• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    2016-03-22 05:36:17ChenchenZhouYutingLiuXiaobingLiJingZouandShujuanZou
    Bone Research 2016年3期

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    ALKBH1 was recently discovered as a demethylase for DNA N6-methyladenine(N6-mA),a new epigenetic modi f i cation,and interacts with the core transcriptional pluripotency network of embryonic stem cells. However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown. In this study,we demonstrated that the expression of ALKBH1 in human mesenchymal stem cells(MSCs) was upregulated during osteogenic induction.Knockdown of ALKBH1 increased the genomic DNA N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,alkaline phosphatase activity,and mineralization.ALKBH1-depleted MSCs also exhibited a restricted capacity for bone formation in vivo. By contrast,the ectopic overexpression of ALKBH1 enhanced osteoblastic differentiation.Mechanically, we found that the depletion of ALKBH1 resulted in the accumulation of N6-mA on the promoter region of ATF4,which subsequently silenced ATF4 transcription.In addition,restoring the expression of ATP by adenovirus-mediated transduction successfully rescued osteogenic differentiation.Taken together,our results demonstrate that ALKBH1 is indispensable for the osteogenic differentiation of MSCs and indicate that DNA N6-mA modi f i cations area new mechanism for the epigenetic regulation of stem cell differentiation.

    INTRODUCTION

    Stem cells are characterized by two features:the ability to differentiate into multiple cell types and the ability to selfrenew.1–2Mesenchymal stem cells(MSCs)are one type of postnatal stem cell with a pluripotent differentiation potential that is broader than originally envisioned or perhaps as broad as that of embryonic stem cells.2MSCs have the ability to differentiate into different mesenchymal lineages,such as osteoblasts,chondrocytes,adipocytes, fi broblasts,and adventitial reticular cells.3Consequently, MSCs can be seen as bona fi de cells for all tissues in which they induce osteoprogenitors and then transform into osteoblasts,which are crucial for the mineralization of the extracellular matrix(ECM)of bone.4–6

    The osteogenic differentiation of MSCs is regulated by multiple mechanisms,such as key transcription factors,including runt-related transcription factor 2 and Osterix,2,5,7as well as other hormones.1,8–10In addition, epigenetic regulations have an important role in mammalian biology11–12and regulate tissue-speci fi c gene expression.13–14Recently,DNA methylation,which is an epigenetic regulation,was found to have a pivotal role in stem cell differentiation.15DNA methylation occurs on the fi fth position of cytosine(5mC).16DNA cytosines experience a series of modi fi cations performed by a variety of enzymes,including DNA methyltransferases,17which add a methyl group on the fi fth position of cytosine to form 5mC;TET family dioxygenases(TET1,TET2,and TET3),18–19which then oxidize the methyl group to create 5-hydroxymethylcytosine;20and 5-formylcytosine and 5-carboxyl cytosine,which complete the cycle.21The epigenetic activation of bone-spec i fi c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts,22and the inhibition of stem-cell-speci fi c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.23

    Very recently,the methylation of N6-methyladenine (N6-mA)has been reported as another DNA methylationevent,and ALKBH1 was discovered as a demethylase for DNA N6-mA.11,24ALKBH1,a member of the AlkB family,is a 2-oxoglutarate and Fe2+-dependent hydroxylase.25–26ALKBH1 has an important role in epigenetic regulation by accommodating the expression of pluripotency markers and genes related to neural differentiation during embryogenesis.27ALKBH1 is involved in f i ne-tuning the level of a core transcriptional network and regulating the developmental regulatory microRNAs involved in pluripotency and differentiation.21Most of the Alkbh1?/?mice died during embryogenesis,and survivors exhibit tissue developmental defects,including prolonging the expression of pluripotency markers,28and multiple defects in eyes, craniofacial,sternum,and limb skeleton,26which suggests that ALKBH1 is indispensable for stem differentiation and development.However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown.

    In this study,we demonstrated that the depletion or overexpression of ALKBH1 in human MSCs regulates the levels of genomic DNA N6-mA and signi f i cantly affects osteogenic differentiation and bone formation.Mechanically,we found that the depletion of ALKBH1 results in the accumulation of N6-mA on the promoter region of activating transcription factor 4(ATF4),which subsequently silences ATF4 transcription.

    MATERIALS AND METHODS

    Cell culture

    Human bone marrow-derived MSCs were obtained from American Type Culture Collection(ATCC,Manassas,VA, USA).Cells were cultured in Dulbecco’s modi f i ed Eagle’s medium(DMEM)supplemented with 10%fetal bovine serum(Gibco,Carlsbad,CA,USA)plus 100 U·mL-1of penicillin and 100 mg·mL-1of streptomycin(Gibco)at 37°C with a humidi f i ed atmosphere of 5%CO2.To induce osteogenic differentiation,MSCs were seeded in 6-or 24-well plates.After con f l uence,cells were treated with osteogenic medium containing 50 μmol·L-1ascorbic acid, 10 mmol·L-1β-glycerophosphate,and 10 nmol·L-1dexamethasone(Sigma,Shanghai,China).All experimental protocols and procedures were approved by the State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.

    Gene knockdown and overexpression

    ALKBH1-targeted and control small interfere RNAs were purchased from Santa Cruz(Dallas,TX,USA).Transfection was performed using Lipofectamine RNAiMAX reagent (Invitrogen)according to the manufacturer's instructions.Knockdown ef f i ciency was determined by reverse transcription-PCR(RT-PCR)and western blot 2 days after the transfection.The lentivirus particles of ALKBH1 and scrambled shRNAs were obtained from Genecopoeia (Guangzhou,China).The stable cell lines were established by puromycin selection.

    For ALKBH1 overexpression,lentiviruses expressing the human ALKBH1 gene were purchased from Genecopoeia. MSCs were infected with ALKBH1 or empty vectors in the presence of polybrene(Sigma)for 24 h and were selected with puromycin(Sigma).For ATF4 overexpression,the adenovirus particles expressing human ATF4 or GFP (control)were obtained from Cyagen(Guangzhou,China).

    RNA isolation and RT-PCR

    Total RNA was isolated using the Trizol reagent(Invitrogen) according to the manufacturer’s instructions.The complementary DNA was prepared from 2 μg aliquots of RNA using a QuantiTec reverse transcription kit(Qiagen,Valencia,CA,USA).29–31Quantitative real-time PCR was performed using SYBR Premix Ex Taq(Takara,Dalian,China)in an ABI7500 real-time PCR system(Applied Biosystems, Foster City,CA,USA).The primer sequences used are listed in Table 1.Relative expression was calculated using a 2-ΔΔCtmethod32by normalization with Gapdh housekeeping gene expression and presented as fold increase relative to control.

    Western blot

    Cells were lysed in RIPA buffer(Pierce,Rockford,IL,USA) supplemented with a protease inhibitor cocktail(Roche, Mannheim,Germany)and centrifuged at 18 000 g for 15 min at 4°C.The supernatants were heated at 95°C for 5 min in sample buffer containing 2%SDS and 1% 2-mercaptoethanol,separated on 10%SDS–polyacrylamide gels,and transferred to polyvinylidene di f l uoride membranes using a semi-dry transfer apparatus(Bio-Rad).33The membranes were blocked with 5%milk for 1 h and then incubated with anti-ALKBH1(Millipore,Billerica,MA,USA, 1:1 000),anti-ATF4(Abcam,Cambridge,MA,USA,1:1 000) or anti-α-Tubulin(Sigma,1:5 000)overnight followed by a horseradish peroxidase-conjugated anti-rabbit or antimouse IgG(Jackson ImmunoResearch,West Grove,PA, USA).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce,Rockford,IL,USA).

    Dot blot

    Genomic DNA was isolated using a PureLink Genomic DNA kit(Invitrogen)and then denatured at 95°C for 10 min in 0.4 mol·L-1NaOH and 10 mmol·L-1EDTA buffer.Samples were spotted on the membrane(Zeta-Probe,Bio-Rad, Hercules,CA,USA)using a Dot-Blot micro f i ltration apparatus(Bio-Rad)and baked at 80°C for 30 min.Membranes were blocked in blocking buffer(5%milk in PBST)for 1 h at room temperature and incubated with N6-mA antibody (202-003,Synaptic Systems,Goettingen,Germany,1:2 000) overnight at 4°C.After three washes,membranes were incubated with horseradish peroxidase-linked secondary anti-rabbit IgG(Jackson ImmunoResearch).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce).To ensure an equal amount of DNA was spotted,the same membrane was stained with 0.02% methylene blue in 0.3 mol·L-1sodium acetate(pH 5.2).

    ALP and Alizarin red staining

    For alkaline phosphatase(ALP)staining,cells were grown in osteogenic differentiation medium for 7 days.Cells were then

    fi xed in 70%ethanol and incubated with a staining solution of 0.25%naphthol AS-BI phosphate and 0.75%Fast Blue BB dissolved in 0.1 mol·L-1Tris buffer(pH 9.3).We also quanti fi ed the ALP activity using a commercial kit according to the manufacturer’s protocol(Cell Biolab,San Diego,CA,USA).

    For mineralization assays,cells were cultured in differentiation medium for 2–3 weeks,f i xed with 70%ethanol, and stained with 40 mmol·L-1Alizarin red S(pH 4.2,Sigma) for 10 min.34Mineralized bone nodules stained with alizarin red were distained with 10%cetylpyridinium chloride in 10 mmol·L-1sodium phosphate(pH 7.0),and the calcium concentration was determined by absorbance measurements at 562 nm.

    Ectopic bone formation

    Three-month-old immunocompromised beige mice were obtained from the Experimental Animal Center of the University and housed in pathogen-free facilities under a 12-h light and 12-h dark cycle.All procedures were conducted in accordance with The Guidelines for the Care and Use of Laboratory Animals of State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.Approximately 5×106of cells were mixed with 60 mg of pure phase β-tricalcium phosphate particles(SynthoGraft,Bicon,Boston,MA,USA) and then transplanted subcutaneously under the dorsal surface as described previously.11,24Six weeks after transplantation,the transplants were collected,f i xed with 10% formalin,and decalci f i ed with 10%EDTA.Paraf f i n sections were fabricated and stained with hematoxylin and eosin.35

    Chromatin immunoprecipitation assay

    The chromatin immunoprecipitation assay was performed using a Simple ChIP Assay kit(Cell Signaling Technology, Danvers,MA,USA)according to the manufacturer’s protocol31with an antibody against N6-mA(cat#202003, Synaptic Systems)or the control normal rabbit IgG(cat#sc-2027,Santa Cruz).After dissociating the DNA–protein complexes,pulled down DNA along with the input DNA(devoid of antibody)were subjected to quantitative PCR analysis with primers to interrogate the ATF4 promoter(Table 1).The results are expressed as the percentage of input DNA.

    Statistical analysis

    All values were presented as the mean±s.e.Two-tailed Student’s t-test and one-way analysis of variance followed by the Tukey’s test were used for single and multiple comparisons with assess the statistical inference on difference among each pair of data sets,respectively. A P value<0.05 was considered statistically signi f i cant.

    RESULTS

    ALKBH1 is upregulated during osteogenic differentiation We f i rst evaluated the expression pro f i le of ALKBH1 in human MSCs during osteogenic differentiation.As determined by real-time RT-PCR,the ALKBH1 messenger RNA levels were signi f i cantly upregulated in response to osteogenic induction(Figure 1a).This observation was also con f i rmed by western blot analysis(Figure 1b).These results suggest that ALKBH1 may have a role in the osteogenic differentiation of MSCs.

    Depletion of ALKBH1 inhibits osteogenic differentiation in vitro

    To investigate the role of ALKBH1 in osteogenic differentiation,we knocked down ALKBH1 in human MSCs.The knockdown ef f i ciency was con f i rmed by RT-PCR and western blot(Figure 2a and b).Given that ALKBH1 was recently discovered as a demethylase for DNA N6-mA,we evaluated the modi f i cation of N6-mA using a DNA dot blot assay.As shown in Figure 2c,depletion of ALKBH1 markedly increased N6-mA levels in whole genomic DNA of MSCs. After osteogenic induction for 7 days,we found that the small interfere RNA-mediated depletion of ALKBH1signi f i cantly reduced ALP activity,which is an early marker of osteoblastic differentiation(Figure 2d and e). We also assessed ECM mineralization by Alizarin red S staining.As shown in Figure 2f and g,the mineralization was signi f i cantly decreased after ALKBH1 depletion.In addition, the knockdown of ALKBH1 inhibited the expression of osteogenic-related genes,such as RUNX2,Osterix(SP7), and Osteocalcin(GBLAP)(Figure 2h–j).

    Depletion of ALKBH1 inhibits bone formation in vivo

    To verify our in vitro f i ndings,we examined whether the knockdown of ALKBH1 affected MSC-mediated bone formation in vivo.To this end,we generated the stable knockdown MSCs using lentiviruses expressing shRNA and implanted them with β-TCP carriers into immunocompromised mice subcutaneously.RT-PCR and western blot analysis showed that>85%of the ALKBH1 was depleted in MSCs expressing ALKBH1 shRNA(shALKBH1)compared with those expressing scrambled shRNA(shScram).The N6-mA levels in whole genomic DNA were increased.Notably,hematoxylin and eosin staining showed that ALKBH1-depleted cells formed less bone tissues(Figure 3d)than did the shScram cells.Quantitative measurement of mineralized tissue areas revealed a>40%decrease in bone formation(Figure 3e).

    Overexpression of ALKBH1 enhances osteoblastic

    differentiation of MSCs

    To investigate the effects of ectopic overexpression of ALKBH1on osteoblastic differentiation,human MSCs were stably transduced with lentiviruses expressing ALKBH1 (Figure 4a and b).As expected,ALKBH1 overexpression decreased the N6-mA levels in whole genomic DNA (Figure 4c).In addition,ALP activity and cell mineralization of MSCs were enhanced by the overexpression of ALKBH1 (Figure 4d–g).RT-PCR showed that the expression of osteogenic-related genes,such as RUNX2,SP7,and GBLAP, was signi f i cantly elevated after osteogenic induction for 7 days(Figure 4h–j).

    Depletion of ALKBH1 impairs ATF4 transcription

    ATF4 is a transcription factor that has a pivotal role in osteogenesis along with RUNX2 and Osterix.Interestingly, we found that the depletion of ALKBH1 in MSCs signi f i cantly reduced the ATF4 messenger RNA and protein levels after osteogenic reduction for 7 days(Figure 5a and b). More importantly,chromatin immunoprecipitation assays demonstrated that ALKBH1 binds to the promoter region of ATF4(Figure 5c).Knockdown of ALKBH1 restricted this binding(Figure 5c)and increased the abundance of N6-mA on the promoter(Figure 5d),which led to transcription silencing.These f i ndings indicated that ALKBH1 may regulate the osteoblastic differentiation of MSCs by removing the N6-mA modi f i cations on ATF4.

    ATF4 overexpression rescues the phenotypes

    To further elucidate the mechanism,we performed rescue experiments by overexpressing ATF4 or control GFP in stable ALKBH1-depleted MSCs using adenoviruses.The successful transduction was con f i rmed by RT-PCR and western blot (Figure 6a and b).Ectopic ATF4 expression signi f i cantly increased the expression of SP7,a master transcription factor for osteogenic differentiation(Figure 6c).In addition,ALP activity and mineralization were rescued(shALKBh1 +Ad-ATF4 vs shALKBh1+Ad-GFP;Figure 6d–f).

    DISCUSSION

    MSCs have garnered attention owing to their potential for osteogenic differentiation and regeneration therapy.36–38Exploring the mechanism of MSC lineage speci f i cation and differentiation offers a brand-new perspective for clinical applications.39In the present study,we found that the expression of ALKBH1 is upregulated during osteogenic differentiation in vivo.The depletion of ALKBH1 markedly increased the N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,ALP activity,and ECM mineralization.By contrast,the ectopic overexpression of ALKBH1 enhanced the osteoblastic differentiation of MSCs.Mechanically,we found that ALKBH1 may regulate osteoblastic differentiation by removing N6-mA modi f i cations on ATF4.

    Previous studies have shown that ALKBH1,which was identi f i ed as a DNA demethylase for N6-mA in Embryonic stem cells,has a crucial function in early development by regulating genes that are involved in differentiation and pluripotency.25–26In our study,ALKBH1 depletion inhibits bone formation both in vivo and in vitro.We further noticed an increase in N6-mA and reduction in osteogenic-related genes and indexes.Ougland et al.reported that ALKBH1 interacts with several core transcriptional factors,such as OCT4,SOX2,and NANOG,to maintain the pluripotency of Embryonic stem cell.25,40–41Moreover,ALKBH1 may regulate microRNAs that are associated with the differentiation of neuronal cells.21In contrast,mice lacking ALKBH1 display defects of small or missing eyes,especially in the right eye,and multiple defects in the craniofacial,sternum, and limb skeleton.26Together with the f i ndings on ALKBH1 by Nordstrand et al.,these data indicate that Alkbh1?/?mice exhibited an incomplete condensation of mesenchymal cells during ossi f i cation,which is consistent with our hypothesis.

    Recently,ALKBH1 was discovered as a demethylase for DNA N6-mA,thus offering a new perspective for DNA methylation.However,there is wide acceptance that the DNA methylation always occurs on the C5 position of cytosine residues in CpG sites in DNA.20,42Fu et al.22demonstrated that epigenetic activation of bone-speci f i c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts.Moreover, Dansranjavin et al.23suggested that the inhibition of stem-cell-speci f i c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.In previous studies,Wu et al.demonstrated that an increase of N6-mA in Alkbh1?/?cells leads to genesilencing and that most of these genes are developmental factors and lineage-specifying genes.11Intriguingly,these genes are most markedly enriched on the X chromosome and Chr13,indicating that the increase in N6-mA inhibits the transcription on X chromosome,especially on young full-length LINE-1 transposons(L1 elements).11Taken together,these data indicate that accumulation of N6-mA at L1 elements is related to the inhibition of nearby gene.Thus,N6-mA modi f i cations have a great in f l uence on the activation of differentiation genes.It would be interesting to explore the relationship between ALKBH1 and N6-mA,and the mechanisms that affect osteogenic differentiation and bone formation.Our result indicated an inverse correlation between ALKBH1 and N6-mA.In addition,the depletion of ALKBH1 in vivo leads to less bone tissue and decreased bone formation.However,fewer papers on DNA demethylases have been published compared with RNA demethylases,which needs further exploration.

    In this study,we demonstrated that ALKBH1 binds to the promoter region of ATF4.The lack of ALKBH1 restricted this binding and increased N6-mA in this region,which led to transcription silencing.Our outcome suggested that ALKBH1 removes the N6-mA on ATF4 to regulate the osteogenic differentiation of human MSCs.ATF4,an osteoblast-enriched transcriptional factor of the CREB family,is indispensable for the latest phases of osteogenic differentiation,43bone formation,and mineralization of the ECM.44Previous studies have demonstrated that ATF4 promotes differentiation by upregulating the expression of osteoblast-speci f i c genes,such as RANKL,and by promoting the synthesis of type I collagen,which is a main component of the ECM.5,44These two distinct mechanisms are both dependent on the phosphorylation by RSK2.45Taken together,these data suggested that ALKBH1 enhances osteogenic differentiation by interacting with ATF4.

    It needs to be noted that our f i ndings are based on the in vitro experiments.Further in vivo studies are expected. Given that Alkbh1?/?in mice leads to embryonic and postnatal lethality,26a tissue-speci f i c mouse model is desired to further elucidate the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation.

    Collectively,we demonstrated that ALKBH1 enhances osteogenic differentiation by removing the N6-mA modi f ications on ATF4.Our results indicate that N6-mA modi f i cations area mechanism for epigenetic regulation of osteogenic differentiation.

    Acknowledgements

    This work was supported by grants from the National Natural Science Foundation of China(No.81271178 and 81470777).

    Competing interests

    The authors declare no con f l ict of interest.

    1 Nombela-Arrieta C,Ritz J,Silberstein LE.The elusive nature and function of mesenchymal stem cells.Nat Rev Mol Cell Biol 2011;12: 126–131.

    2 Deng P,Chen QM,Hong C et al.Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells.Int J Oral Sci 2015;7:197–204.

    3 Bianco P,Robey PG,Simmons PJ.Mesenchymal stem cells:revisiting history,concepts,and assays.Cell Stem Cell 2008;2:313–319.

    4 Bianco P,Cao X,Frenette PS et al.The meaning,the sense and the signi f i cance:translating the science of mesenchymal stem cells into medicine.Nat Med 2013;19:35–42.

    5 Yu S,Zhu K,Lai Y et al.atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci 2013;9:256–266.

    6 Crane JL,Zhao L,Frye JS et al.IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass.Bone Res 2013; 1:186–194.

    7 Rahman MS,Akhtar N,Jamil HM et al.TGF-beta/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation.Bone Res 2015;3:15005.

    8 Chiavistelli S,Giustina A,Mazziotti G.Parathyroid hormone pulsatility: physiological and clinical aspects.Bone Res 2015;3:14049.

    9 Yuan Q,Sato T,Densmore M et al.Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/-mice.PLoS Genet 2012;8:e1002726.

    10 Yuan Q,Sato T,Densmore M et al.FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH.J Bone Miner Res 2011;26:2026–2035.

    11 Wu TP,Wang T,Seetin MG et al.DNA methylation on N(6)-adenine in mammalian embryonic stem cells.Nature 2016;532:329–333.

    12 Guo H,Zhu P,Yan L et al.The DNA methylation landscape of human early embryos.Nature 2014;511:606–610.

    13 Bonder MJ,Kasela S,Kals M et al.Genetic and epigenetic regulation of gene expression in fetal and adult human livers.BMC Genomics 2014; 15:860.

    14 Wu Y,Zhang S,Yuan Q.N(6)-methyladenosine methyltransferases and demethylases:new regulators of stem cell pluripotency and differentiation.Stem Cells Dev 2016;25:1050–1059.

    15 Tsankov AM,Gu H,Akopian V et al.Transcription factor binding dynamics during human ES cell differentiation.Nature 2015;518:344–349.

    16 Ye C,Li L.5-hydroxymethylcytosine:a new insight into epigenetics in cancer.Cancer Biol Ther 2014;15:10–15.

    17 Ooi SK,O'Donnell AH,Bestor TH.Mammalian cytosine methylation at a glance.J Cell Sci 2009;122:2787–2791.

    18 Pastor WA,Aravind L,Rao A.TETonic shift:biological roles of TET proteins in DNA demethylation and transcription.Nat Rev Mol Cell Biol 2013;14:341–356.

    19 Hu L,Li Z,Cheng J et al.Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation.Cell 2013;155:1545–1555.

    20 Tahiliani M,Koh KP,Shen Y et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.

    21 Hon GC,Song CX,Du T et al.5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.Mol Cell 2014;56:286–297.

    22 Fu G,Ren A,Qiu Y et al.Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells.Curr Stem Cell Res Ther 2016;11: 235–246.

    23 Dansranjavin T,Krehl S,Mueller T et al.The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation.Cell Cycle 2009;8:916–924.

    24 Greer EL,Blanco MA,Gu L et al.DNA Methylation on N6-Adenine in C.elegans.Cell 2015;161:868–878.

    25 Ougland R,Jonson I,Moen MN et al.Role of ALKBH1 in the core transcriptional network of embryonic stem cells.Cell Physiol Biochem 2016;38:173–184.

    26 Nordstrand LM,Sv?rd J,Larsen E et al.Mice lacking Alkbh1 display sexratio distortion and unilateral eye defects.PLoS One 2010;5:e13827.

    27 Pan Z,Sikandar S,Witherspoon M et al.Impaired placental trophoblast lineage differentiation in Alkbh1(-/-)mice.Dev Dyn 2008;237:316–327.

    28 Ougland R,Lando D,Jonson I et al.ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.Stem Cells 2012;30: 2672–2682.

    29 Yuan Q,Jiang Y,Zhao X et al.Increased osteopontin contributes to inhibition of bone mineralization in FGF23-de f i cient mice.J Bone Miner Res 2014;29:693–704.

    30 Chen D,Jarrell A,Guo C et al.Dermal beta-catenin activity in response to epidermal Wnt ligands is required for f i broblast proliferation and hair follicle initiation.Development 2012;139:1522–1533.

    31 Peng L,Hu Y,Chen D et al.Ubiquitin speci f i c peptidase 21 regulates interleukin-8 expression,stem-cell like property of human renal cell carcinoma.Oncotarget 2016;7:42007–42016.

    32 Budnick I,Hamburg-Shields E,Chen D et al.De f i ning the identity of mouse embryonic dermal f i broblasts.Genesis 2016;54:415–430.

    33 Pei M,Chen D,Li J et al.Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.Differentiation 2009; 78:260–268.

    34 Zou H,Zhao X,Sun N et al.Effect of chronic kidney disease on the healing of titanium implants.Bone 2013;56:410–415.

    35 Liang Y,Zhu F,Zhang H et al.Conditional ablation of TGF-beta signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model.Sci Rep 2016;6:29479.

    36 Henkel J,Woodruff MA,Epari DR et al.Bone Regeneration Based on Tissue Engineering Conceptions-A 21st Century Perspective.Bone Res 2013;1:216–248.

    37 Kim MO,Jung H,Kim SC et al.Electromagnetic f i elds and nanomagnetic particles increase the osteogenic differentiation of human bone marrowderived mesenchymal stem cells.Int J Mol Med 2015;35:153–160.

    38 Peng L,Ye L,Zhou XD.Mesenchymal stem cells and tooth engineering. Int J Oral Sci 2009;1:6–12.

    39 Lee J,Abdeen AA,Kilian KA.Rewiring mesenchymal stem cell lineage speci f i cation by switching the biophysical microenvironment.Sci Rep 2014;4:5188.

    40 Tay Y,Zhang J,Thomson AM et al.MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124–1128.

    41 Olariu V,Lovkvist C,Sneppen K.Nanog,Oct4 and Tet1 interplay in establishing pluripotency.Sci Rep 2016;6:25438.

    42 Ficz G,Branco MR,Seisenberger S et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473:398–402.

    43 Elefteriou F,Ahn JD,Takeda S et al.Leptin regulation of bone resorption by the sympathetic nervous system and CART.Nature 2005;434: 514–520.

    44 Elefteriou F,Benson MD,Sowa H et al.ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 2006;4:441–451.

    45 Yang X,Matsuda K,Bialek P et al.ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology;implication for Cof f i n-Lowry Syndrome.Cell 2004;117:387–398.

    This work is licensed under a Creative Commons Attribution 4.0 International License.The images or other third party material in this article are included in the article’s Creative Commons license,unless indicated otherwise in the credit line;if the material is not included under the Creative Commons license,users will need to obtain permission from the license holder to reproduce the material.To view a copy of this license,visit http://creativecommons.org/licenses/by/4.0/

    ?The Author(s)2016

    Research(2016)4,16033;

    10.1038/boneres.2016.33;published online:11 October 2016

    State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University,Chengdu,China

    Correspondence:Shujuan Zou(shujuanzou@aliyun.com)

    Received:3 August 2016;Revised:13 August 2016;Accepted:14 August 2016

    18+在线观看网站| 制服丝袜香蕉在线| 久久久久久人妻| 日本av手机在线免费观看| 永久免费av网站大全| 男女无遮挡免费网站观看| 国产精品国产三级国产专区5o| 免费不卡的大黄色大毛片视频在线观看| 大陆偷拍与自拍| 国产色婷婷99| 少妇人妻精品综合一区二区| 我的女老师完整版在线观看| av在线蜜桃| 国产永久视频网站| 日本-黄色视频高清免费观看| 国产熟女欧美一区二区| 你懂的网址亚洲精品在线观看| 99视频精品全部免费 在线| 免费观看av网站的网址| 高清黄色对白视频在线免费看 | 伊人久久精品亚洲午夜| 精品少妇黑人巨大在线播放| 性高湖久久久久久久久免费观看| 久久女婷五月综合色啪小说| 成年美女黄网站色视频大全免费 | 麻豆乱淫一区二区| 国产黄色视频一区二区在线观看| 久久久久网色| 男人和女人高潮做爰伦理| 欧美精品亚洲一区二区| 2021少妇久久久久久久久久久| 欧美日韩国产mv在线观看视频 | 黄色日韩在线| av在线蜜桃| 中文欧美无线码| 日本午夜av视频| 最新中文字幕久久久久| 成人国产麻豆网| 免费不卡的大黄色大毛片视频在线观看| 色哟哟·www| 观看美女的网站| 一二三四中文在线观看免费高清| 亚洲va在线va天堂va国产| 日韩 亚洲 欧美在线| 久久久久性生活片| 亚洲美女搞黄在线观看| 精品久久久噜噜| 人妻 亚洲 视频| 十八禁网站网址无遮挡 | 国产精品不卡视频一区二区| 色5月婷婷丁香| 成人亚洲精品一区在线观看 | 久久久久久伊人网av| 国产一区亚洲一区在线观看| 国产亚洲午夜精品一区二区久久| 亚洲国产精品一区三区| 欧美zozozo另类| 能在线免费看毛片的网站| 在线免费十八禁| 亚洲人与动物交配视频| 青春草国产在线视频| 亚洲精品国产av蜜桃| 国产乱人偷精品视频| 欧美日韩亚洲高清精品| 18禁动态无遮挡网站| 午夜精品国产一区二区电影| 久久久久久人妻| 在线观看人妻少妇| 一级毛片aaaaaa免费看小| 国产91av在线免费观看| 久久精品国产亚洲av天美| 国产成人精品一,二区| 日本欧美视频一区| 观看免费一级毛片| a级一级毛片免费在线观看| 国产伦精品一区二区三区四那| 久久久精品免费免费高清| 高清视频免费观看一区二区| 亚洲中文av在线| 22中文网久久字幕| 国产一区二区在线观看日韩| 日本vs欧美在线观看视频 | 亚洲精品色激情综合| 国产精品爽爽va在线观看网站| 国精品久久久久久国模美| 久久国内精品自在自线图片| 乱系列少妇在线播放| 欧美极品一区二区三区四区| 中文在线观看免费www的网站| 熟女av电影| 黑丝袜美女国产一区| 永久网站在线| 深夜a级毛片| 777米奇影视久久| 亚洲色图综合在线观看| 久久久久网色| 亚洲av综合色区一区| 极品少妇高潮喷水抽搐| 97超碰精品成人国产| 国产精品一区二区在线观看99| 男的添女的下面高潮视频| 免费播放大片免费观看视频在线观看| 国产亚洲欧美精品永久| 91在线精品国自产拍蜜月| 一区二区三区免费毛片| 99热全是精品| 亚洲美女搞黄在线观看| 联通29元200g的流量卡| 99re6热这里在线精品视频| 大香蕉久久网| 精品国产一区二区三区久久久樱花 | 一级黄片播放器| 美女视频免费永久观看网站| 精品人妻一区二区三区麻豆| 日韩视频在线欧美| 内射极品少妇av片p| 免费观看av网站的网址| 日韩一本色道免费dvd| 国产伦精品一区二区三区视频9| 大片电影免费在线观看免费| 久久99热这里只频精品6学生| 精品一区二区三区视频在线| 如何舔出高潮| 九九爱精品视频在线观看| 男人添女人高潮全过程视频| 熟女av电影| 久久国产精品大桥未久av | 亚洲精品乱码久久久久久按摩| 亚洲伊人久久精品综合| 亚洲av电影在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 在线 av 中文字幕| 欧美日韩亚洲高清精品| 青春草视频在线免费观看| 亚洲中文av在线| 午夜福利高清视频| 国产精品av视频在线免费观看| 久久ye,这里只有精品| 国产精品久久久久久av不卡| 午夜激情福利司机影院| 久久国产精品男人的天堂亚洲 | 22中文网久久字幕| 少妇丰满av| 日韩中字成人| 一级毛片电影观看| 中文字幕精品免费在线观看视频 | 一级毛片电影观看| 黄色怎么调成土黄色| 免费黄色在线免费观看| 中文在线观看免费www的网站| 人人妻人人爽人人添夜夜欢视频 | 99久久精品一区二区三区| 免费大片黄手机在线观看| 国产精品一区二区性色av| 观看av在线不卡| 一级毛片 在线播放| 偷拍熟女少妇极品色| 男人和女人高潮做爰伦理| 亚洲av不卡在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲,欧美,日韩| 永久免费av网站大全| 日韩伦理黄色片| 国产国拍精品亚洲av在线观看| 久久97久久精品| 黄色视频在线播放观看不卡| 99热这里只有精品一区| 人妻 亚洲 视频| 国产成人freesex在线| 黄色一级大片看看| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲国产日韩| 国产视频首页在线观看| 最后的刺客免费高清国语| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 亚洲经典国产精华液单| 国产精品无大码| 色哟哟·www| 一区二区三区乱码不卡18| 干丝袜人妻中文字幕| 国产在线一区二区三区精| 日日摸夜夜添夜夜添av毛片| 亚洲国产高清在线一区二区三| 亚洲天堂av无毛| 色哟哟·www| 王馨瑶露胸无遮挡在线观看| 男人狂女人下面高潮的视频| 乱码一卡2卡4卡精品| 黄色一级大片看看| 日产精品乱码卡一卡2卡三| 日韩大片免费观看网站| 亚洲精品国产色婷婷电影| 国语对白做爰xxxⅹ性视频网站| 天堂俺去俺来也www色官网| 成人美女网站在线观看视频| 成人免费观看视频高清| 日产精品乱码卡一卡2卡三| 成人国产麻豆网| 99九九线精品视频在线观看视频| 国产老妇伦熟女老妇高清| 亚洲精品一区蜜桃| 麻豆成人av视频| 日韩一本色道免费dvd| 午夜激情久久久久久久| 亚洲婷婷狠狠爱综合网| 国产精品伦人一区二区| 尾随美女入室| 天天躁夜夜躁狠狠久久av| 婷婷色综合www| 国产视频内射| 精品一区二区三卡| .国产精品久久| 国产一区二区三区av在线| 日韩强制内射视频| 色婷婷久久久亚洲欧美| 国产色爽女视频免费观看| 直男gayav资源| 国产深夜福利视频在线观看| 一级毛片aaaaaa免费看小| 日本-黄色视频高清免费观看| 日韩伦理黄色片| 观看av在线不卡| 激情 狠狠 欧美| 亚洲av电影在线观看一区二区三区| videossex国产| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| 在线观看免费日韩欧美大片 | 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲欧美精品专区久久| 国产精品一区二区在线不卡| 成年人午夜在线观看视频| av在线老鸭窝| 大香蕉久久网| 亚洲真实伦在线观看| 国产高清国产精品国产三级 | 欧美三级亚洲精品| 亚洲伊人久久精品综合| 国产av国产精品国产| 男人狂女人下面高潮的视频| 国产成人一区二区在线| 亚洲精品日韩在线中文字幕| 97超视频在线观看视频| 大片免费播放器 马上看| 国产在线一区二区三区精| 一个人看的www免费观看视频| 久久精品国产自在天天线| 天堂8中文在线网| 久久99热6这里只有精品| 97超碰精品成人国产| 久久精品人妻少妇| 精品久久久久久久久av| 精品人妻熟女av久视频| 国产色婷婷99| 国产爱豆传媒在线观看| 久久久精品94久久精品| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 亚洲精品自拍成人| 搡老乐熟女国产| 麻豆乱淫一区二区| 久久天堂一区二区三区四区| 日韩大码丰满熟妇| 制服人妻中文乱码| 国产精品国产三级国产专区5o| 蜜桃在线观看..| 嫁个100分男人电影在线观看 | 91精品三级在线观看| 后天国语完整版免费观看| 色视频在线一区二区三区| 国产成人欧美| 欧美日本中文国产一区发布| av福利片在线| xxxhd国产人妻xxx| 999精品在线视频| 看免费成人av毛片| 欧美日韩福利视频一区二区| 国产免费视频播放在线视频| 91字幕亚洲| 色94色欧美一区二区| 亚洲免费av在线视频| 亚洲自偷自拍图片 自拍| 欧美精品高潮呻吟av久久| 一级毛片黄色毛片免费观看视频| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 十八禁高潮呻吟视频| 久久人妻熟女aⅴ| xxx大片免费视频| 国产精品一区二区精品视频观看| 男女无遮挡免费网站观看| 肉色欧美久久久久久久蜜桃| 一本色道久久久久久精品综合| 色婷婷久久久亚洲欧美| 日韩 欧美 亚洲 中文字幕| 伊人亚洲综合成人网| 国产精品三级大全| 午夜两性在线视频| 欧美黑人欧美精品刺激| 日本av免费视频播放| 久久久久久久久免费视频了| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| av欧美777| 只有这里有精品99| 久久人人爽av亚洲精品天堂| 久久久久久久大尺度免费视频| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片| 美女国产高潮福利片在线看| 成人午夜精彩视频在线观看| 国产成人影院久久av| 脱女人内裤的视频| 久久久久久人人人人人| 国产三级黄色录像| 可以免费在线观看a视频的电影网站| 免费日韩欧美在线观看| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 久久青草综合色| 十八禁高潮呻吟视频| 性色av乱码一区二区三区2| 男女边吃奶边做爰视频| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 国产国语露脸激情在线看| 丰满少妇做爰视频| avwww免费| 国产精品偷伦视频观看了| 丁香六月欧美| 欧美在线黄色| 中文欧美无线码| 大片免费播放器 马上看| 天天影视国产精品| 天天操日日干夜夜撸| 黄色a级毛片大全视频| 国产黄色免费在线视频| 两个人看的免费小视频| 亚洲国产欧美日韩在线播放| 久久女婷五月综合色啪小说| 国产一区亚洲一区在线观看| 亚洲欧美激情在线| 女人久久www免费人成看片| 精品久久蜜臀av无| 亚洲中文字幕日韩| 自线自在国产av| 色94色欧美一区二区| 狂野欧美激情性xxxx| 狂野欧美激情性bbbbbb| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 欧美人与性动交α欧美软件| 久久久欧美国产精品| 又大又黄又爽视频免费| 久久精品亚洲熟妇少妇任你| 午夜免费男女啪啪视频观看| 日韩伦理黄色片| 一本综合久久免费| 精品亚洲成a人片在线观看| 日本欧美视频一区| 国产主播在线观看一区二区 | 国产又色又爽无遮挡免| 精品视频人人做人人爽| 亚洲 国产 在线| 国产精品一二三区在线看| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 午夜激情av网站| 一二三四社区在线视频社区8| 菩萨蛮人人尽说江南好唐韦庄| 老司机亚洲免费影院| 熟女av电影| 国产成人一区二区三区免费视频网站 | av网站在线播放免费| 国产亚洲一区二区精品| 亚洲九九香蕉| www.精华液| 欧美日韩亚洲高清精品| 免费观看人在逋| 亚洲国产精品一区三区| 亚洲国产毛片av蜜桃av| 久久性视频一级片| 久久精品国产综合久久久| 考比视频在线观看| 国产极品粉嫩免费观看在线| www日本在线高清视频| 99re6热这里在线精品视频| 国产精品人妻久久久影院| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 久久久久精品国产欧美久久久 | 丰满少妇做爰视频| 午夜福利乱码中文字幕| 亚洲精品久久久久久婷婷小说| 午夜日韩欧美国产| 午夜福利一区二区在线看| 中文字幕人妻熟女乱码| 老司机影院成人| 国产一区二区激情短视频 | 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| 香蕉丝袜av| 精品一区二区三区av网在线观看 | 国产一区二区三区av在线| 在线观看免费高清a一片| av欧美777| 如日韩欧美国产精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 少妇被粗大的猛进出69影院| 99热国产这里只有精品6| 欧美国产精品va在线观看不卡| 亚洲第一青青草原| 七月丁香在线播放| 亚洲精品第二区| 免费高清在线观看日韩| av一本久久久久| 亚洲av在线观看美女高潮| 日韩av在线免费看完整版不卡| 精品久久久精品久久久| 人妻一区二区av| 少妇的丰满在线观看| 丝袜脚勾引网站| 免费高清在线观看日韩| 精品一区在线观看国产| 日韩 亚洲 欧美在线| 深夜精品福利| 一边亲一边摸免费视频| 国产爽快片一区二区三区| 久久天躁狠狠躁夜夜2o2o | 国产一区二区激情短视频 | 欧美精品av麻豆av| 在线观看人妻少妇| 国产黄频视频在线观看| 超碰成人久久| 亚洲精品美女久久av网站| 一级片'在线观看视频| 嫩草影视91久久| 久久99精品国语久久久| 老司机亚洲免费影院| 国产欧美亚洲国产| 搡老乐熟女国产| 日本欧美视频一区| 国产成人av教育| 亚洲精品在线美女| av网站免费在线观看视频| 久久精品国产综合久久久| www.999成人在线观看| 国产高清videossex| videos熟女内射| 日韩伦理黄色片| 韩国高清视频一区二区三区| 国产精品 国内视频| 国产在视频线精品| 大香蕉久久网| 人人澡人人妻人| 欧美黑人精品巨大| av又黄又爽大尺度在线免费看| 精品人妻一区二区三区麻豆| 黄频高清免费视频| 国产1区2区3区精品| 蜜桃在线观看..| √禁漫天堂资源中文www| 国产日韩欧美在线精品| 日韩制服骚丝袜av| 国产高清视频在线播放一区 | 麻豆av在线久日| 在现免费观看毛片| 欧美日韩精品网址| 亚洲人成77777在线视频| 久久久久久久精品精品| 成人午夜精彩视频在线观看| 久久久久国产一级毛片高清牌| 精品人妻1区二区| 午夜老司机福利片| 老司机靠b影院| 两性夫妻黄色片| 亚洲成人免费电影在线观看 | 欧美乱码精品一区二区三区| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 高清av免费在线| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 飞空精品影院首页| 久久人妻福利社区极品人妻图片 | 18禁观看日本| 国产女主播在线喷水免费视频网站| 国产高清videossex| 男人舔女人的私密视频| 亚洲国产精品一区二区三区在线| 精品一区在线观看国产| 91字幕亚洲| 欧美精品人与动牲交sv欧美| 久久99热这里只频精品6学生| 男女午夜视频在线观看| 精品福利永久在线观看| 黄色怎么调成土黄色| 日本五十路高清| 一级片免费观看大全| 日日夜夜操网爽| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 99国产精品99久久久久| avwww免费| 免费在线观看黄色视频的| 国产老妇伦熟女老妇高清| 亚洲男人天堂网一区| 最新在线观看一区二区三区 | 免费在线观看影片大全网站 | 大话2 男鬼变身卡| 两个人看的免费小视频| 乱人伦中国视频| 亚洲av国产av综合av卡| 99久久99久久久精品蜜桃| 久久亚洲精品不卡| 视频区图区小说| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| www.精华液| 国产深夜福利视频在线观看| 免费人妻精品一区二区三区视频| 亚洲五月色婷婷综合| 婷婷色麻豆天堂久久| 国产亚洲av高清不卡| 欧美日韩成人在线一区二区| 一级黄片播放器| 免费高清在线观看视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 1024香蕉在线观看| 久久影院123| 男女床上黄色一级片免费看| 天堂8中文在线网| 在线精品无人区一区二区三| 看免费av毛片| 在线精品无人区一区二区三| 青青草视频在线视频观看| 99re6热这里在线精品视频| 人人澡人人妻人| 久久精品国产亚洲av涩爱| 久久青草综合色| 亚洲成av片中文字幕在线观看| 9色porny在线观看| 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 男女床上黄色一级片免费看| 亚洲精品久久午夜乱码| 久久久久精品人妻al黑| 丁香六月欧美| 色94色欧美一区二区| 色播在线永久视频| 色网站视频免费| 一本综合久久免费| 免费观看av网站的网址| 一本综合久久免费| 男女之事视频高清在线观看 | 精品亚洲乱码少妇综合久久| 亚洲免费av在线视频| tube8黄色片| 欧美日韩亚洲国产一区二区在线观看 | www.熟女人妻精品国产| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 免费看不卡的av| 9色porny在线观看| 欧美日本中文国产一区发布| 在线观看免费高清a一片| 国产亚洲欧美在线一区二区| 天天躁日日躁夜夜躁夜夜| 性色av乱码一区二区三区2| 一边摸一边抽搐一进一出视频| 日韩av在线免费看完整版不卡| 日韩中文字幕欧美一区二区 | 免费看av在线观看网站| 后天国语完整版免费观看| 成年av动漫网址| 亚洲av男天堂| 在线观看免费视频网站a站| 国产高清videossex| 91精品三级在线观看| 王馨瑶露胸无遮挡在线观看| 最近最新中文字幕大全免费视频 | 一区二区三区精品91| 国产一级毛片在线| 亚洲欧美成人综合另类久久久| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 亚洲精品一二三| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 国产老妇伦熟女老妇高清| 婷婷色麻豆天堂久久| 女人被躁到高潮嗷嗷叫费观| 两人在一起打扑克的视频| 日韩电影二区| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡| 精品少妇内射三级| 久久99一区二区三区| 国产精品国产三级国产专区5o| 久久精品久久久久久噜噜老黄| 午夜福利视频在线观看免费| 熟女少妇亚洲综合色aaa.| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 中文字幕人妻丝袜制服| 国产精品免费视频内射| 日本午夜av视频| 十八禁高潮呻吟视频| 免费久久久久久久精品成人欧美视频|