for stem differentiation and development.However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown.

    In this study,we demonstrated that the depletion or overexpression of ALKBH1 in human MSCs regulates the levels of genomic DNA N6-mA and signi f i cantly affects osteogenic differentiation and bone formation.Mechanically,we found that the depletion of ALKBH1 results in the accumulation of N6-mA on the promoter region of activating transcription factor 4(ATF4),which subsequently silences ATF4 transcription.

    MATERIALS AND METHODS

    Cell culture

    Human bone marrow-derived MSCs were obtained from American Type Culture Collection(ATCC,Manassas,VA, USA).Cells were cultured in Dulbecco’s modi f i ed Eagle’s medium(DMEM)supplemented with 10%fetal bovine serum(Gibco,Carlsbad,CA,USA)plus 100 U·mL-1of penicillin and 100 mg·mL-1of streptomycin(Gibco)at 37°C with a humidi f i ed atmosphere of 5%CO2.To induce osteogenic differentiation,MSCs were seeded in 6-or 24-well plates.After con f l uence,cells were treated with osteogenic medium containing 50 μmol·L-1ascorbic acid, 10 mmol·L-1β-glycerophosphate,and 10 nmol·L-1dexamethasone(Sigma,Shanghai,China).All experimental protocols and procedures were approved by the State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.

    Gene knockdown and overexpression

    ALKBH1-targeted and control small interfere RNAs were purchased from Santa Cruz(Dallas,TX,USA).Transfection was performed using Lipofectamine RNAiMAX reagent (Invitrogen)according to the manufacturer's instructions.Knockdown ef f i ciency was determined by reverse transcription-PCR(RT-PCR)and western blot 2 days after the transfection.The lentivirus particles of ALKBH1 and scrambled shRNAs were obtained from Genecopoeia (Guangzhou,China).The stable cell lines were established by puromycin selection.

    For ALKBH1 overexpression,lentiviruses expressing the human ALKBH1 gene were purchased from Genecopoeia. MSCs were infected with ALKBH1 or empty vectors in the presence of polybrene(Sigma)for 24 h and were selected with puromycin(Sigma).For ATF4 overexpression,the adenovirus particles expressing human ATF4 or GFP (control)were obtained from Cyagen(Guangzhou,China).

    RNA isolation and RT-PCR

    Total RNA was isolated using the Trizol reagent(Invitrogen) according to the manufacturer’s instructions.The complementary DNA was prepared from 2 μg aliquots of RNA using a QuantiTec reverse transcription kit(Qiagen,Valencia,CA,USA).29–31Quantitative real-time PCR was performed using SYBR Premix Ex Taq(Takara,Dalian,China)in an ABI7500 real-time PCR system(Applied Biosystems, Foster City,CA,USA).The primer sequences used are listed in Table 1.Relative expression was calculated using a 2-ΔΔCtmethod32by normalization with Gapdh housekeeping gene expression and presented as fold increase relative to control.

    Western blot

    Cells were lysed in RIPA buffer(Pierce,Rockford,IL,USA) supplemented with a protease inhibitor cocktail(Roche, Mannheim,Germany)and centrifuged at 18 000 g for 15 min at 4°C.The supernatants were heated at 95°C for 5 min in sample buffer containing 2%SDS and 1% 2-mercaptoethanol,separated on 10%SDS–polyacrylamide gels,and transferred to polyvinylidene di f l uoride membranes using a semi-dry transfer apparatus(Bio-Rad).33The membranes were blocked with 5%milk for 1 h and then incubated with anti-ALKBH1(Millipore,Billerica,MA,USA, 1:1 000),anti-ATF4(Abcam,Cambridge,MA,USA,1:1 000) or anti-α-Tubulin(Sigma,1:5 000)overnight followed by a horseradish peroxidase-conjugated anti-rabbit or antimouse IgG(Jackson ImmunoResearch,West Grove,PA, USA).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce,Rockford,IL,USA).

    Dot blot

    Genomic DNA was isolated using a PureLink Genomic DNA kit(Invitrogen)and then denatured at 95°C for 10 min in 0.4 mol·L-1NaOH and 10 mmol·L-1EDTA buffer.Samples were spotted on the membrane(Zeta-Probe,Bio-Rad, Hercules,CA,USA)using a Dot-Blot micro f i ltration apparatus(Bio-Rad)and baked at 80°C for 30 min.Membranes were blocked in blocking buffer(5%milk in PBST)for 1 h at room temperature and incubated with N6-mA antibody (202-003,Synaptic Systems,Goettingen,Germany,1:2 000) overnight at 4°C.After three washes,membranes were incubated with horseradish peroxidase-linked secondary anti-rabbit IgG(Jackson ImmunoResearch).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce).To ensure an equal amount of DNA was spotted,the same membrane was stained with 0.02% methylene blue in 0.3 mol·L-1sodium acetate(pH 5.2).

    ALP and Alizarin red staining

    For alkaline phosphatase(ALP)staining,cells were grown in osteogenic differentiation medium for 7 days.Cells were then

    fi xed in 70%ethanol and incubated with a staining solution of 0.25%naphthol AS-BI phosphate and 0.75%Fast Blue BB dissolved in 0.1 mol·L-1Tris buffer(pH 9.3).We also quanti fi ed the ALP activity using a commercial kit according to the manufacturer’s protocol(Cell Biolab,San Diego,CA,USA).

    For mineralization assays,cells were cultured in differentiation medium for 2–3 weeks,f i xed with 70%ethanol, and stained with 40 mmol·L-1Alizarin red S(pH 4.2,Sigma) for 10 min.34Mineralized bone nodules stained with alizarin red were distained with 10%cetylpyridinium chloride in 10 mmol·L-1sodium phosphate(pH 7.0),and the calcium concentration was determined by absorbance measurements at 562 nm.

    Ectopic bone formation

    Three-month-old immunocompromised beige mice were obtained from the Experimental Animal Center of the University and housed in pathogen-free facilities under a 12-h light and 12-h dark cycle.All procedures were conducted in accordance with The Guidelines for the Care and Use of Laboratory Animals of State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.Approximately 5×106of cells were mixed with 60 mg of pure phase β-tricalcium phosphate particles(SynthoGraft,Bicon,Boston,MA,USA) and then transplanted subcutaneously under the dorsal surface as described previously.11,24Six weeks after transplantation,the transplants were collected,f i xed with 10% formalin,and decalci f i ed with 10%EDTA.Paraf f i n sections were fabricated and stained with hematoxylin and eosin.35

    Chromatin immunoprecipitation assay

    The chromatin immunoprecipitation assay was performed using a Simple ChIP Assay kit(Cell Signaling Technology, Danvers,MA,USA)according to the manufacturer’s protocol31with an antibody against N6-mA(cat#202003, Synaptic Systems)or the control normal rabbit IgG(cat#sc-2027,Santa Cruz).After dissociating the DNA–protein complexes,pulled down DNA along with the input DNA(devoid of antibody)were subjected to quantitative PCR analysis with primers to interrogate the ATF4 promoter(Table 1).The results are expressed as the percentage of input DNA.

    Statistical analysis

    All values were presented as the mean±s.e.Two-tailed Student’s t-test and one-way analysis of variance followed by the Tukey’s test were used for single and multiple comparisons with assess the statistical inference on difference among each pair of data sets,respectively. A P value<0.05 was considered statistically signi f i cant.

    RESULTS

    ALKBH1 is upregulated during osteogenic differentiation We f i rst evaluated the expression pro f i le of ALKBH1 in human MSCs during osteogenic differentiation.As determined by real-time RT-PCR,the ALKBH1 messenger RNA levels were signi f i cantly upregulated in response to osteogenic induction(Figure 1a).This observation was also con f i rmed by western blot analysis(Figure 1b).These results suggest that ALKBH1 may have a role in the osteogenic differentiation of MSCs.

    Depletion of ALKBH1 inhibits osteogenic differentiation in vitro

    To investigate the role of ALKBH1 in osteogenic differentiation,we knocked down ALKBH1 in human MSCs.The knockdown ef f i ciency was con f i rmed by RT-PCR and western blot(Figure 2a and b).Given that ALKBH1 was recently discovered as a demethylase for DNA N6-mA,we evaluated the modi f i cation of N6-mA using a DNA dot blot assay.As shown in Figure 2c,depletion of ALKBH1 markedly increased N6-mA levels in whole genomic DNA of MSCs. After osteogenic induction for 7 days,we found that the small interfere RNA-mediated depletion of ALKBH1signi f i cantly reduced ALP activity,which is an early marker of osteoblastic differentiation(Figure 2d and e). We also assessed ECM mineralization by Alizarin red S staining.As shown in Figure 2f and g,the mineralization was signi f i cantly decreased after ALKBH1 depletion.In addition, the knockdown of ALKBH1 inhibited the expression of osteogenic-related genes,such as RUNX2,Osterix(SP7), and Osteocalcin(GBLAP)(Figure 2h–j).

    Depletion of ALKBH1 inhibits bone formation in vivo

    To verify our in vitro f i ndings,we examined whether the knockdown of ALKBH1 affected MSC-mediated bone formation in vivo.To this end,we generated the stable knockdown MSCs using lentiviruses expressing shRNA and implanted them with β-TCP carriers into immunocompromised mice subcutaneously.RT-PCR and western blot analysis showed that>85%of the ALKBH1 was depleted in MSCs expressing ALKBH1 shRNA(shALKBH1)compared with those expressing scrambled shRNA(shScram).The N6-mA levels in whole genomic DNA were increased.Notably,hematoxylin and eosin staining showed that ALKBH1-depleted cells formed less bone tissues(Figure 3d)than did the shScram cells.Quantitative measurement of mineralized tissue areas revealed a>40%decrease in bone formation(Figure 3e).

    Overexpression of ALKBH1 enhances osteoblastic

    differentiation of MSCs

    To investigate the effects of ectopic overexpression of ALKBH1on osteoblastic differentiation,human MSCs were stably transduced with lentiviruses expressing ALKBH1 (Figure 4a and b).As expected,ALKBH1 overexpression decreased the N6-mA levels in whole genomic DNA (Figure 4c).In addition,ALP activity and cell mineralization of MSCs were enhanced by the overexpression of ALKBH1 (Figure 4d–g).RT-PCR showed that the expression of osteogenic-related genes,such as RUNX2,SP7,and GBLAP, was signi f i cantly elevated after osteogenic induction for 7 days(Figure 4h–j).

    Depletion of ALKBH1 impairs ATF4 transcription

    ATF4 is a transcription factor that has a pivotal role in osteogenesis along with RUNX2 and Osterix.Interestingly, we found that the depletion of ALKBH1 in MSCs signi f i cantly reduced the ATF4 messenger RNA and protein levels after osteogenic reduction for 7 days(Figure 5a and b). More importantly,chromatin immunoprecipitation assays demonstrated that ALKBH1 binds to the promoter region of ATF4(Figure 5c).Knockdown of ALKBH1 restricted this binding(Figure 5c)and increased the abundance of N6-mA on the promoter(Figure 5d),which led to transcription silencing.These f i ndings indicated that ALKBH1 may regulate the osteoblastic differentiation of MSCs by removing the N6-mA modi f i cations on ATF4.

    ATF4 overexpression rescues the phenotypes

    To further elucidate the mechanism,we performed rescue experiments by overexpressing ATF4 or control GFP in stable ALKBH1-depleted MSCs using adenoviruses.The successful transduction was con f i rmed by RT-PCR and western blot (Figure 6a and b).Ectopic ATF4 expression signi f i cantly increased the expression of SP7,a master transcription factor for osteogenic differentiation(Figure 6c).In addition,ALP activity and mineralization were rescued(shALKBh1 +Ad-ATF4 vs shALKBh1+Ad-GFP;Figure 6d–f).

    DISCUSSION

    MSCs have garnered attention owing to their potential for osteogenic differentiation and regeneration therapy.36–38Exploring the mechanism of MSC lineage speci f i cation and differentiation offers a brand-new perspective for clinical applications.39In the present study,we found that the expression of ALKBH1 is upregulated during osteogenic differentiation in vivo.The depletion of ALKBH1 markedly increased the N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,ALP activity,and ECM mineralization.By contrast,the ectopic overexpression of ALKBH1 enhanced the osteoblastic differentiation of MSCs.Mechanically,we found that ALKBH1 may regulate osteoblastic differentiation by removing N6-mA modi f i cations on ATF4.

    Previous studies have shown that ALKBH1,which was identi f i ed as a DNA demethylase for N6-mA in Embryonic stem cells,has a crucial function in early development by regulating genes that are involved in differentiation and pluripotency.25–26In our study,ALKBH1 depletion inhibits bone formation both in vivo and in vitro.We further noticed an increase in N6-mA and reduction in osteogenic-related genes and indexes.Ougland et al.reported that ALKBH1 interacts with several core transcriptional factors,such as OCT4,SOX2,and NANOG,to maintain the pluripotency of Embryonic stem cell.25,40–41Moreover,ALKBH1 may regulate microRNAs that are associated with the differentiation of neuronal cells.21In contrast,mice lacking ALKBH1 display defects of small or missing eyes,especially in the right eye,and multiple defects in the craniofacial,sternum, and limb skeleton.26Together with the f i ndings on ALKBH1 by Nordstrand et al.,these data indicate that Alkbh1?/?mice exhibited an incomplete condensation of mesenchymal cells during ossi f i cation,which is consistent with our hypothesis.

    Recently,ALKBH1 was discovered as a demethylase for DNA N6-mA,thus offering a new perspective for DNA methylation.However,there is wide acceptance that the DNA methylation always occurs on the C5 position of cytosine residues in CpG sites in DNA.20,42Fu et al.22demonstrated that epigenetic activation of bone-speci f i c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts.Moreover, Dansranjavin et al.23suggested that the inhibition of stem-cell-speci f i c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.In previous studies,Wu et al.demonstrated that an increase of N6-mA in Alkbh1?/?cells leads to genesilencing and that most of these genes are developmental factors and lineage-specifying genes.11Intriguingly,these genes are most markedly enriched on the X chromosome and Chr13,indicating that the increase in N6-mA inhibits the transcription on X chromosome,especially on young full-length LINE-1 transposons(L1 elements).11Taken together,these data indicate that accumulation of N6-mA at L1 elements is related to the inhibition of nearby gene.Thus,N6-mA modi f i cations have a great in f l uence on the activation of differentiation genes.It would be interesting to explore the relationship between ALKBH1 and N6-mA,and the mechanisms that affect osteogenic differentiation and bone formation.Our result indicated an inverse correlation between ALKBH1 and N6-mA.In addition,the depletion of ALKBH1 in vivo leads to less bone tissue and decreased bone formation.However,fewer papers on DNA demethylases have been published compared with RNA demethylases,which needs further exploration.

    In this study,we demonstrated that ALKBH1 binds to the promoter region of ATF4.The lack of ALKBH1 restricted this binding and increased N6-mA in this region,which led to transcription silencing.Our outcome suggested that ALKBH1 removes the N6-mA on ATF4 to regulate the osteogenic differentiation of human MSCs.ATF4,an osteoblast-enriched transcriptional factor of the CREB family,is indispensable for the latest phases of osteogenic differentiation,43bone formation,and mineralization of the ECM.44Previous studies have demonstrated that ATF4 promotes differentiation by upregulating the expression of osteoblast-speci f i c genes,such as RANKL,and by promoting the synthesis of type I collagen,which is a main component of the ECM.5,44These two distinct mechanisms are both dependent on the phosphorylation by RSK2.45Taken together,these data suggested that ALKBH1 enhances osteogenic differentiation by interacting with ATF4.

    It needs to be noted that our f i ndings are based on the in vitro experiments.Further in vivo studies are expected. Given that Alkbh1?/?in mice leads to embryonic and postnatal lethality,26a tissue-speci f i c mouse model is desired to further elucidate the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation.

    Collectively,we demonstrated that ALKBH1 enhances osteogenic differentiation by removing the N6-mA modi f ications on ATF4.Our results indicate that N6-mA modi f i cations area mechanism for epigenetic regulation of osteogenic differentiation.

    Acknowledgements

    This work was supported by grants from the National Natural Science Foundation of China(No.81271178 and 81470777).

    Competing interests

    The authors declare no con f l ict of interest.

    1 Nombela-Arrieta C,Ritz J,Silberstein LE.The elusive nature and function of mesenchymal stem cells.Nat Rev Mol Cell Biol 2011;12: 126–131.

    2 Deng P,Chen QM,Hong C et al.Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells.Int J Oral Sci 2015;7:197–204.

    3 Bianco P,Robey PG,Simmons PJ.Mesenchymal stem cells:revisiting history,concepts,and assays.Cell Stem Cell 2008;2:313–319.

    4 Bianco P,Cao X,Frenette PS et al.The meaning,the sense and the signi f i cance:translating the science of mesenchymal stem cells into medicine.Nat Med 2013;19:35–42.

    5 Yu S,Zhu K,Lai Y et al.atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci 2013;9:256–266.

    6 Crane JL,Zhao L,Frye JS et al.IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass.Bone Res 2013; 1:186–194.

    7 Rahman MS,Akhtar N,Jamil HM et al.TGF-beta/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation.Bone Res 2015;3:15005.

    8 Chiavistelli S,Giustina A,Mazziotti G.Parathyroid hormone pulsatility: physiological and clinical aspects.Bone Res 2015;3:14049.

    9 Yuan Q,Sato T,Densmore M et al.Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/-mice.PLoS Genet 2012;8:e1002726.

    10 Yuan Q,Sato T,Densmore M et al.FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH.J Bone Miner Res 2011;26:2026–2035.

    11 Wu TP,Wang T,Seetin MG et al.DNA methylation on N(6)-adenine in mammalian embryonic stem cells.Nature 2016;532:329–333.

    12 Guo H,Zhu P,Yan L et al.The DNA methylation landscape of human early embryos.Nature 2014;511:606–610.

    13 Bonder MJ,Kasela S,Kals M et al.Genetic and epigenetic regulation of gene expression in fetal and adult human livers.BMC Genomics 2014; 15:860.

    14 Wu Y,Zhang S,Yuan Q.N(6)-methyladenosine methyltransferases and demethylases:new regulators of stem cell pluripotency and differentiation.Stem Cells Dev 2016;25:1050–1059.

    15 Tsankov AM,Gu H,Akopian V et al.Transcription factor binding dynamics during human ES cell differentiation.Nature 2015;518:344–349.

    16 Ye C,Li L.5-hydroxymethylcytosine:a new insight into epigenetics in cancer.Cancer Biol Ther 2014;15:10–15.

    17 Ooi SK,O'Donnell AH,Bestor TH.Mammalian cytosine methylation at a glance.J Cell Sci 2009;122:2787–2791.

    18 Pastor WA,Aravind L,Rao A.TETonic shift:biological roles of TET proteins in DNA demethylation and transcription.Nat Rev Mol Cell Biol 2013;14:341–356.

    19 Hu L,Li Z,Cheng J et al.Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation.Cell 2013;155:1545–1555.

    20 Tahiliani M,Koh KP,Shen Y et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.

    21 Hon GC,Song CX,Du T et al.5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.Mol Cell 2014;56:286–297.

    22 Fu G,Ren A,Qiu Y et al.Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells.Curr Stem Cell Res Ther 2016;11: 235–246.

    23 Dansranjavin T,Krehl S,Mueller T et al.The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation.Cell Cycle 2009;8:916–924.

    24 Greer EL,Blanco MA,Gu L et al.DNA Methylation on N6-Adenine in C.elegans.Cell 2015;161:868–878.

    25 Ougland R,Jonson I,Moen MN et al.Role of ALKBH1 in the core transcriptional network of embryonic stem cells.Cell Physiol Biochem 2016;38:173–184.

    26 Nordstrand LM,Sv?rd J,Larsen E et al.Mice lacking Alkbh1 display sexratio distortion and unilateral eye defects.PLoS One 2010;5:e13827.

    27 Pan Z,Sikandar S,Witherspoon M et al.Impaired placental trophoblast lineage differentiation in Alkbh1(-/-)mice.Dev Dyn 2008;237:316–327.

    28 Ougland R,Lando D,Jonson I et al.ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.Stem Cells 2012;30: 2672–2682.

    29 Yuan Q,Jiang Y,Zhao X et al.Increased osteopontin contributes to inhibition of bone mineralization in FGF23-de f i cient mice.J Bone Miner Res 2014;29:693–704.

    30 Chen D,Jarrell A,Guo C et al.Dermal beta-catenin activity in response to epidermal Wnt ligands is required for f i broblast proliferation and hair follicle initiation.Development 2012;139:1522–1533.

    31 Peng L,Hu Y,Chen D et al.Ubiquitin speci f i c peptidase 21 regulates interleukin-8 expression,stem-cell like property of human renal cell carcinoma.Oncotarget 2016;7:42007–42016.

    32 Budnick I,Hamburg-Shields E,Chen D et al.De f i ning the identity of mouse embryonic dermal f i broblasts.Genesis 2016;54:415–430.

    33 Pei M,Chen D,Li J et al.Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.Differentiation 2009; 78:260–268.

    34 Zou H,Zhao X,Sun N et al.Effect of chronic kidney disease on the healing of titanium implants.Bone 2013;56:410–415.

    35 Liang Y,Zhu F,Zhang H et al.Conditional ablation of TGF-beta signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model.Sci Rep 2016;6:29479.

    36 Henkel J,Woodruff MA,Epari DR et al.Bone Regeneration Based on Tissue Engineering Conceptions-A 21st Century Perspective.Bone Res 2013;1:216–248.

    37 Kim MO,Jung H,Kim SC et al.Electromagnetic f i elds and nanomagnetic particles increase the osteogenic differentiation of human bone marrowderived mesenchymal stem cells.Int J Mol Med 2015;35:153–160.

    38 Peng L,Ye L,Zhou XD.Mesenchymal stem cells and tooth engineering. Int J Oral Sci 2009;1:6–12.

    39 Lee J,Abdeen AA,Kilian KA.Rewiring mesenchymal stem cell lineage speci f i cation by switching the biophysical microenvironment.Sci Rep 2014;4:5188.

    40 Tay Y,Zhang J,Thomson AM et al.MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124–1128.

    41 Olariu V,Lovkvist C,Sneppen K.Nanog,Oct4 and Tet1 interplay in establishing pluripotency.Sci Rep 2016;6:25438.

    42 Ficz G,Branco MR,Seisenberger S et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473:398–402.

    43 Elefteriou F,Ahn JD,Takeda S et al.Leptin regulation of bone resorption by the sympathetic nervous system and CART.Nature 2005;434: 514–520.

    44 Elefteriou F,Benson MD,Sowa H et al.ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 2006;4:441–451.

    45 Yang X,Matsuda K,Bialek P et al.ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology;implication for Cof f i n-Lowry Syndrome.Cell 2004;117:387–398.

    This work is licensed under a Creative Commons Attribution 4.0 International License.The images or other third party material in this article are included in the article’s Creative Commons license,unless indicated otherwise in the credit line;if the material is not included under the Creative Commons license,users will need to obtain permission from the license holder to reproduce the material.To view a copy of this license,visit http://creativecommons.org/licenses/by/4.0/

    ?The Author(s)2016

    Research(2016)4,16033;

    10.1038/boneres.2016.33;published online:11 October 2016

    State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University,Chengdu,China

    Correspondence:Shujuan Zou(shujuanzou@aliyun.com)

    Received:3 August 2016;Revised:13 August 2016;Accepted:14 August 2016

    精品乱码久久久久久99久播| 欧美成人一区二区免费高清观看| 国产 一区精品| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久人妻蜜臀av| 国产精品永久免费网站| 高清在线国产一区| 别揉我奶头 嗯啊视频| 免费看日本二区| 在线免费观看不下载黄p国产 | 国产淫片久久久久久久久| 久久亚洲真实| 欧美xxxx黑人xx丫x性爽| 狠狠狠狠99中文字幕| 舔av片在线| 精品久久久久久,| 国内精品美女久久久久久| av天堂中文字幕网| 午夜久久久久精精品| 久久九九热精品免费| 亚洲av免费在线观看| 色吧在线观看| 日韩精品有码人妻一区| 人人妻,人人澡人人爽秒播| 国产高潮美女av| 日本-黄色视频高清免费观看| 女同久久另类99精品国产91| 又紧又爽又黄一区二区| 欧美区成人在线视频| 成年版毛片免费区| 免费看光身美女| 搞女人的毛片| 在线观看舔阴道视频| av在线亚洲专区| 亚洲成av人片在线播放无| 精品久久久久久久人妻蜜臀av| 国产伦精品一区二区三区四那| 久久久久久久亚洲中文字幕| 国产精品久久久久久久久免| 最新在线观看一区二区三区| 禁无遮挡网站| 国产成人影院久久av| 日本一二三区视频观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人综合色| 我要搜黄色片| 舔av片在线| or卡值多少钱| 亚洲性夜色夜夜综合| 超碰av人人做人人爽久久| 亚洲无线在线观看| 亚洲av日韩精品久久久久久密| 免费不卡的大黄色大毛片视频在线观看 | 成人欧美大片| 天堂影院成人在线观看| 亚洲图色成人| 亚洲久久久久久中文字幕| 中文字幕免费在线视频6| 亚洲av不卡在线观看| 麻豆成人午夜福利视频| 少妇裸体淫交视频免费看高清| 我要看日韩黄色一级片| 久久久精品欧美日韩精品| 久久人人爽人人爽人人片va| 丰满人妻一区二区三区视频av| 99热网站在线观看| 国产伦精品一区二区三区视频9| 美女免费视频网站| 久久精品国产自在天天线| 午夜a级毛片| 国产高清激情床上av| 国产精品av视频在线免费观看| 搡女人真爽免费视频火全软件 | 国产伦一二天堂av在线观看| 成人一区二区视频在线观看| av专区在线播放| 欧美最黄视频在线播放免费| 窝窝影院91人妻| 亚洲人成网站高清观看| 国产精品永久免费网站| 尤物成人国产欧美一区二区三区| 国产在视频线在精品| 国产av一区在线观看免费| 特大巨黑吊av在线直播| 校园春色视频在线观看| 级片在线观看| 久久久久精品国产欧美久久久| 国产精品久久电影中文字幕| 亚洲不卡免费看| 日韩欧美在线二视频| 精品久久久久久成人av| 毛片一级片免费看久久久久 | 麻豆精品久久久久久蜜桃| 成人二区视频| 一级黄片播放器| 少妇人妻精品综合一区二区 | 可以在线观看毛片的网站| 乱码一卡2卡4卡精品| 亚洲欧美日韩高清在线视频| 亚洲性久久影院| 国内精品一区二区在线观看| 人妻制服诱惑在线中文字幕| 婷婷亚洲欧美| 成年版毛片免费区| 免费观看在线日韩| 神马国产精品三级电影在线观看| 国产男靠女视频免费网站| 欧美一区二区精品小视频在线| 最好的美女福利视频网| 国产精品久久久久久亚洲av鲁大| 亚洲精品亚洲一区二区| 久久精品人妻少妇| 国产真实伦视频高清在线观看 | 99精品久久久久人妻精品| 精品人妻熟女av久视频| 麻豆av噜噜一区二区三区| 欧美极品一区二区三区四区| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 欧美高清性xxxxhd video| 久久久久久久亚洲中文字幕| 国内精品久久久久精免费| 欧美激情国产日韩精品一区| 日韩中文字幕欧美一区二区| 久久久久久九九精品二区国产| 午夜免费成人在线视频| 久久人人精品亚洲av| 99久久精品热视频| 日本精品一区二区三区蜜桃| 国产精品爽爽va在线观看网站| 嫩草影院精品99| 中亚洲国语对白在线视频| 成人av在线播放网站| 久久久国产成人精品二区| 韩国av在线不卡| 极品教师在线视频| 内地一区二区视频在线| 欧美一级a爱片免费观看看| 91在线观看av| 久久香蕉精品热| 国产乱人视频| 无遮挡黄片免费观看| 亚洲精品成人久久久久久| 长腿黑丝高跟| 超碰av人人做人人爽久久| 在现免费观看毛片| 韩国av在线不卡| 亚洲男人的天堂狠狠| 国产探花在线观看一区二区| 精品久久久久久久人妻蜜臀av| 少妇高潮的动态图| 12—13女人毛片做爰片一| 男人舔奶头视频| 国产主播在线观看一区二区| 国产成年人精品一区二区| 成人特级av手机在线观看| 日日干狠狠操夜夜爽| 亚洲精品乱码久久久v下载方式| 精品99又大又爽又粗少妇毛片 | 18禁黄网站禁片免费观看直播| 久久99热这里只有精品18| 女生性感内裤真人,穿戴方法视频| 男女之事视频高清在线观看| a在线观看视频网站| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 看片在线看免费视频| 老熟妇乱子伦视频在线观看| 99久久久亚洲精品蜜臀av| 久久这里只有精品中国| 国产一区二区亚洲精品在线观看| 毛片一级片免费看久久久久 | 麻豆一二三区av精品| 国产视频一区二区在线看| 99久久久亚洲精品蜜臀av| 久久国产乱子免费精品| 国产精品久久久久久精品电影| 国产成人福利小说| 免费人成视频x8x8入口观看| 亚洲成人久久爱视频| 精品久久久久久成人av| netflix在线观看网站| 欧美三级亚洲精品| 免费看a级黄色片| 国产精品国产三级国产av玫瑰| 免费看美女性在线毛片视频| 亚洲最大成人手机在线| 两人在一起打扑克的视频| 国产久久久一区二区三区| a级一级毛片免费在线观看| 内射极品少妇av片p| 动漫黄色视频在线观看| 97人妻精品一区二区三区麻豆| 九色成人免费人妻av| 99国产精品一区二区蜜桃av| 麻豆成人午夜福利视频| 久久精品国产亚洲av天美| 中文字幕av在线有码专区| 国产精品国产高清国产av| 亚洲中文字幕一区二区三区有码在线看| 久久人人精品亚洲av| 国产成人福利小说| 中国美女看黄片| 精品日产1卡2卡| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久久电影| 一级a爱片免费观看的视频| 国国产精品蜜臀av免费| 午夜福利在线观看吧| 无人区码免费观看不卡| 级片在线观看| 日韩国内少妇激情av| 亚洲精品一区av在线观看| 国产私拍福利视频在线观看| 欧美激情在线99| 无人区码免费观看不卡| 国产 一区 欧美 日韩| 成人永久免费在线观看视频| 麻豆成人av在线观看| 亚洲精品一区av在线观看| 99热网站在线观看| 国产精品女同一区二区软件 | 日本熟妇午夜| 亚洲精品亚洲一区二区| 丰满的人妻完整版| 少妇裸体淫交视频免费看高清| 18禁裸乳无遮挡免费网站照片| 婷婷丁香在线五月| 久久久精品大字幕| 国产白丝娇喘喷水9色精品| 身体一侧抽搐| 久久婷婷人人爽人人干人人爱| 噜噜噜噜噜久久久久久91| a在线观看视频网站| 中出人妻视频一区二区| 国产在视频线在精品| 欧美不卡视频在线免费观看| 亚洲精品亚洲一区二区| 久久婷婷人人爽人人干人人爱| 中文字幕熟女人妻在线| 在线观看午夜福利视频| 99热这里只有是精品在线观看| 日本在线视频免费播放| av在线亚洲专区| 男女啪啪激烈高潮av片| 久久久久久伊人网av| 一级毛片久久久久久久久女| 成年人黄色毛片网站| 午夜久久久久精精品| 伦理电影大哥的女人| 99国产极品粉嫩在线观看| 亚洲18禁久久av| 欧美xxxx黑人xx丫x性爽| 韩国av在线不卡| 人妻丰满熟妇av一区二区三区| 一级黄色大片毛片| 黄片wwwwww| 日本a在线网址| 久久久久性生活片| 日韩一区二区视频免费看| 三级国产精品欧美在线观看| 国产精品人妻久久久影院| 国产精品女同一区二区软件 | 国产成人一区二区在线| 欧美日韩瑟瑟在线播放| 国产三级中文精品| 我要看日韩黄色一级片| xxxwww97欧美| 亚洲无线观看免费| 日日啪夜夜撸| 最近视频中文字幕2019在线8| 麻豆国产97在线/欧美| av视频在线观看入口| 成年免费大片在线观看| 午夜视频国产福利| 亚洲中文字幕日韩| 国产精品久久久久久精品电影| av视频在线观看入口| 成人二区视频| 老司机深夜福利视频在线观看| 免费看a级黄色片| 俄罗斯特黄特色一大片| 亚洲成人久久爱视频| 精品久久久噜噜| 日本黄色视频三级网站网址| 国产高清激情床上av| av视频在线观看入口| 久久草成人影院| 久久精品国产亚洲av涩爱 | 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频| 一区二区三区激情视频| 一进一出好大好爽视频| 一区二区三区免费毛片| 精品99又大又爽又粗少妇毛片 | 最近视频中文字幕2019在线8| 无人区码免费观看不卡| 天堂av国产一区二区熟女人妻| 午夜福利高清视频| 少妇的逼好多水| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 精品一区二区三区视频在线观看免费| 男女下面进入的视频免费午夜| 欧美在线一区亚洲| 九九爱精品视频在线观看| 亚洲国产精品合色在线| 一a级毛片在线观看| 男插女下体视频免费在线播放| 精品一区二区三区av网在线观看| 日本-黄色视频高清免费观看| 久久人人爽人人爽人人片va| 男人和女人高潮做爰伦理| 又黄又爽又刺激的免费视频.| 亚洲成人久久性| 国产av不卡久久| 美女 人体艺术 gogo| 日本色播在线视频| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 夜夜夜夜夜久久久久| 欧美精品啪啪一区二区三区| 久久这里只有精品中国| 国产成人影院久久av| 午夜精品一区二区三区免费看| 色哟哟哟哟哟哟| 亚洲av免费在线观看| 欧美色视频一区免费| 久久久久免费精品人妻一区二区| 国产精品福利在线免费观看| 亚洲性夜色夜夜综合| 日韩欧美在线二视频| 国产极品精品免费视频能看的| 久久久久久伊人网av| 亚洲精品久久国产高清桃花| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱 | 日韩欧美在线二视频| av天堂中文字幕网| 十八禁网站免费在线| 桃色一区二区三区在线观看| 亚洲精华国产精华液的使用体验 | 国产日本99.免费观看| av在线亚洲专区| 成人国产麻豆网| 一本久久中文字幕| 国产欧美日韩精品一区二区| 日本-黄色视频高清免费观看| 久久精品影院6| 午夜爱爱视频在线播放| 人人妻人人看人人澡| 搡老岳熟女国产| 中国美女看黄片| 男女那种视频在线观看| 欧美+亚洲+日韩+国产| 免费看美女性在线毛片视频| 亚洲美女搞黄在线观看 | 国产老妇女一区| 丰满人妻一区二区三区视频av| 国产成人影院久久av| 看片在线看免费视频| 美女免费视频网站| 男人的好看免费观看在线视频| 中文字幕人妻熟人妻熟丝袜美| 91久久精品电影网| 俄罗斯特黄特色一大片| 别揉我奶头 嗯啊视频| 身体一侧抽搐| 国产精品精品国产色婷婷| 久久草成人影院| 国产精品久久久久久久电影| 色哟哟·www| 欧美日韩亚洲国产一区二区在线观看| 亚洲av二区三区四区| 国产亚洲91精品色在线| 成年免费大片在线观看| 国产黄片美女视频| 亚洲av美国av| 99热这里只有是精品在线观看| 黄色一级大片看看| 88av欧美| 久久午夜亚洲精品久久| 亚洲第一电影网av| 国产高清三级在线| 精品久久久久久久久久久久久| 久久亚洲真实| 美女高潮喷水抽搐中文字幕| 一级黄色大片毛片| 免费av不卡在线播放| 国产精品av视频在线免费观看| 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 午夜福利18| a在线观看视频网站| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 九色国产91popny在线| 在线观看av片永久免费下载| 亚洲av熟女| 成人综合一区亚洲| 国产精品福利在线免费观看| 嫩草影院入口| 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 99riav亚洲国产免费| 色综合婷婷激情| 九九久久精品国产亚洲av麻豆| 国产精品一区www在线观看 | 亚洲内射少妇av| 桃色一区二区三区在线观看| 国产精品久久久久久久电影| 色哟哟·www| 日韩欧美在线二视频| 久久久久久九九精品二区国产| 一级毛片久久久久久久久女| 国产成人a区在线观看| 最好的美女福利视频网| 国产亚洲av嫩草精品影院| 少妇的逼水好多| 国产私拍福利视频在线观看| 久久久国产成人免费| 一个人看的www免费观看视频| 欧美日韩中文字幕国产精品一区二区三区| 男人狂女人下面高潮的视频| 日本黄色视频三级网站网址| 国产一区二区三区在线臀色熟女| 亚洲精品乱码久久久v下载方式| 此物有八面人人有两片| 岛国在线免费视频观看| 成人综合一区亚洲| 91av网一区二区| 能在线免费观看的黄片| 看免费成人av毛片| 久久精品综合一区二区三区| 亚洲图色成人| 亚洲精品在线观看二区| 最近在线观看免费完整版| 在线观看午夜福利视频| 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 人妻少妇偷人精品九色| 欧美不卡视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 在线播放国产精品三级| 国产三级中文精品| 国内精品宾馆在线| 色5月婷婷丁香| 99在线人妻在线中文字幕| 如何舔出高潮| 中文字幕av成人在线电影| 一区二区三区免费毛片| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 午夜久久久久精精品| 国产精品无大码| bbb黄色大片| 小说图片视频综合网站| 免费观看人在逋| 国产精品电影一区二区三区| 精品人妻1区二区| 男人和女人高潮做爰伦理| 成人国产综合亚洲| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 久久精品久久久久久噜噜老黄 | 国内精品久久久久久久电影| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 国产精品一及| 99热这里只有精品一区| 免费看a级黄色片| 在线免费十八禁| 欧美区成人在线视频| 亚洲狠狠婷婷综合久久图片| 九色国产91popny在线| 久久精品夜夜夜夜夜久久蜜豆| xxxwww97欧美| 1000部很黄的大片| 最后的刺客免费高清国语| 欧美绝顶高潮抽搐喷水| a级毛片免费高清观看在线播放| 久久久久久久亚洲中文字幕| 精品国产三级普通话版| 久久久久性生活片| 日韩人妻高清精品专区| 日韩亚洲欧美综合| 亚洲中文字幕日韩| 夜夜爽天天搞| 日韩国内少妇激情av| 舔av片在线| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 亚洲图色成人| 久久精品国产自在天天线| 两人在一起打扑克的视频| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 中文亚洲av片在线观看爽| 天天躁日日操中文字幕| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 欧美高清成人免费视频www| 88av欧美| 国产大屁股一区二区在线视频| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 久久香蕉精品热| 中国美女看黄片| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6 | 久久久午夜欧美精品| 午夜爱爱视频在线播放| 两个人的视频大全免费| 久久午夜亚洲精品久久| 精品不卡国产一区二区三区| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点| 我要看日韩黄色一级片| 赤兔流量卡办理| 九色成人免费人妻av| av专区在线播放| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 国产91精品成人一区二区三区| 精品人妻一区二区三区麻豆 | 在线观看66精品国产| 丝袜美腿在线中文| 黄色一级大片看看| 男女之事视频高清在线观看| 欧美日本视频| 成人特级av手机在线观看| 可以在线观看毛片的网站| 亚洲av美国av| 国产 一区 欧美 日韩| 国产私拍福利视频在线观看| 色尼玛亚洲综合影院| 午夜a级毛片| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 国产欧美日韩一区二区精品| 国产午夜福利久久久久久| 日韩高清综合在线| 国产视频一区二区在线看| 99riav亚洲国产免费| 人妻丰满熟妇av一区二区三区| www.色视频.com| 老司机福利观看| 91av网一区二区| 成人亚洲精品av一区二区| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 无遮挡黄片免费观看| 久久久国产成人精品二区| 国产精品无大码| 如何舔出高潮| 一a级毛片在线观看| 内地一区二区视频在线| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 午夜福利欧美成人| 中文字幕免费在线视频6| 少妇丰满av| 精品人妻一区二区三区麻豆 | 亚洲中文字幕日韩| 男人的好看免费观看在线视频| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 精品一区二区三区人妻视频| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 亚洲 国产 在线| 欧美丝袜亚洲另类 | 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 可以在线观看的亚洲视频| 午夜福利在线在线| 欧美中文日本在线观看视频| 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 日韩中字成人| 免费黄网站久久成人精品| 黄片wwwwww| 黄色丝袜av网址大全| 99热只有精品国产| 免费人成在线观看视频色| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜添小说| 18禁在线播放成人免费| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 岛国在线免费视频观看| 国产黄片美女视频| 最后的刺客免费高清国语| 成年女人看的毛片在线观看| 熟女人妻精品中文字幕| 男人舔奶头视频| 一本久久中文字幕| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 韩国av一区二区三区四区| 国产一区二区在线av高清观看| 啦啦啦韩国在线观看视频| 最近视频中文字幕2019在线8| 欧美激情国产日韩精品一区| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 成年人黄色毛片网站|