• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vitamin D,calcium homeostasis and aging

    2016-03-22 05:36:08VaishaliVeldurthyRanWeiLeylaOzPuneetDhawanYongHeuiJeonandSylviaChristakos
    Bone Research 2016年3期

    Vaishali Veldurthy,Ran Wei,Leyla Oz,Puneet Dhawan,Yong Heui Jeon and Sylvia Christakos

    Vitamin D,calcium homeostasis and aging

    Vaishali Veldurthy,Ran Wei,Leyla Oz,Puneet Dhawan,Yong Heui Jeon and Sylvia Christakos

    Osteoporosis is characterized by low bone mass and microarchitecture deterioration of bone tissue,leading to enhanced bone fragility and consequent increase in fracture risk.Evidence is accumulating for an important role of calcium de f i ciency as the process of aging is associated with disturbed calcium balance.Vitamin D is the principal factor that maintains calcium homeostasis.Increasing evidence indicates that the reason for disturbed calcium balance with age is inadequate vitamin D levels in the elderly.In this article,an overview of our current understanding of vitamin D,its metabolism,and mechanisms involved in vitamin D-mediated maintenance of calcium homeostasis is presented.In addition,mechanisms involved in age-related dysregulation of 1,25(OH)2D3action,recommended daily doses of vitamin D and calcium,and the use of vitamin D analogs for the treatment of osteoporosis(which remains controversial)are reviewed.Elucidation of the molecular pathways of vitamin D action and modi f i cations that occur with aging will be an active area of future research that has the potential to reveal new therapeutic strategies to maintain calcium balance.

    INTRODUCTION

    Calcium is the f i fth most abundant element in the human body and is essential for life.1It has a key role in many physiological processes including skeletal mineralization, muscle contraction,nerve impulse transmission,blood clotting,and hormone secretion.More than 99%of calcium in the body is stored in the skeleton as hydroxyapatite,which provides skeletal strength and is a source of calcium for the multiple calcium-mediated functions as well as for the maintenance of serum calcium within the normal range(8–10 mg·dL-1).Less than 1%of calcium is located in the blood,soft tissues,and extracellular f l uid. Serum calcium is either protein-bound(~40%),notably by albumin,bound as a complex to small anions(for example, phosphate or citrate;~9%)or in the free or ionized state (~51%).1It is the ionized calcium that is available to enter cells and result in the activation of essential physiological processes.Calcium is only available to the body through dietary intake.In the elderly there is inadequate intestinal absorption of calcium combined with an age-related hormonal decline,which results in adverse effects on bone health.2–31,25-Dihydroxyvitamin D3[1,25(OH)2D3],the hormonally active form of vitamin D,is the major controlling hormone of intestinal calcium absorption.4Calcium homeostasis is also regulated by parathyroid hormone and ionized calcium.1,5This review will focus on mechanisms involved in vitamin D regulation of calcium homeostasis, changes that occur with aging and current recommendations to address de f i ciencies.

    VITAMIN D,METABOLISM,AND MAINTENANCE OF CALCIUM HOMEOSTASIS

    Vitamin D is derived from the diet from forti f i ed dairy products and f i sh oils or is synthesized in the skin from 7-dehydrocholesterol by ultraviolet irradiation.6–7Vitamin D is transported in the blood by vitamin D-binding protein (DBP).A series of hydroxylations,the f i rst one at the 25th carbon(C-25)and the second at carbon 1(C-1),are needed to produce the active form of vitamin D,1,25 (OH)2D3.25-Hydroxylation of vitamin D in the liver results in the formation of 25-hydroxyvitamin D[25(OH)D3],the major circulating form of vitamin D and the most reliable index of vitamin D status.6–7CYP2R1 is now considered the key enzyme responsible for the conversion of vitamin D to 25 (OH)D3.8–9Studies in CYP2R1 null mice,indicatingsigni f i cantly reduced levels of 25(OH)D3in these mice, have con f i rmed the role of CYP2R1 in the hydroxylation of vitamin D at C-25.10However,synthesis of low levels of 25 (OH)D3in these mice suggests that other 25-hydroxylases, yet to be identi f i ed,are also involved in the conversion of vitamin D to 25(OH)D3.After its synthesis in the liver,25(OH) D3is transported by DBP to the kidney where it is internalized by megalin,a transmembrane protein that acts as a surface receptor for DBP.11–12In the proximal renal tubule,25(OH)D3is hydroxylated by 25(OH)D31α hydroxylase(CYP27B1)resulting in the formation of 1,25 (OH)2D3,which is responsible for the biological actions of vitamin D.In humans,mutations resulting in nonfunctional or deleted CYP27B1 cause vitamin D dependency rickets type 1(characterized by hypocalcemia,hyperparathyroidism,and decreased bone mineralization),indicating the importance of CYP27B1 for the maintenance of calcium homeostasis.1325-Hydroxyvitamin D3 24hydroxylase (CYP24A1)is the enzyme responsible for the catabolism of 1,25(OH)2D.14–15Direct evidence for a role of CYP24A1 in 1,25(OH)2D3catabolism was provided by studies in CYP24A1 null mice.The survival rate of homozygous mutants is~50%.CYP24A1 null mice that survive are unable to clear exogenously administered 1,25(OH)2D3.16In humans,inactivating mutations in CYP24A1 have been reported to have a causal role in certain patients with idiopathic infantile hypercalcemia,providing further evidence for the role of CYP24A1 in 1,25(OH)2D3catabolism.17Elevated parathyroid hormone(PTH)resulting from hypocalcemia induces 1,25(OH)2D3synthesis in the kidney and inhibits CYP24A1.1,25(OH)2D3in turn acts to suppress PTH production at the parathyroid gland and to negatively regulate CYP27B1,thus regulating its own production.18–191,25(OH)2D3can also do so by inducing CYP24A1,thus completing an auto-regulatory feedback loop and maintaining a stringent control mechanism.14–15,19FGF23,a phosphaturic factor that promotes renal phosphate excretion,also regulates vitamin D metabolism.αKlotho is a coreceptor for FGF23.Together,FGF23 and klotho suppress CYP27B1 and induce CYP24A1,resulting in a reduction in 1,25(OH)2D3levels.20

    The genomic actions of 1,25(OH)2D3are mediated by the vitamin D receptor(VDR).1,25(OH)2D3-occupied VDR heterodimerizes with the retinoid X receptor and together with co-regulatory proteins interacts with vitamin D response elements in and around target genes and mediates their transcription.21–22

    The principal function of 1,25(OH)2D3in the maintenance of calcium homeostasis is to increase calcium absorption from the intestine(Figure 1).VDR is expressed in all segments of the small and large intestine and active 1,25 (OH)2D3calcium absorption has been reported in the distal as well as the proximal intestine.4Rickets and osteomalacia are prevented when VDR null mice are fed a diet high in calcium and lactose,indicating that 1,25(OH)2D3and VDR have a critical role in bone mineralization by regulating intestinal calcium absorption.23–241,25(OH)2D3has been reported to regulate every step of the intestinal transcellular calcium transport process.It induces the expression of the apical membrane calcium channel TRPV6,the calcium-binding protein calbindin-D9k(it has been suggested that calbindin facilitates,in part,translocation of calcium through the enterocyte and buffers calcium preventing toxic levels of calcium from accumulating in the cell),and the plasma membrane CaATPase,PMCA1b. Thereby,1,25(OH)2D3exerts its control in the intestine on calcium entry,calcium binding,and basolateral extrusion of calcium.4

    Although the expression of calbindin-D9kand TRPV6 is regulated by 1,25(OH)2D3,calbindin-D9kor TRPV6 null mice actively transport calcium similar to wild-type mice in response to 1,25(OH)2D3,suggesting that other calcium channels or binding proteins can contribute to the calcium transport process in their absence as a compensatory mechanism.25However,increased bone turnover and impaired bone mineralization have been observed in TRPV6 null mice that are maintained on a low-calcium diet.26Moreover,overexpression of TRPV6 in the mouse intestine results in hypercalciuria,hypercalcemia,and soft tissue calci f i cation,indicating a signi f i cant role for TRPV6 in intestinal calcium absorption.27In addition,our studies using calbindin-D9k/TRPV6 double knockout mice revealed that when both genes are absent calcium absorption in response to low dietary calcium is least ef f i cient,suggestingthat calbindin-D9kand TRPV6 can act together in certain aspects of the active transcellular calcium transport process.25

    If normal serum calcium cannot be maintained by intestinal calcium absorption,then 1,25(OH)2D3acts together with PTH to increase calcium reabsorption from the renal distal tubule and to remove calcium from bone (Figure 1).In the distal tubule of the kidney,similar to the intestine,1,25(OH)2D3regulates the transcellular transport process by inducing an epithelial calcium channel TRPV5 (75%sequence homology with TRPV6),which facilitates apical calcium entry,and by inducing the calbindins (calbindin-D9kand calbindin-D28kare both present in mouse kidney;only calbindin-D28kis present in rat and human kidney).28–29Extrusion of calcium at the distal tubule is via PMCA1b and the Na+/Ca2+exchanger.Although it has been a matter of debate,studies in Cyp27b1 null mice have shown that the Na+/Ca2+exchanger is decreased, suggesting regulation of the Na+/Ca2+exchanger as well as the calbindins and TRPV5 by 1,25(OH)2D3.30The importance of TRPV5 in renal calcium reabsorption was noted in studies in TRPV5 null mice.TRPV5 null mice display severe hypercalciuria and signi f i cant changes in the bone structure.31In bone,both PTH and 1,25(OH)2D3stimulate osteoclastogenesis.22Osteoclastic bone resorption results in the release of calcium from bone to maintain calcium homeostasis.

    VITAMIN D AND AGING

    During the aging process,changes occur in many factors involved in the regulation of calcium homeostasis.In both animals and humans there is a decline in intestinal calcium absorption with age,resulting in secondary hyperparathyroidism and bone loss.2–3,32This decrease in calcium absorption correlates with decreased expression of intestinal TRPV6 and calbindin-D9k.33–34We and others have noted that renal CYP24A1,which limits the amount of 1,25 (OH)2D3by accelerating the catabolism of 1,25(OH)2D3, increases with age.35–36In addition,with age there is a defect in 1 α hydroxylation.37Thus,the combined effect of a decline in intestinal calcium absorption,a decline in the ability of the kidney to synthesize 1,25(OH)2D3,and an increase in catabolism of 1,25(OH)2D3by CYP24A1 contribute to age-related bone loss(Figure 2).It has been suggested that intestinal calcium malabsorption is due to reduction in circulating levels of 1,25(OH)2D3as well as intestinal resistance to 1,25(OH)2D3.38The contribution of VDR to calcium absorption in the aging intestine is controversial.There have been studies that support a reduction in intestinal VDR content with age in humans and animals.39–40However,others have reported no change in intestinal VDR number with aging in humans and animals.41–42It is possible that the age-related resistance of the intestine to 1,25(OH)2D3and decreased expression of vitamin D target genes(for example,TRPV6)may be due,at least in part,to altered recruitment by 1,25(OH)2D3of VDR and VDR co-activators and epigenetic changes.

    In addition to the intestine,there are age-related changes in the kidney that affect calcium homeostasis. With age,there is a decline in kidney function and a gradual decrease in the glomerular f i ltration rate,which is associated with progressive structural deterioration of the kidney.43Senescence affects vitamin D metabolism as indicated above.The age-related decrease in glomerular fi ltration rate has been reported to correlate with decreased serum 1,25(OH)2D3.44Recent studies have suggested that increased FGF23 may be the initial event leading to the suppression of 1,25(OH)2D3synthesis that is associated with functional deterioration of the kidney.45Although PTH is elevated with age,renal production of 1,25 (OH)2D3in response to PTH declines with age.46Coincident with decline in PTH-stimulated renal production of 1,25 (OH)2D3,there is also an age-related decrease in renal VDR and TRPV5 expression with age,which is accompanied by lower calcium renal reabsorption ef f i cacy.33Aging is also associated with a decrease in the intrinsic capacity of the kidney to reabsorb phosphate,which has been reported to be independent of PTH.47

    VITAMIN D AND BONE HEALTH

    Osteoporosis is a systemic skeletal disease characterized by decreased bone strength and increased risk of fractures.Although osteoporosis affects both aging men and women,it is more frequently observed in postmenopausal women.48The National Osteoporosis Foundation estimates that one in every two women and one in every fi ve men over 50 will experience osteoporosis-related fractures during their lifetime.49The loss of estrogen in menopause leads to a decline in bone mineral density (BMD).50It has been reported that not only in women but also in men there is an association between low estradiol levels and increased fracture.50–51Thus,low estradiol is a key factor predicting bone loss in older adults.50–51

    In addition to low estradiol,low serum 25(OH)D3is also associated with adverse skeletal outcomes.52The Instituteof Medicine considers a 25(OH)D level of 20 ng·mL-1suf f i cient for the general population without underlying disease-related conditions.53Risk factors for vitamin D de f i ciency include older age,inadequate exposure to sunlight,dark skin tone,and obesity.54Vitamin D de f iciency,which is common among the elderly,causes secondary hyperparathyroidism that can result in decreased bone density and increased risk of fracture.In a randomized,placebo-controlled trial of postmenopausal white women with 25(OH)D levels of 20 ng·mL-1or less, Gallagher et al.55reported that a vitamin D dose of 800 IU per day(in conjunction with suf f i cient calcium intake; 1 200–1 400 mg)increased 25(OH)D levels greater than 20 ng·mL-1in 97.5%of the women.This level,as indicated by the Institute of Medicine,is associated with reduced fracture risk.It should be noted,however,that some studies have suggested that a threshold of 30 ng·mL-1is preferable to maintain skeletal health.56Some individuals, however,do not respond to vitamin D supplementation with an increase in 25(OH)D.The factors controlling this lack of response are unknown.It has recently been shown that DNA methylation levels of CYP2R1 and CYP24A1 are higher in non-responders,suggesting that the DNA methylation levels of these enzymes involved in vitamin D metabolism may predict which patients will not respond to vitamin D.57The current standard recommended daily doses of vitamin D and calcium are 800 IU and 1 000 mg,respectively,for vitamin D-suf f i cient individuals.58Pharmacological treatment for osteoporosis includes bisphosphonates,denosumab(monoclonal antibody against RANKL),and PTH peptides.59A combination of alendronate(a bisphosphonate;70 mg)and 5 600 IU vitamin D3 administered weekly was found to be effective(increased BMD after 12 months)in treating osteoporotic postmenopausal women who had 25(OH)D levels between 8 and 20 ng·mL-1,suggesting that correcting vitamin D de f iciency may optimize the treatment of osteoporosis.60

    VITAMIN D ANALOGS AND TREATMENT OF AGERELATED OSTEOPOROSIS

    Besides pharmacological intervention with bisphosphonates,RANKL inhibitor(antiresorptive compounds),and PTH peptides(anabolic drug,teriparatide),vitamin D analogs have also been studied for possible osteoporosis treatment.However,their therapeutic ef f i cacy in osteoporosis treatment remains controversial.Alphacalcidol (1αOHD3),which is metabolized to 1,25(OH)2D3in the liver, has been reported to inhibit bone resorption to increase BMD and to reduce vertebral and non-vertebral fractures.61–65Although it is a less effective antiresorptive agent compared with bisphosphonates,it has been suggested that alfacalcidol is superior to vitamin D plus calcium in increasing lumbar BMD.It was reported that serum calcium was not signi f i cantly different between the vitamin D plus calcium group and the alfacalcidol group, suggesting similar safety characteristics.66

    Eldecalcitol,1α25(OH)2-2b-(3-hydroxypropyloxy)vitamin D3(ED71),which has been approved for treatment of osteoporosis in Japan,is 1,25(OH)2D3with a hydroxypropyloxy group at the carbon 2β position.Eldecalcitol has a lower af f i nity than 1,25(OH)2D3for VDR but a 2.7-fold greater af f i nity for the DBP.67Eldecalcitol has a longer halflife than 1,25(OH)2D3.It has been suggested that tight binding of eldecalcitol to DBP can explain the longer halflife of eldecalcitol.68Eldecalcitol has also shown resistance to metabolic degradation via 24 hydroxylation,which may also contribute to its longer half-life and ef f i cacy.69In silico modeling has shown that eldecalcitol does not f i t in the active site of CYP24A1 because of the 3-HP group, suggesting a mechanism for its poor metabolic clearance by CYP24A1.70Studies in mice indicated that daily administration of eldecalcitol increased BMD,at least in part,by suppressing RANKL expression in trabecular bone.71Eldecalcitol has also been reported to reduce the number of osteoclasts while also stimulating focal bone formation in ovariectomized cynomolgus monkeys.72In a randomized double-blind study over 3 years in osteoporotic patients in comparison with alfacalcitol,eldecalcitol was more potent in increasing hip and lumbar BMD and reducing vertebral and wrist fractures.Urinary calcium was increased with treatment with both alfacalcitol and eldecalcitol.Eldecalcitol recipients had a greater increase in serum calcium compared with alfacalcitol recipients.73–74It has also been reported that combination treatment of alendronate and eldecalcitol is more effective in reducing bone turnover markers and increasing femoral neck BMD than alendronate,vitamin D plus calcium treatment in Japanese patients with primary osteoporosis.75However,close monitoring of blood and urinary calcium is recommended for all patients treated with eldecalcitol.73

    2-Methylene-19-nor(20S)-1α25-dihydroxyvitamin D3(2MD)is a vitamin D analog,which was found to act as a bone anabolic agent.In ovariectomized rats,2MD was reported to increase trabecular and cortical bone mass and to improve bone strength without hypercalcemia.76–77However,in a randomized,double-blind,placebocontrolled trial of osteopenic postmenopausal women, treatment with 2MD for 1 year did not change BMD.78It has been suggested that the difference between the rat and human data is because of less resorptive activity in the rat compared with humans.The resorptive effect of 2MD in humans may exceed its activity on bone formation.78However,2MD has been shown to be 10 times more effective than 1α hydroxyvitamin D2(hectorol)or 19-nor-1α25-dihydroxyvitamin D2(Zemplar)in suppressing PTHwithout affecting serum calcium.79Thus,2MD may be a potent alternative to currently available compounds to suppress PTH in renal failure patients.

    In summary,although some vitamin D analogs have been useful for treatment of osteoporosis,increased serum calcium remains a concern in countries where there is a greater normal intake of dietary calcium.

    CONCLUSION AND FUTURE DIRECTIONS

    Vitamin D de f i ciency is common among the elderly and can result in secondary hyperparathyroidism,decreased bone density,and increased risk of fracture.Correcting vitamin D de f i ciency is a reasonable approach to help maintain skeletal health and to optimize treatment of osteoporosis.Despite the importance of vitamin D in optimal calcium homeostasis and bone health,a detailed understanding of the mechanisms by which inadequate vitamin D contributes to osteoporosis are not yet known. Future studies using newer technologies,including those designed to provide genome-scale insights into the factors involved in regulating vitamin D genes as well as agerelated changes in co-activator protein and epigenetic regulation of VDR function,will provide important insight into mechanisms involved in dysregulation of calcium homeostasis that occurs with aging.These molecular mechanistic studies will facilitate the development of drugs that selectively modulate vitamin D target genes with therapeutic potential to maintain calcium responsiveness during aging.

    Acknowledgements

    SC receives funding from the National Institute of Health Grants AG044552. LO is supported by the Scienti f i c and Technical Research Council of Turkey (TUBITAK).

    Competing interests

    The authors declare no con f l ict of interest.

    1 Peacock M.Calcium metabolism in health and disease.Clin J Am Soc Nephrol 2010;5(Suppl 1):S23–S30.

    2 Morris HA,Need AG,Horowitz M et al.Calcium absorption in normal and osteoporotic postmenopausal women.Calcif Tissue Int 1991;49: 240–243.

    3 Ensrud KE,Duong T,Cauley JA et al.Low fractional calcium absorption increases the risk for hip fracture in women with low calcium intake. Study of Osteoporotic Fractures Research Group.Ann Intern Med 2000; 132:345–353.

    4 Christakos S.Recent advances in our understanding of 1,25-dihydroxyvitamin D(3)regulation of intestinal calcium absorption.Arch Biochem Biophys 2012;523:73–76.

    5 Brown EM.The calcium-sensing receptor:physiology,pathophysiology and CaR-based therapeutics.Subcell Biochem 2007;45:139–167.

    6 Plum LA,DeLuca HF.Vitamin D,disease and therapeutic opportunities.Nat Rev Drug Discov 2010;9:941–955.

    7 Bikle DD,Adams J,Christakos S.Vitamin D:production,metabolism and clinical requirements//Rosen C.Primer on Metabolic Bone Diseases.Hoboken:John Wiley and Sons,2013:235–245.

    8 Zhu J,DeLuca HF.Vitamin D 25-hydroxylase-four decades of searching,are we there yet?Arch Biochem Biophys 2012;523:30–36.

    9 Cheng JB,Motola DL,Mangelsdorf DJ et al.De-orphanization of cytochrome P450 2R1:a microsomal vitamin D 25-hydroxylase.J Biol Chem 2003;278:38084–38093.

    10 Zhu JG,Ochalek JT,Kaufmann M et al.CYP2R1 is a major,but not exclusive,contributor to 25-hydroxyvitamin D production in vivo.Proc Natl Acad Sci USA 2013;110:15650–15655.

    11 Chun RF,Peercy BE,Orwoll ES et al.Vitamin D and DBP:the free hormone hypothesis revisited.J Steroid Biochem Mol Biol 2014;144:132–137.

    12 Nykjaer A,Dragun D,Walther D et al.An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH)vitamin D3.Cell 1999;96:507–515.

    13 Kitanaka S,Takeyama K,Murayama A et al.Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-de f i ciency rickets.N Engl J Med 1998;338:653–661.

    14 Jones G,Prosser DE,Kaufmann M.25-Hydroxyvitamin D-24-hydroxylase(CYP24A1):its important role in the degradation of vitamin D. Arch Biochem Biophys 2012;523:9–18.

    15 Veldurthy V,Wei R,Campbell M et al.25-Hydroxyvitamin D(3) 24-hydroxylase:a key regulator of 1,25(OH)(2)D(3)catabolism and calcium homeostasis.Vitam Horm 2016;100:137–150.

    16 St-Arnaud R,Arabian A,Travers R et al.De f i cient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D.Endocrinology 2000;141:2658–2666.

    17 Schlingmann KP,Kaufmann M,Weber S et al.Mutations in CYP24A1 and idiopathic infantile hypercalcemia.N Engl J Med 2011;365:410–421.

    18 Henry HL.Regulation of vitamin D metabolism.Best Pract Res Clin Endocrinol Metab 2011;25:531–541.

    19 Brenza HL,DeLuca HF.Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression by parathyroid hormone and 1,25-dihydroxyvitamin D3.Arch Biochem Biophys 2000;381:143–152.

    20 Hu MC,Shiizaki K,Kuro-o M et al.Fibroblast growth factor 23 and Klotho:physiology and pathophysiology of an endocrine network of mineral metabolism.Annu Rev Physiol 2013;75:503–533.

    21 Pike JW,Meyer MB.Fundamentals of vitamin D hormone-regulated gene expression.J Steroid Biochem Mol Biol 2014;144:5–11.

    22 Christakos S,Dhawan P,Verstuyf A et al.Vitamin D:metabolism, molecular mechanism of action,and pleiotropic effects.Physiol Rev 2016; 96:365–408.

    23 Amling M,Priemel M,Holzmann T et al.Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis:formal histomorphometric and biomechanical analyses. Endocrinology 1999;140:4982–4987.

    24 Li YC,Amling M,Pirro AE et al.Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism,rickets,and osteomalacia,but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998;139:4391–4396.

    25 Benn BS,Ajibade D,Porta A et al.Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k.Endocrinology 2008;149:3196–3205.

    26 Lieben L,Benn BS,Ajibade D et al.Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis.Bone 2010;47:301–308.

    27 Cui M,Li Q,Johnson R et al.Villin promoter-mediated transgenic expression of transient receptor potential cation channel,subfamily V, member 6(TRPV6)increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.J Bone Miner Res 2012;27: 2097–2107.

    28 de Groot T,Bindels RJ,Hoenderop JG.TRPV5:an ingeniously controlled calcium channel.Kidney Int 2008;74:1241–1246.

    29 Ajibade D,Benn BS,Christakos S.Mechanism of action of 1.25 dihydroxyvitamin D3 in intestinal calcium absorption and renal calcium transport//Holick MF.Vitamin D:Physiology,Molecular,Biological and Clinical Applications.Totowa:Humana Press,2010:175–187.

    30 Hoenderop JG,Dardenne O,Van Abel M et al.Modulation of renal Ca2+ transport protein genes by dietary Ca2+and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice.FASEB J 2002;16:1398–1406.

    31 Hoenderop JG,van Leeuwen JP,van der Eerden BC et al.Renal Ca2+ wasting,hyperabsorption,and reduced bone thickness in mice lacking TRPV5.J Clin Invest 2003;112:1906–1914.

    32 Armbrecht HJ,Zenser TV,Bruns ME et al.Effect of age on intestinal calcium absorption and adaptation to dietary calcium.Am J Physiol 1979; 236:E769–E774.

    33 van Abel M,Huybers S,Hoenderop JG et al.Age-dependent alterations in Ca2+homeostasis:role of TRPV5 and TRPV6.Am J Physiol Renal Physiol 2006;291:F1177–F1183.

    34 Brown AJ,Krits I,Armbrecht HJ.Effect of age,vitamin D,and calcium on the regulation of rat intestinal epithelial calcium channels.Arch Biochem Biophys 2005;437:51–58.

    35 Matkovits T,Christakos S.Variable in vivo regulation of rat vitamin D-dependent genes(osteopontin,Ca,Mg-adenosine triphosphatase, and 25-hydroxyvitamin D3 24-hydroxylase):implications for differing mechanisms of regulation and involvement of multiple factors.Endocrinology 1995;136:3971–3982.

    36 Johnson JA,Beckman MJ,Pansini-Porta A et al.Age and gender effects on 1,25-dihydroxyvitamin D3-regulated gene expression.Exp Gerontol 1995;30:631–643.

    37 Armbrecht HJ,Zenser TV,Davis BB.Effect of age on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney of rat. J Clin Invest 1980;66:1118–1123.

    38 Pattanaungkul S,Riggs BL,Yergey AL et al.Relationship of intestinal calcium absorption to 1,25-dihydroxyvitamin D[1,25(OH)2D]levels in young versus elderly women:evidence for age-related intestinal resistance to 1,25(OH)2D action.J Clin Endocrinol Metab 2000;85: 4023–4027.

    39 Ebeling PR,Sandgren ME,DiMagno EP et al.Evidence of an age-related decrease in intestinal responsiveness to vitamin D:relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women.J Clin Endocrinol Metab 1992;75: 176–182.

    40 Horst RL,Goff JP,Reinhardt TA.Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor.Endocrinology 1990;126:1053–1057.

    41 Kinyamu HK,Gallagher JC,Prahl JM et al.Association between intestinal vitamin D receptor,calcium absorption,and serum 1,25 dihydroxyvitamin D in normal young and elderly women.J Bone Miner Res 1997; 12:922–928.

    42 Wood RJ,Fleet JC,Cashman K et al.Intestinal calcium absorption in the aged rat:evidence of intestinal resistance to 1,25(OH)2 vitamin D. Endocrinology 1998;139:3843–3848.

    43 Weinstein JR,Anderson S.The aging kidney:physiological changes. Adv Chronic Kidney Dis 2010;17:302–307.

    44 Reichel H,Deibert B,Schmidt-Gayk H et al.Calcium metabolism in early chronic renal failure:implications for the pathogenesis of hyperparathyroidism.Nephrol Dial Transplant 1991;6:162–169.

    45 Quarles LD.Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease.Exp Cell Res 2012;318:1040–1048.

    46 Armbrecht HJ,Wongsurawat N,Zenser TV et al.Differential effects of parathyroid hormone on the renal 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 production of young and adult rats. Endocrinology 1982;111:1339–1344.

    47 Mulroney SE,Woda C,Haramati A.Changes in renal phosphate reabsorption in the aged rat.Proc Soc Exp Biol Med 1998;218:62–67.

    48 Raisz LG.Pathogenesis of osteoporosis:concepts,con f l icts,and prospects.J Clin Invest 2005;115:3318–3325.

    49 Cosman F,de Beur SJ,LeBoff MS et al.Clinician's guide to prevention and treatment of osteoporosis.Osteoporos Int 2014;25:2359–2381.

    50 Riggs BL,Khosla S,Melton LJ 3rd.Sex steroids and the construction and conservation of the adult skeleton.Endocr Rev 2002;23:279–302.

    51 Cauley JA.Estrogen and bone health in men and women.Steroids 2015; 99:11–15.

    52 Cauley JA,LaCroix AZ,Wu L et al.Serum 25 hydroxyvitamin D concentrations and the risk of hip fractures:the women's health initiative.Ann Intern Med 2008;149:242–250.

    53 Ross AC,Manson JE,Abrams SA et al.The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine:what clinicians need to know.J Clin Endocrinol Metab 2011;96: 53–58.

    54 Holick MF,Binkley NC,Bischoff-Ferrari HA et al.Evaluation,treatment, and prevention of vitamin D de f i ciency:an Endocrine Society clinical practice guideline.J Clin Endocrinol Metab 2011;96:1911–1930.

    55 Gallagher JC,Sai A,Templin T 2nd et al.Dose response to vitamin D supplementation in postmenopausal women:a randomized trial. Ann Intern Med 2012;156:425–437.

    56 Priemel M,von Domarus C,Klatte TO et al.Bone mineralization defects and vitamin D de f i ciency:histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients.J Bone Miner Res 2010;25:305–312.

    57 Zhou Y,Zhao LJ,Xu X et al.DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation.J Steroid Biochem Mol Biol 2014;144:207–214.

    58 Gallagher JC.Vitamin D and aging.Endocrinol Metab Clin North Am 2013;42:319–332.

    59 Tella SH,Gallagher JC.Prevention and treatment of postmenopausal osteoporosis.J Steroid Biochem Mol Biol 2014;142:155–170.

    60 Ralston SH,Binkley N,Boonen S et al.Randomized trial of alendronate plus vitamin D3 versus standard care in osteoporotic postmenopausal women with vitamin D insuf f i ciency.Calcif Tissue Int 2011;88: 485–494.

    61 Weber K,Kaschig C,Erben RG.1 Alpha-hydroxyvitamin D2 and 1 alpha-hydroxyvitamin D3 have anabolic effects on cortical bone,but induce intracortical remodeling at toxic doses in ovariectomized rats. Bone 2004;35:704–710.

    62 Li M,Healy DR,Simmons HA et al.Alfacalcidol restores cancellous bone in ovariectomized rats.J Musculoskelet Neuronal Interact 2003;3:39–46.

    63 Orimo H,Shiraki M,Hayashi Y et al.Effects of 1 alpha-hydroxyvitamin D3 on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis.Calcif Tissue Int 1994;54:370–376.

    64 ShikariKushida M,Yamazaki K,Nagai K et al.H.Effects of 2 years' treatment of osteoporosis with 1 alpha-hydroxy vitamin D3 on bone mineral density and incidence of fracture:a placebo-controlled,doubleblind prospective study.Endocr J 1996;43:211–220.

    65 Hayashi Y,Fujita T,Inoue T.Decrease of vertebral fracture in osteoporotics by administration of 1α-hydroxy-vitamin D3.J Bone Miner Metab 1992;10:50–54.

    66 Nuti R,Bianchi G,Brandi ML et al.Superiority of alfacalcidol compared to vitamin D plus calcium in lumbar bone mineral density in postmenopausal osteoporosis.Rheumatol Int 2006;26:445–453.

    67 Kubodera N,Tsuji N,Uchiyama Y et al.A new active vitamin D analog, ED-71,causes increase in bone mass with preferential effects on bone in osteoporotic patients.J Cell Biochem 2003;88:286–289.

    68 Abe M,Tsuji N,Takahashi F et al.Overview of the clinical pharmacokinetics of eldecalcitol,a new active vitamin D3 derivative.Jpn Pharmacol Ther 2011;39:261–274.

    69 Ritter CS,Brown AJ.Suppression of PTH by the vitamin D analog eldecalcitol is modulated by its high af f i nity for the serum vitamin D-binding protein and resistance to metabolism.J Cell Biochem 2011;112: 1348–1352.

    70 Kondo S,Takano T,Ono Y et al.Eldecalcitol reduces osteoporotic fractures by unique mechanisms.J Steroid Biochem Mol Biol 2015;148: 232–238.

    71 Harada S,Mizoguchi T,Kobayashi Y et al.Daily administration of eldecalcitol(ED-71),an active vitamin D analog,increases bone mineral density by suppressing RANKL expression in mouse trabecular bone. J Bone Miner Res 2012;27:461–473.

    72 Saito M,Grynpas MD,Burr DB et al.Treatment with eldecalcitol positively affects mineralization,microdamage,and collagen crosslinks in primate bone.Bone 2015;73:8–15.

    73 Matsumoto T,Ito M,Hayashi Y et al.A new active vitamin D3 analog, eldecalcitol,prevents the risk of osteoporotic fractures--a randomized, active comparator,double-blind study.Bone 2011;49:605–612.

    74 Matsumoto T,Takano T,Saito H et al.Vitamin D analogs and bone: preclinical and clinical studies with eldecalcitol.Bonekey Rep 2014;3:513.

    75 Sakai A,Ito M,Tomomitsu T et al.Ef f i cacy of combined treatment with alendronate(ALN)and eldecalcitol,a new active vitamin D analog, compared to that of concomitant ALN,vitamin D plus calcium treatment in Japanese patients with primary osteoporosis.Osteoporos Int 2015;26:1193–1202.

    76 Plum LA,Fitzpatrick LA,Ma X et al.2MD,a new anabolic agent for osteoporosis treatment.Osteoporos Int 2006;17:704–715.

    77 Ke HZ,Qi H,Crawford DT et al.A new vitamin D analog,2MD,restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia.J Bone Miner Res 2005;20:1742–1755.

    78 DeLuca HF,Bedale W,Binkley N et al.The vitamin D analogue 2MD increases bone turnover but not BMD in postmenopausal women with osteopenia:results of a 1-year phase 2 double-blind,placebo-controlled, randomized clinical trial.J Bone Miner Res 2011;26:538–545.

    79 Zella JB,Plum LA,Plowchalk DR et al.Novel,selective vitamin D analog suppresses parathyroid hormone in uremic animals and postmenopausal women.Am J Nephrol 2014;39:476–483.

    This work is licensed under a Creative Commons Attribution 4.0 International License.The images or other third party material in this article are included in the article’s Creative Commons license,unless indicated otherwise in the credit line;if the material is not included under the Creative Commons license,users will need to obtain permission from the license holder to reproduce the material.To view a copy of this license,visit http://creativecommons.org/licenses/by/4.0/

    ?The Author(s)2016

    Research(2016)4,16041;

    10.1038/boneres.2016.41;published online:18 October 2016

    Department of Microbiology,Biochemistry and Molecular Genetics,Rutgers,The State University of New Jersey,New Jersey Medical School, Newark,NJ 07103,USA

    Correspondence:Sylvia Christakos(christak@njms.rutgers.edu)

    Received:20 July 2016;Revised:31 August 2016;Accepted:4 September 2016

    男女之事视频高清在线观看| videosex国产| 精品熟女少妇八av免费久了| 久久 成人 亚洲| 亚洲自偷自拍图片 自拍| 久久精品国产a三级三级三级| 91精品三级在线观看| 午夜福利在线观看吧| 免费在线观看黄色视频的| 久久人人爽av亚洲精品天堂| 亚洲色图av天堂| 丁香欧美五月| 啪啪无遮挡十八禁网站| 美女扒开内裤让男人捅视频| 一级a爱视频在线免费观看| 国产精品影院久久| 狠狠婷婷综合久久久久久88av| 成年人黄色毛片网站| 国产高清国产精品国产三级| 又紧又爽又黄一区二区| 精品一品国产午夜福利视频| 又大又爽又粗| 午夜免费鲁丝| 好男人电影高清在线观看| 亚洲熟妇中文字幕五十中出 | 成人手机av| 熟女少妇亚洲综合色aaa.| 亚洲成人手机| 精品亚洲成a人片在线观看| 91成年电影在线观看| 99riav亚洲国产免费| 国产精品 欧美亚洲| 老熟妇乱子伦视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| 国产在线精品亚洲第一网站| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 老汉色av国产亚洲站长工具| bbb黄色大片| 中文字幕av电影在线播放| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区 | 久久国产精品影院| 国产精品久久久人人做人人爽| 日本a在线网址| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 一级a爱片免费观看的视频| 久久中文字幕人妻熟女| 国产区一区二久久| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 亚洲成a人片在线一区二区| 精品国产国语对白av| av中文乱码字幕在线| 亚洲av电影在线进入| 亚洲精品乱久久久久久| www日本在线高清视频| 欧美av亚洲av综合av国产av| 久久亚洲真实| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 真人做人爱边吃奶动态| 91麻豆精品激情在线观看国产 | ponron亚洲| 精品久久久久久,| 黄片小视频在线播放| 免费高清在线观看日韩| 国产精品 国内视频| 在线播放国产精品三级| 999精品在线视频| 日本黄色日本黄色录像| 免费在线观看亚洲国产| 亚洲午夜精品一区,二区,三区| avwww免费| 一级片免费观看大全| 日韩欧美在线二视频 | 国产精品美女特级片免费视频播放器 | 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 国产成+人综合+亚洲专区| 国产野战对白在线观看| 1024视频免费在线观看| 日日爽夜夜爽网站| 久久人人97超碰香蕉20202| 国产精品.久久久| 极品人妻少妇av视频| 亚洲欧美一区二区三区久久| 国产一区在线观看成人免费| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 欧美日韩黄片免| 亚洲成av片中文字幕在线观看| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 啦啦啦免费观看视频1| 啪啪无遮挡十八禁网站| 国产激情欧美一区二区| 在线观看一区二区三区激情| 日韩大码丰满熟妇| 看片在线看免费视频| 国产在线一区二区三区精| 极品教师在线免费播放| e午夜精品久久久久久久| 国产精品久久久久成人av| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 黄色丝袜av网址大全| 动漫黄色视频在线观看| 叶爱在线成人免费视频播放| 成人18禁在线播放| 自线自在国产av| 中文字幕另类日韩欧美亚洲嫩草| 成人影院久久| 12—13女人毛片做爰片一| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 国产精品乱码一区二三区的特点 | 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 无人区码免费观看不卡| 一级a爱片免费观看的视频| 精品亚洲成国产av| 亚洲男人天堂网一区| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区三区在线| 色在线成人网| 欧美老熟妇乱子伦牲交| 大陆偷拍与自拍| 黄色片一级片一级黄色片| av天堂久久9| 搡老熟女国产l中国老女人| 丝袜在线中文字幕| 午夜福利一区二区在线看| 成在线人永久免费视频| 一区在线观看完整版| 午夜成年电影在线免费观看| 国产在视频线精品| 久久久久久人人人人人| 国产精品国产av在线观看| 天天操日日干夜夜撸| 操美女的视频在线观看| 黄色毛片三级朝国网站| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 一级黄色大片毛片| 黑丝袜美女国产一区| 欧美成人免费av一区二区三区 | 国产一卡二卡三卡精品| 极品人妻少妇av视频| 色老头精品视频在线观看| a级片在线免费高清观看视频| 免费在线观看黄色视频的| 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 丰满的人妻完整版| 老熟妇乱子伦视频在线观看| 国产亚洲精品第一综合不卡| 90打野战视频偷拍视频| 成人黄色视频免费在线看| 久久ye,这里只有精品| 水蜜桃什么品种好| 国产高清激情床上av| 国内毛片毛片毛片毛片毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久久久久免费视频 | 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 女人被躁到高潮嗷嗷叫费观| 一进一出好大好爽视频| 亚洲精品中文字幕一二三四区| 欧美国产精品一级二级三级| 色老头精品视频在线观看| 午夜福利欧美成人| 电影成人av| 婷婷丁香在线五月| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| cao死你这个sao货| 在线av久久热| 一本综合久久免费| 午夜免费成人在线视频| 露出奶头的视频| 91国产中文字幕| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三区在线| 亚洲熟妇中文字幕五十中出 | 国产精品成人在线| av一本久久久久| 手机成人av网站| 亚洲国产看品久久| 狠狠狠狠99中文字幕| 国产成人欧美在线观看 | 久久久久精品人妻al黑| 中国美女看黄片| 最近最新中文字幕大全电影3 | 欧美日韩国产mv在线观看视频| 嫩草影视91久久| 成年人免费黄色播放视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美久久黑人一区二区| 黄色成人免费大全| 精品一品国产午夜福利视频| 一级,二级,三级黄色视频| 50天的宝宝边吃奶边哭怎么回事| 午夜精品国产一区二区电影| 国产一区二区激情短视频| 香蕉国产在线看| 黄色毛片三级朝国网站| 亚洲精品在线美女| 午夜福利,免费看| 亚洲人成电影观看| 久久青草综合色| 啦啦啦免费观看视频1| 麻豆国产av国片精品| 亚洲va日本ⅴa欧美va伊人久久| 高清视频免费观看一区二区| 成人18禁在线播放| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 成年人午夜在线观看视频| 19禁男女啪啪无遮挡网站| av网站在线播放免费| 国产高清视频在线播放一区| 1024视频免费在线观看| 亚洲国产精品合色在线| 成在线人永久免费视频| 久久人妻av系列| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 人人澡人人妻人| 免费少妇av软件| 久9热在线精品视频| 曰老女人黄片| 国产一区二区三区在线臀色熟女 | 欧美精品亚洲一区二区| 国产伦人伦偷精品视频| 精品卡一卡二卡四卡免费| 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站| 999精品在线视频| 69av精品久久久久久| 99国产精品99久久久久| 欧美日本中文国产一区发布| 午夜久久久在线观看| 精品人妻1区二区| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 国产精品九九99| 国产人伦9x9x在线观看| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 欧美+亚洲+日韩+国产| 桃红色精品国产亚洲av| 九色亚洲精品在线播放| 亚洲av熟女| 亚洲av成人一区二区三| 高清视频免费观看一区二区| 国产人伦9x9x在线观看| 黄色女人牲交| 午夜成年电影在线免费观看| 一a级毛片在线观看| 美女 人体艺术 gogo| 激情视频va一区二区三区| 大型av网站在线播放| 午夜日韩欧美国产| 国产精品.久久久| xxx96com| 日韩欧美一区二区三区在线观看 | 免费在线观看影片大全网站| 国产色视频综合| 欧美日韩精品网址| 亚洲av熟女| 在线观看舔阴道视频| 久久久久精品人妻al黑| 黄色a级毛片大全视频| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 国产日韩欧美亚洲二区| 精品久久久久久电影网| 伊人久久大香线蕉亚洲五| 国产色视频综合| av免费在线观看网站| 欧美日韩乱码在线| 高清欧美精品videossex| 成人免费观看视频高清| 日日摸夜夜添夜夜添小说| 亚洲成人国产一区在线观看| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 免费不卡黄色视频| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 色婷婷久久久亚洲欧美| 满18在线观看网站| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| netflix在线观看网站| 亚洲精品粉嫩美女一区| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 看免费av毛片| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 精品乱码久久久久久99久播| 国产aⅴ精品一区二区三区波| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 午夜影院日韩av| 精品无人区乱码1区二区| 飞空精品影院首页| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 亚洲欧美激情在线| 1024视频免费在线观看| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 国产精品1区2区在线观看. | 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 久久精品国产综合久久久| 五月开心婷婷网| xxxhd国产人妻xxx| 亚洲精品国产精品久久久不卡| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 久久中文看片网| 久久ye,这里只有精品| 亚洲精品久久午夜乱码| 国产91精品成人一区二区三区| 免费av中文字幕在线| 日韩精品免费视频一区二区三区| 日韩欧美在线二视频 | 看免费av毛片| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人 | 高清在线国产一区| 宅男免费午夜| 91老司机精品| 日韩欧美三级三区| 午夜免费鲁丝| 国产亚洲欧美在线一区二区| 精品卡一卡二卡四卡免费| videosex国产| 精品久久久精品久久久| 男女之事视频高清在线观看| 激情在线观看视频在线高清 | 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 丰满饥渴人妻一区二区三| 乱人伦中国视频| 国产精品av久久久久免费| 成人三级做爰电影| 大型黄色视频在线免费观看| 亚洲国产精品一区二区三区在线| 久久国产精品人妻蜜桃| 国产深夜福利视频在线观看| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 99国产极品粉嫩在线观看| 亚洲国产精品一区二区三区在线| 9色porny在线观看| 免费黄频网站在线观看国产| 丝袜人妻中文字幕| 在线观看舔阴道视频| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片 | 国产97色在线日韩免费| 成人特级黄色片久久久久久久| 亚洲性夜色夜夜综合| e午夜精品久久久久久久| 高清欧美精品videossex| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 美女国产高潮福利片在线看| 国产一区二区三区综合在线观看| 亚洲精品国产一区二区精华液| 午夜视频精品福利| 一级片免费观看大全| 中文字幕av电影在线播放| 国产精品国产av在线观看| 亚洲人成伊人成综合网2020| 成年人免费黄色播放视频| 丝袜人妻中文字幕| 操美女的视频在线观看| 啦啦啦在线免费观看视频4| 久久香蕉精品热| 亚洲精品在线观看二区| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费 | 免费av中文字幕在线| 久热这里只有精品99| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 精品一区二区三卡| av一本久久久久| 国产免费av片在线观看野外av| 国产精品久久电影中文字幕 | 男人操女人黄网站| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 丝袜在线中文字幕| x7x7x7水蜜桃| tube8黄色片| 国产区一区二久久| 亚洲国产看品久久| 欧美国产精品一级二级三级| 国产欧美日韩一区二区三| 国产aⅴ精品一区二区三区波| 国产精品免费一区二区三区在线 | 午夜福利乱码中文字幕| 中文字幕最新亚洲高清| 天堂√8在线中文| 看免费av毛片| 露出奶头的视频| 午夜福利影视在线免费观看| 国产男女超爽视频在线观看| 欧美精品啪啪一区二区三区| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 欧美日韩福利视频一区二区| 乱人伦中国视频| 国产精品亚洲av一区麻豆| 日韩 欧美 亚洲 中文字幕| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| 亚洲精品久久午夜乱码| 天天添夜夜摸| 色婷婷久久久亚洲欧美| 色精品久久人妻99蜜桃| 成人av一区二区三区在线看| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 亚洲精品国产一区二区精华液| 国产蜜桃级精品一区二区三区 | 亚洲av电影在线进入| 久久精品亚洲精品国产色婷小说| 母亲3免费完整高清在线观看| 变态另类成人亚洲欧美熟女 | 电影成人av| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 男女午夜视频在线观看| 校园春色视频在线观看| 国产精品香港三级国产av潘金莲| 国产日韩一区二区三区精品不卡| 欧美激情极品国产一区二区三区| 韩国av一区二区三区四区| 久久精品国产亚洲av高清一级| 国产精品98久久久久久宅男小说| 亚洲熟女精品中文字幕| 极品少妇高潮喷水抽搐| www.精华液| 亚洲av美国av| 亚洲国产欧美网| а√天堂www在线а√下载 | x7x7x7水蜜桃| 精品一品国产午夜福利视频| 夜夜躁狠狠躁天天躁| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 老熟妇仑乱视频hdxx| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成77777在线视频| 老司机亚洲免费影院| 国产精品久久视频播放| 少妇粗大呻吟视频| 女人被狂操c到高潮| 两个人免费观看高清视频| 精品一区二区三区av网在线观看| 老司机影院毛片| 国产精品国产高清国产av | 久久中文看片网| 免费一级毛片在线播放高清视频 | 五月开心婷婷网| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 伊人久久大香线蕉亚洲五| 中出人妻视频一区二区| 99热只有精品国产| 久久精品国产综合久久久| av网站免费在线观看视频| 超碰97精品在线观看| 午夜福利在线免费观看网站| 欧美 亚洲 国产 日韩一| 午夜福利在线观看吧| 成人av一区二区三区在线看| 99久久综合精品五月天人人| 99热只有精品国产| av电影中文网址| 亚洲精华国产精华精| 老司机靠b影院| 亚洲成国产人片在线观看| 一进一出好大好爽视频| 一区二区三区国产精品乱码| 交换朋友夫妻互换小说| 午夜两性在线视频| 国产麻豆69| 久久国产乱子伦精品免费另类| 亚洲精品国产色婷婷电影| 亚洲中文av在线| 在线十欧美十亚洲十日本专区| 亚洲人成电影观看| 人人妻,人人澡人人爽秒播| 午夜久久久在线观看| 80岁老熟妇乱子伦牲交| 91精品国产国语对白视频| 亚洲aⅴ乱码一区二区在线播放 | 久久中文看片网| 亚洲午夜理论影院| 国产精品 国内视频| 女人被躁到高潮嗷嗷叫费观| aaaaa片日本免费| 亚洲精品久久成人aⅴ小说| 亚洲欧美日韩高清在线视频| 大陆偷拍与自拍| av免费在线观看网站| 香蕉国产在线看| 99久久人妻综合| 亚洲国产欧美网| 国产亚洲精品久久久久5区| 亚洲中文字幕日韩| 国产亚洲欧美98| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| 亚洲av熟女| 飞空精品影院首页| 人妻久久中文字幕网| 国产欧美日韩精品亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月婷婷丁香| 日韩成人在线观看一区二区三区| 欧美久久黑人一区二区| 久久中文字幕人妻熟女| 一区二区三区激情视频| 首页视频小说图片口味搜索| 高清视频免费观看一区二区| 免费在线观看视频国产中文字幕亚洲| 青草久久国产| 日韩成人在线观看一区二区三区| 黄色怎么调成土黄色| 久久精品国产亚洲av高清一级| 飞空精品影院首页| 午夜成年电影在线免费观看| 91成年电影在线观看| 麻豆成人av在线观看| 亚洲免费av在线视频| 99热只有精品国产| 老司机亚洲免费影院| 欧美日韩福利视频一区二区| 国产免费av片在线观看野外av| 韩国av一区二区三区四区| 青草久久国产| 国产不卡一卡二| 一级毛片精品| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线观看二区| 久久热在线av| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| 人成视频在线观看免费观看| 91老司机精品| 亚洲色图av天堂| 69av精品久久久久久| 国产乱人伦免费视频| 亚洲五月天丁香| 午夜激情av网站| 麻豆av在线久日| 动漫黄色视频在线观看| 制服诱惑二区| 激情视频va一区二区三区| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| 18禁黄网站禁片午夜丰满| 999久久久国产精品视频| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av在线 | 侵犯人妻中文字幕一二三四区| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 两性夫妻黄色片| 久久久久久人人人人人| 无人区码免费观看不卡| 伊人久久大香线蕉亚洲五| 女人精品久久久久毛片| 99re在线观看精品视频| 夫妻午夜视频| 免费在线观看完整版高清| 50天的宝宝边吃奶边哭怎么回事| 女人久久www免费人成看片| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av | 男人的好看免费观看在线视频 | 成年人免费黄色播放视频| 久久国产精品影院| 久久久国产成人精品二区 | 美女 人体艺术 gogo| 亚洲成人国产一区在线观看| 成年人午夜在线观看视频| 免费在线观看亚洲国产| 亚洲精品美女久久久久99蜜臀|