• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    2016-03-22 05:36:17ChenchenZhouYutingLiuXiaobingLiJingZouandShujuanZou
    Bone Research 2016年3期

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    ALKBH1 was recently discovered as a demethylase for DNA N6-methyladenine(N6-mA),a new epigenetic modi f i cation,and interacts with the core transcriptional pluripotency network of embryonic stem cells. However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown. In this study,we demonstrated that the expression of ALKBH1 in human mesenchymal stem cells(MSCs) was upregulated during osteogenic induction.Knockdown of ALKBH1 increased the genomic DNA N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,alkaline phosphatase activity,and mineralization.ALKBH1-depleted MSCs also exhibited a restricted capacity for bone formation in vivo. By contrast,the ectopic overexpression of ALKBH1 enhanced osteoblastic differentiation.Mechanically, we found that the depletion of ALKBH1 resulted in the accumulation of N6-mA on the promoter region of ATF4,which subsequently silenced ATF4 transcription.In addition,restoring the expression of ATP by adenovirus-mediated transduction successfully rescued osteogenic differentiation.Taken together,our results demonstrate that ALKBH1 is indispensable for the osteogenic differentiation of MSCs and indicate that DNA N6-mA modi f i cations area new mechanism for the epigenetic regulation of stem cell differentiation.

    INTRODUCTION

    Stem cells are characterized by two features:the ability to differentiate into multiple cell types and the ability to selfrenew.1–2Mesenchymal stem cells(MSCs)are one type of postnatal stem cell with a pluripotent differentiation potential that is broader than originally envisioned or perhaps as broad as that of embryonic stem cells.2MSCs have the ability to differentiate into different mesenchymal lineages,such as osteoblasts,chondrocytes,adipocytes, fi broblasts,and adventitial reticular cells.3Consequently, MSCs can be seen as bona fi de cells for all tissues in which they induce osteoprogenitors and then transform into osteoblasts,which are crucial for the mineralization of the extracellular matrix(ECM)of bone.4–6

    The osteogenic differentiation of MSCs is regulated by multiple mechanisms,such as key transcription factors,including runt-related transcription factor 2 and Osterix,2,5,7as well as other hormones.1,8–10In addition, epigenetic regulations have an important role in mammalian biology11–12and regulate tissue-speci fi c gene expression.13–14Recently,DNA methylation,which is an epigenetic regulation,was found to have a pivotal role in stem cell differentiation.15DNA methylation occurs on the fi fth position of cytosine(5mC).16DNA cytosines experience a series of modi fi cations performed by a variety of enzymes,including DNA methyltransferases,17which add a methyl group on the fi fth position of cytosine to form 5mC;TET family dioxygenases(TET1,TET2,and TET3),18–19which then oxidize the methyl group to create 5-hydroxymethylcytosine;20and 5-formylcytosine and 5-carboxyl cytosine,which complete the cycle.21The epigenetic activation of bone-spec i fi c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts,22and the inhibition of stem-cell-speci fi c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.23

    Very recently,the methylation of N6-methyladenine (N6-mA)has been reported as another DNA methylationevent,and ALKBH1 was discovered as a demethylase for DNA N6-mA.11,24ALKBH1,a member of the AlkB family,is a 2-oxoglutarate and Fe2+-dependent hydroxylase.25–26ALKBH1 has an important role in epigenetic regulation by accommodating the expression of pluripotency markers and genes related to neural differentiation during embryogenesis.27ALKBH1 is involved in f i ne-tuning the level of a core transcriptional network and regulating the developmental regulatory microRNAs involved in pluripotency and differentiation.21Most of the Alkbh1?/?mice died during embryogenesis,and survivors exhibit tissue developmental defects,including prolonging the expression of pluripotency markers,28and multiple defects in eyes, craniofacial,sternum,and limb skeleton,26which suggests that ALKBH1 is indispensable for stem differentiation and development.However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown.

    In this study,we demonstrated that the depletion or overexpression of ALKBH1 in human MSCs regulates the levels of genomic DNA N6-mA and signi f i cantly affects osteogenic differentiation and bone formation.Mechanically,we found that the depletion of ALKBH1 results in the accumulation of N6-mA on the promoter region of activating transcription factor 4(ATF4),which subsequently silences ATF4 transcription.

    MATERIALS AND METHODS

    Cell culture

    Human bone marrow-derived MSCs were obtained from American Type Culture Collection(ATCC,Manassas,VA, USA).Cells were cultured in Dulbecco’s modi f i ed Eagle’s medium(DMEM)supplemented with 10%fetal bovine serum(Gibco,Carlsbad,CA,USA)plus 100 U·mL-1of penicillin and 100 mg·mL-1of streptomycin(Gibco)at 37°C with a humidi f i ed atmosphere of 5%CO2.To induce osteogenic differentiation,MSCs were seeded in 6-or 24-well plates.After con f l uence,cells were treated with osteogenic medium containing 50 μmol·L-1ascorbic acid, 10 mmol·L-1β-glycerophosphate,and 10 nmol·L-1dexamethasone(Sigma,Shanghai,China).All experimental protocols and procedures were approved by the State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.

    Gene knockdown and overexpression

    ALKBH1-targeted and control small interfere RNAs were purchased from Santa Cruz(Dallas,TX,USA).Transfection was performed using Lipofectamine RNAiMAX reagent (Invitrogen)according to the manufacturer's instructions.Knockdown ef f i ciency was determined by reverse transcription-PCR(RT-PCR)and western blot 2 days after the transfection.The lentivirus particles of ALKBH1 and scrambled shRNAs were obtained from Genecopoeia (Guangzhou,China).The stable cell lines were established by puromycin selection.

    For ALKBH1 overexpression,lentiviruses expressing the human ALKBH1 gene were purchased from Genecopoeia. MSCs were infected with ALKBH1 or empty vectors in the presence of polybrene(Sigma)for 24 h and were selected with puromycin(Sigma).For ATF4 overexpression,the adenovirus particles expressing human ATF4 or GFP (control)were obtained from Cyagen(Guangzhou,China).

    RNA isolation and RT-PCR

    Total RNA was isolated using the Trizol reagent(Invitrogen) according to the manufacturer’s instructions.The complementary DNA was prepared from 2 μg aliquots of RNA using a QuantiTec reverse transcription kit(Qiagen,Valencia,CA,USA).29–31Quantitative real-time PCR was performed using SYBR Premix Ex Taq(Takara,Dalian,China)in an ABI7500 real-time PCR system(Applied Biosystems, Foster City,CA,USA).The primer sequences used are listed in Table 1.Relative expression was calculated using a 2-ΔΔCtmethod32by normalization with Gapdh housekeeping gene expression and presented as fold increase relative to control.

    Western blot

    Cells were lysed in RIPA buffer(Pierce,Rockford,IL,USA) supplemented with a protease inhibitor cocktail(Roche, Mannheim,Germany)and centrifuged at 18 000 g for 15 min at 4°C.The supernatants were heated at 95°C for 5 min in sample buffer containing 2%SDS and 1% 2-mercaptoethanol,separated on 10%SDS–polyacrylamide gels,and transferred to polyvinylidene di f l uoride membranes using a semi-dry transfer apparatus(Bio-Rad).33The membranes were blocked with 5%milk for 1 h and then incubated with anti-ALKBH1(Millipore,Billerica,MA,USA, 1:1 000),anti-ATF4(Abcam,Cambridge,MA,USA,1:1 000) or anti-α-Tubulin(Sigma,1:5 000)overnight followed by a horseradish peroxidase-conjugated anti-rabbit or antimouse IgG(Jackson ImmunoResearch,West Grove,PA, USA).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce,Rockford,IL,USA).

    Dot blot

    Genomic DNA was isolated using a PureLink Genomic DNA kit(Invitrogen)and then denatured at 95°C for 10 min in 0.4 mol·L-1NaOH and 10 mmol·L-1EDTA buffer.Samples were spotted on the membrane(Zeta-Probe,Bio-Rad, Hercules,CA,USA)using a Dot-Blot micro f i ltration apparatus(Bio-Rad)and baked at 80°C for 30 min.Membranes were blocked in blocking buffer(5%milk in PBST)for 1 h at room temperature and incubated with N6-mA antibody (202-003,Synaptic Systems,Goettingen,Germany,1:2 000) overnight at 4°C.After three washes,membranes were incubated with horseradish peroxidase-linked secondary anti-rabbit IgG(Jackson ImmunoResearch).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce).To ensure an equal amount of DNA was spotted,the same membrane was stained with 0.02% methylene blue in 0.3 mol·L-1sodium acetate(pH 5.2).

    ALP and Alizarin red staining

    For alkaline phosphatase(ALP)staining,cells were grown in osteogenic differentiation medium for 7 days.Cells were then

    fi xed in 70%ethanol and incubated with a staining solution of 0.25%naphthol AS-BI phosphate and 0.75%Fast Blue BB dissolved in 0.1 mol·L-1Tris buffer(pH 9.3).We also quanti fi ed the ALP activity using a commercial kit according to the manufacturer’s protocol(Cell Biolab,San Diego,CA,USA).

    For mineralization assays,cells were cultured in differentiation medium for 2–3 weeks,f i xed with 70%ethanol, and stained with 40 mmol·L-1Alizarin red S(pH 4.2,Sigma) for 10 min.34Mineralized bone nodules stained with alizarin red were distained with 10%cetylpyridinium chloride in 10 mmol·L-1sodium phosphate(pH 7.0),and the calcium concentration was determined by absorbance measurements at 562 nm.

    Ectopic bone formation

    Three-month-old immunocompromised beige mice were obtained from the Experimental Animal Center of the University and housed in pathogen-free facilities under a 12-h light and 12-h dark cycle.All procedures were conducted in accordance with The Guidelines for the Care and Use of Laboratory Animals of State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.Approximately 5×106of cells were mixed with 60 mg of pure phase β-tricalcium phosphate particles(SynthoGraft,Bicon,Boston,MA,USA) and then transplanted subcutaneously under the dorsal surface as described previously.11,24Six weeks after transplantation,the transplants were collected,f i xed with 10% formalin,and decalci f i ed with 10%EDTA.Paraf f i n sections were fabricated and stained with hematoxylin and eosin.35

    Chromatin immunoprecipitation assay

    The chromatin immunoprecipitation assay was performed using a Simple ChIP Assay kit(Cell Signaling Technology, Danvers,MA,USA)according to the manufacturer’s protocol31with an antibody against N6-mA(cat#202003, Synaptic Systems)or the control normal rabbit IgG(cat#sc-2027,Santa Cruz).After dissociating the DNA–protein complexes,pulled down DNA along with the input DNA(devoid of antibody)were subjected to quantitative PCR analysis with primers to interrogate the ATF4 promoter(Table 1).The results are expressed as the percentage of input DNA.

    Statistical analysis

    All values were presented as the mean±s.e.Two-tailed Student’s t-test and one-way analysis of variance followed by the Tukey’s test were used for single and multiple comparisons with assess the statistical inference on difference among each pair of data sets,respectively. A P value<0.05 was considered statistically signi f i cant.

    RESULTS

    ALKBH1 is upregulated during osteogenic differentiation We f i rst evaluated the expression pro f i le of ALKBH1 in human MSCs during osteogenic differentiation.As determined by real-time RT-PCR,the ALKBH1 messenger RNA levels were signi f i cantly upregulated in response to osteogenic induction(Figure 1a).This observation was also con f i rmed by western blot analysis(Figure 1b).These results suggest that ALKBH1 may have a role in the osteogenic differentiation of MSCs.

    Depletion of ALKBH1 inhibits osteogenic differentiation in vitro

    To investigate the role of ALKBH1 in osteogenic differentiation,we knocked down ALKBH1 in human MSCs.The knockdown ef f i ciency was con f i rmed by RT-PCR and western blot(Figure 2a and b).Given that ALKBH1 was recently discovered as a demethylase for DNA N6-mA,we evaluated the modi f i cation of N6-mA using a DNA dot blot assay.As shown in Figure 2c,depletion of ALKBH1 markedly increased N6-mA levels in whole genomic DNA of MSCs. After osteogenic induction for 7 days,we found that the small interfere RNA-mediated depletion of ALKBH1signi f i cantly reduced ALP activity,which is an early marker of osteoblastic differentiation(Figure 2d and e). We also assessed ECM mineralization by Alizarin red S staining.As shown in Figure 2f and g,the mineralization was signi f i cantly decreased after ALKBH1 depletion.In addition, the knockdown of ALKBH1 inhibited the expression of osteogenic-related genes,such as RUNX2,Osterix(SP7), and Osteocalcin(GBLAP)(Figure 2h–j).

    Depletion of ALKBH1 inhibits bone formation in vivo

    To verify our in vitro f i ndings,we examined whether the knockdown of ALKBH1 affected MSC-mediated bone formation in vivo.To this end,we generated the stable knockdown MSCs using lentiviruses expressing shRNA and implanted them with β-TCP carriers into immunocompromised mice subcutaneously.RT-PCR and western blot analysis showed that>85%of the ALKBH1 was depleted in MSCs expressing ALKBH1 shRNA(shALKBH1)compared with those expressing scrambled shRNA(shScram).The N6-mA levels in whole genomic DNA were increased.Notably,hematoxylin and eosin staining showed that ALKBH1-depleted cells formed less bone tissues(Figure 3d)than did the shScram cells.Quantitative measurement of mineralized tissue areas revealed a>40%decrease in bone formation(Figure 3e).

    Overexpression of ALKBH1 enhances osteoblastic

    differentiation of MSCs

    To investigate the effects of ectopic overexpression of ALKBH1on osteoblastic differentiation,human MSCs were stably transduced with lentiviruses expressing ALKBH1 (Figure 4a and b).As expected,ALKBH1 overexpression decreased the N6-mA levels in whole genomic DNA (Figure 4c).In addition,ALP activity and cell mineralization of MSCs were enhanced by the overexpression of ALKBH1 (Figure 4d–g).RT-PCR showed that the expression of osteogenic-related genes,such as RUNX2,SP7,and GBLAP, was signi f i cantly elevated after osteogenic induction for 7 days(Figure 4h–j).

    Depletion of ALKBH1 impairs ATF4 transcription

    ATF4 is a transcription factor that has a pivotal role in osteogenesis along with RUNX2 and Osterix.Interestingly, we found that the depletion of ALKBH1 in MSCs signi f i cantly reduced the ATF4 messenger RNA and protein levels after osteogenic reduction for 7 days(Figure 5a and b). More importantly,chromatin immunoprecipitation assays demonstrated that ALKBH1 binds to the promoter region of ATF4(Figure 5c).Knockdown of ALKBH1 restricted this binding(Figure 5c)and increased the abundance of N6-mA on the promoter(Figure 5d),which led to transcription silencing.These f i ndings indicated that ALKBH1 may regulate the osteoblastic differentiation of MSCs by removing the N6-mA modi f i cations on ATF4.

    ATF4 overexpression rescues the phenotypes

    To further elucidate the mechanism,we performed rescue experiments by overexpressing ATF4 or control GFP in stable ALKBH1-depleted MSCs using adenoviruses.The successful transduction was con f i rmed by RT-PCR and western blot (Figure 6a and b).Ectopic ATF4 expression signi f i cantly increased the expression of SP7,a master transcription factor for osteogenic differentiation(Figure 6c).In addition,ALP activity and mineralization were rescued(shALKBh1 +Ad-ATF4 vs shALKBh1+Ad-GFP;Figure 6d–f).

    DISCUSSION

    MSCs have garnered attention owing to their potential for osteogenic differentiation and regeneration therapy.36–38Exploring the mechanism of MSC lineage speci f i cation and differentiation offers a brand-new perspective for clinical applications.39In the present study,we found that the expression of ALKBH1 is upregulated during osteogenic differentiation in vivo.The depletion of ALKBH1 markedly increased the N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,ALP activity,and ECM mineralization.By contrast,the ectopic overexpression of ALKBH1 enhanced the osteoblastic differentiation of MSCs.Mechanically,we found that ALKBH1 may regulate osteoblastic differentiation by removing N6-mA modi f i cations on ATF4.

    Previous studies have shown that ALKBH1,which was identi f i ed as a DNA demethylase for N6-mA in Embryonic stem cells,has a crucial function in early development by regulating genes that are involved in differentiation and pluripotency.25–26In our study,ALKBH1 depletion inhibits bone formation both in vivo and in vitro.We further noticed an increase in N6-mA and reduction in osteogenic-related genes and indexes.Ougland et al.reported that ALKBH1 interacts with several core transcriptional factors,such as OCT4,SOX2,and NANOG,to maintain the pluripotency of Embryonic stem cell.25,40–41Moreover,ALKBH1 may regulate microRNAs that are associated with the differentiation of neuronal cells.21In contrast,mice lacking ALKBH1 display defects of small or missing eyes,especially in the right eye,and multiple defects in the craniofacial,sternum, and limb skeleton.26Together with the f i ndings on ALKBH1 by Nordstrand et al.,these data indicate that Alkbh1?/?mice exhibited an incomplete condensation of mesenchymal cells during ossi f i cation,which is consistent with our hypothesis.

    Recently,ALKBH1 was discovered as a demethylase for DNA N6-mA,thus offering a new perspective for DNA methylation.However,there is wide acceptance that the DNA methylation always occurs on the C5 position of cytosine residues in CpG sites in DNA.20,42Fu et al.22demonstrated that epigenetic activation of bone-speci f i c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts.Moreover, Dansranjavin et al.23suggested that the inhibition of stem-cell-speci f i c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.In previous studies,Wu et al.demonstrated that an increase of N6-mA in Alkbh1?/?cells leads to genesilencing and that most of these genes are developmental factors and lineage-specifying genes.11Intriguingly,these genes are most markedly enriched on the X chromosome and Chr13,indicating that the increase in N6-mA inhibits the transcription on X chromosome,especially on young full-length LINE-1 transposons(L1 elements).11Taken together,these data indicate that accumulation of N6-mA at L1 elements is related to the inhibition of nearby gene.Thus,N6-mA modi f i cations have a great in f l uence on the activation of differentiation genes.It would be interesting to explore the relationship between ALKBH1 and N6-mA,and the mechanisms that affect osteogenic differentiation and bone formation.Our result indicated an inverse correlation between ALKBH1 and N6-mA.In addition,the depletion of ALKBH1 in vivo leads to less bone tissue and decreased bone formation.However,fewer papers on DNA demethylases have been published compared with RNA demethylases,which needs further exploration.

    In this study,we demonstrated that ALKBH1 binds to the promoter region of ATF4.The lack of ALKBH1 restricted this binding and increased N6-mA in this region,which led to transcription silencing.Our outcome suggested that ALKBH1 removes the N6-mA on ATF4 to regulate the osteogenic differentiation of human MSCs.ATF4,an osteoblast-enriched transcriptional factor of the CREB family,is indispensable for the latest phases of osteogenic differentiation,43bone formation,and mineralization of the ECM.44Previous studies have demonstrated that ATF4 promotes differentiation by upregulating the expression of osteoblast-speci f i c genes,such as RANKL,and by promoting the synthesis of type I collagen,which is a main component of the ECM.5,44These two distinct mechanisms are both dependent on the phosphorylation by RSK2.45Taken together,these data suggested that ALKBH1 enhances osteogenic differentiation by interacting with ATF4.

    It needs to be noted that our f i ndings are based on the in vitro experiments.Further in vivo studies are expected. Given that Alkbh1?/?in mice leads to embryonic and postnatal lethality,26a tissue-speci f i c mouse model is desired to further elucidate the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation.

    Collectively,we demonstrated that ALKBH1 enhances osteogenic differentiation by removing the N6-mA modi f ications on ATF4.Our results indicate that N6-mA modi f i cations area mechanism for epigenetic regulation of osteogenic differentiation.

    Acknowledgements

    This work was supported by grants from the National Natural Science Foundation of China(No.81271178 and 81470777).

    Competing interests

    The authors declare no con f l ict of interest.

    1 Nombela-Arrieta C,Ritz J,Silberstein LE.The elusive nature and function of mesenchymal stem cells.Nat Rev Mol Cell Biol 2011;12: 126–131.

    2 Deng P,Chen QM,Hong C et al.Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells.Int J Oral Sci 2015;7:197–204.

    3 Bianco P,Robey PG,Simmons PJ.Mesenchymal stem cells:revisiting history,concepts,and assays.Cell Stem Cell 2008;2:313–319.

    4 Bianco P,Cao X,Frenette PS et al.The meaning,the sense and the signi f i cance:translating the science of mesenchymal stem cells into medicine.Nat Med 2013;19:35–42.

    5 Yu S,Zhu K,Lai Y et al.atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci 2013;9:256–266.

    6 Crane JL,Zhao L,Frye JS et al.IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass.Bone Res 2013; 1:186–194.

    7 Rahman MS,Akhtar N,Jamil HM et al.TGF-beta/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation.Bone Res 2015;3:15005.

    8 Chiavistelli S,Giustina A,Mazziotti G.Parathyroid hormone pulsatility: physiological and clinical aspects.Bone Res 2015;3:14049.

    9 Yuan Q,Sato T,Densmore M et al.Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/-mice.PLoS Genet 2012;8:e1002726.

    10 Yuan Q,Sato T,Densmore M et al.FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH.J Bone Miner Res 2011;26:2026–2035.

    11 Wu TP,Wang T,Seetin MG et al.DNA methylation on N(6)-adenine in mammalian embryonic stem cells.Nature 2016;532:329–333.

    12 Guo H,Zhu P,Yan L et al.The DNA methylation landscape of human early embryos.Nature 2014;511:606–610.

    13 Bonder MJ,Kasela S,Kals M et al.Genetic and epigenetic regulation of gene expression in fetal and adult human livers.BMC Genomics 2014; 15:860.

    14 Wu Y,Zhang S,Yuan Q.N(6)-methyladenosine methyltransferases and demethylases:new regulators of stem cell pluripotency and differentiation.Stem Cells Dev 2016;25:1050–1059.

    15 Tsankov AM,Gu H,Akopian V et al.Transcription factor binding dynamics during human ES cell differentiation.Nature 2015;518:344–349.

    16 Ye C,Li L.5-hydroxymethylcytosine:a new insight into epigenetics in cancer.Cancer Biol Ther 2014;15:10–15.

    17 Ooi SK,O'Donnell AH,Bestor TH.Mammalian cytosine methylation at a glance.J Cell Sci 2009;122:2787–2791.

    18 Pastor WA,Aravind L,Rao A.TETonic shift:biological roles of TET proteins in DNA demethylation and transcription.Nat Rev Mol Cell Biol 2013;14:341–356.

    19 Hu L,Li Z,Cheng J et al.Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation.Cell 2013;155:1545–1555.

    20 Tahiliani M,Koh KP,Shen Y et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.

    21 Hon GC,Song CX,Du T et al.5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.Mol Cell 2014;56:286–297.

    22 Fu G,Ren A,Qiu Y et al.Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells.Curr Stem Cell Res Ther 2016;11: 235–246.

    23 Dansranjavin T,Krehl S,Mueller T et al.The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation.Cell Cycle 2009;8:916–924.

    24 Greer EL,Blanco MA,Gu L et al.DNA Methylation on N6-Adenine in C.elegans.Cell 2015;161:868–878.

    25 Ougland R,Jonson I,Moen MN et al.Role of ALKBH1 in the core transcriptional network of embryonic stem cells.Cell Physiol Biochem 2016;38:173–184.

    26 Nordstrand LM,Sv?rd J,Larsen E et al.Mice lacking Alkbh1 display sexratio distortion and unilateral eye defects.PLoS One 2010;5:e13827.

    27 Pan Z,Sikandar S,Witherspoon M et al.Impaired placental trophoblast lineage differentiation in Alkbh1(-/-)mice.Dev Dyn 2008;237:316–327.

    28 Ougland R,Lando D,Jonson I et al.ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.Stem Cells 2012;30: 2672–2682.

    29 Yuan Q,Jiang Y,Zhao X et al.Increased osteopontin contributes to inhibition of bone mineralization in FGF23-de f i cient mice.J Bone Miner Res 2014;29:693–704.

    30 Chen D,Jarrell A,Guo C et al.Dermal beta-catenin activity in response to epidermal Wnt ligands is required for f i broblast proliferation and hair follicle initiation.Development 2012;139:1522–1533.

    31 Peng L,Hu Y,Chen D et al.Ubiquitin speci f i c peptidase 21 regulates interleukin-8 expression,stem-cell like property of human renal cell carcinoma.Oncotarget 2016;7:42007–42016.

    32 Budnick I,Hamburg-Shields E,Chen D et al.De f i ning the identity of mouse embryonic dermal f i broblasts.Genesis 2016;54:415–430.

    33 Pei M,Chen D,Li J et al.Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.Differentiation 2009; 78:260–268.

    34 Zou H,Zhao X,Sun N et al.Effect of chronic kidney disease on the healing of titanium implants.Bone 2013;56:410–415.

    35 Liang Y,Zhu F,Zhang H et al.Conditional ablation of TGF-beta signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model.Sci Rep 2016;6:29479.

    36 Henkel J,Woodruff MA,Epari DR et al.Bone Regeneration Based on Tissue Engineering Conceptions-A 21st Century Perspective.Bone Res 2013;1:216–248.

    37 Kim MO,Jung H,Kim SC et al.Electromagnetic f i elds and nanomagnetic particles increase the osteogenic differentiation of human bone marrowderived mesenchymal stem cells.Int J Mol Med 2015;35:153–160.

    38 Peng L,Ye L,Zhou XD.Mesenchymal stem cells and tooth engineering. Int J Oral Sci 2009;1:6–12.

    39 Lee J,Abdeen AA,Kilian KA.Rewiring mesenchymal stem cell lineage speci f i cation by switching the biophysical microenvironment.Sci Rep 2014;4:5188.

    40 Tay Y,Zhang J,Thomson AM et al.MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124–1128.

    41 Olariu V,Lovkvist C,Sneppen K.Nanog,Oct4 and Tet1 interplay in establishing pluripotency.Sci Rep 2016;6:25438.

    42 Ficz G,Branco MR,Seisenberger S et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473:398–402.

    43 Elefteriou F,Ahn JD,Takeda S et al.Leptin regulation of bone resorption by the sympathetic nervous system and CART.Nature 2005;434: 514–520.

    44 Elefteriou F,Benson MD,Sowa H et al.ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 2006;4:441–451.

    45 Yang X,Matsuda K,Bialek P et al.ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology;implication for Cof f i n-Lowry Syndrome.Cell 2004;117:387–398.

    This work is licensed under a Creative Commons Attribution 4.0 International License.The images or other third party material in this article are included in the article’s Creative Commons license,unless indicated otherwise in the credit line;if the material is not included under the Creative Commons license,users will need to obtain permission from the license holder to reproduce the material.To view a copy of this license,visit http://creativecommons.org/licenses/by/4.0/

    ?The Author(s)2016

    Research(2016)4,16033;

    10.1038/boneres.2016.33;published online:11 October 2016

    State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University,Chengdu,China

    Correspondence:Shujuan Zou(shujuanzou@aliyun.com)

    Received:3 August 2016;Revised:13 August 2016;Accepted:14 August 2016

    av女优亚洲男人天堂| 亚洲精品国产区一区二| 亚洲av成人精品一二三区| 18禁动态无遮挡网站| 国产精品一区二区在线不卡| 一区二区av电影网| 超色免费av| 日韩一区二区视频免费看| 久久精品熟女亚洲av麻豆精品| 精品亚洲成国产av| 高清在线视频一区二区三区| 日韩中文字幕欧美一区二区 | 日韩伦理黄色片| 日韩av在线免费看完整版不卡| 日韩一区二区视频免费看| 久久精品aⅴ一区二区三区四区| 青春草视频在线免费观看| 久久精品国产a三级三级三级| 欧美乱码精品一区二区三区| 丝袜美足系列| 国产免费视频播放在线视频| 校园人妻丝袜中文字幕| 黄片播放在线免费| 一级毛片电影观看| 2018国产大陆天天弄谢| 日韩av在线免费看完整版不卡| 一级片免费观看大全| 亚洲精品aⅴ在线观看| 欧美在线一区亚洲| 最近最新中文字幕大全免费视频 | 深夜精品福利| 国产精品国产三级国产专区5o| 色婷婷久久久亚洲欧美| 91精品伊人久久大香线蕉| 久久久久精品久久久久真实原创| 1024视频免费在线观看| 久久精品国产亚洲av高清一级| 久久精品国产亚洲av高清一级| av.在线天堂| 亚洲欧美一区二区三区黑人| 国产精品一区二区在线观看99| 叶爱在线成人免费视频播放| 国产一区二区激情短视频 | 国产精品三级大全| 伦理电影免费视频| 久久午夜综合久久蜜桃| 制服人妻中文乱码| 国产片内射在线| 成人漫画全彩无遮挡| 久久热在线av| 国精品久久久久久国模美| 91精品伊人久久大香线蕉| 不卡av一区二区三区| av电影中文网址| 欧美人与性动交α欧美软件| 国产精品嫩草影院av在线观看| 欧美国产精品va在线观看不卡| 国产有黄有色有爽视频| 超碰97精品在线观看| 免费日韩欧美在线观看| 最近手机中文字幕大全| 国产片特级美女逼逼视频| 在现免费观看毛片| 麻豆乱淫一区二区| 久久久久久人妻| 丁香六月天网| 男女午夜视频在线观看| 伊人久久国产一区二区| 欧美在线黄色| 午夜福利乱码中文字幕| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线观看99| 久久久久久久久久久免费av| 大话2 男鬼变身卡| a级片在线免费高清观看视频| 中文字幕人妻丝袜一区二区 | 亚洲伊人久久精品综合| 最近最新中文字幕免费大全7| 亚洲精品乱久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品久久久久久噜噜老黄| 久久久精品国产亚洲av高清涩受| 成人手机av| 香蕉国产在线看| 又大又黄又爽视频免费| 欧美日韩福利视频一区二区| 国产欧美日韩综合在线一区二区| 久久久久精品久久久久真实原创| 亚洲av男天堂| 熟女少妇亚洲综合色aaa.| 一边亲一边摸免费视频| 一级毛片电影观看| 欧美精品av麻豆av| 91精品国产国语对白视频| 国产免费视频播放在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品av麻豆狂野| 黑人欧美特级aaaaaa片| 国精品久久久久久国模美| 亚洲国产最新在线播放| 超碰成人久久| 日韩 亚洲 欧美在线| 欧美亚洲日本最大视频资源| 男人舔女人的私密视频| 亚洲少妇的诱惑av| 亚洲欧美色中文字幕在线| 国产精品香港三级国产av潘金莲 | 精品一区二区三卡| 秋霞伦理黄片| 另类亚洲欧美激情| 欧美黄色片欧美黄色片| 久久精品人人爽人人爽视色| 男女免费视频国产| 这个男人来自地球电影免费观看 | 国产精品免费视频内射| 热re99久久精品国产66热6| 欧美亚洲日本最大视频资源| 亚洲精品一区蜜桃| tube8黄色片| 国产精品久久久av美女十八| 亚洲国产看品久久| 久久久久精品人妻al黑| 亚洲欧美一区二区三区黑人| 国产一区二区三区av在线| 最黄视频免费看| 午夜激情久久久久久久| 欧美少妇被猛烈插入视频| 欧美日韩视频高清一区二区三区二| 毛片一级片免费看久久久久| 日韩免费高清中文字幕av| av不卡在线播放| 国产亚洲av高清不卡| 久久久久久久国产电影| 国产精品香港三级国产av潘金莲 | 国产一区有黄有色的免费视频| 国产av一区二区精品久久| 五月开心婷婷网| av网站免费在线观看视频| av免费观看日本| av网站在线播放免费| 久久99热这里只频精品6学生| 精品卡一卡二卡四卡免费| 久久久久网色| 在线观看www视频免费| 999精品在线视频| 男人舔女人的私密视频| 国产成人午夜福利电影在线观看| 久久久国产精品麻豆| 美女大奶头黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 丰满乱子伦码专区| 亚洲 欧美一区二区三区| 在线观看免费高清a一片| 日韩成人av中文字幕在线观看| 亚洲成人手机| 少妇猛男粗大的猛烈进出视频| av又黄又爽大尺度在线免费看| 在线观看三级黄色| 亚洲精品在线美女| 一区二区三区激情视频| 午夜精品国产一区二区电影| 巨乳人妻的诱惑在线观看| 亚洲男人天堂网一区| 精品国产一区二区三区久久久樱花| 最近最新中文字幕大全免费视频 | 日韩一本色道免费dvd| 久久久久精品久久久久真实原创| 国产精品 欧美亚洲| 精品少妇内射三级| 久久久久网色| 国产精品蜜桃在线观看| 搡老岳熟女国产| 捣出白浆h1v1| 国产一区亚洲一区在线观看| 看非洲黑人一级黄片| 午夜激情久久久久久久| av国产精品久久久久影院| 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 黄色视频不卡| 亚洲国产精品一区二区三区在线| 中文字幕人妻熟女乱码| 国产亚洲欧美精品永久| 久久久精品94久久精品| 午夜福利影视在线免费观看| 国产精品久久久久久久久免| 精品视频人人做人人爽| 国产精品.久久久| 只有这里有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 欧美在线黄色| 国产精品.久久久| 国产黄频视频在线观看| xxx大片免费视频| 久久国产亚洲av麻豆专区| 久热爱精品视频在线9| 亚洲成人免费av在线播放| 美女高潮到喷水免费观看| a级毛片在线看网站| 一边亲一边摸免费视频| 久久精品国产综合久久久| 亚洲成人一二三区av| 免费看不卡的av| 中文天堂在线官网| 亚洲美女视频黄频| 久久青草综合色| 欧美成人午夜精品| 午夜福利视频在线观看免费| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 亚洲一级一片aⅴ在线观看| 国产精品女同一区二区软件| 午夜激情av网站| 久久狼人影院| 人体艺术视频欧美日本| 精品国产一区二区久久| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 亚洲第一av免费看| 天天添夜夜摸| 亚洲天堂av无毛| 久久综合国产亚洲精品| 亚洲精品在线美女| 国产成人午夜福利电影在线观看| 国产精品久久久久久人妻精品电影 | 另类精品久久| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人| 99精品久久久久人妻精品| 国产亚洲最大av| 大片免费播放器 马上看| 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 男女下面插进去视频免费观看| 国产97色在线日韩免费| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 国产午夜精品一二区理论片| 成人毛片60女人毛片免费| 99热网站在线观看| 91精品伊人久久大香线蕉| 在线观看www视频免费| 亚洲国产精品999| 最新的欧美精品一区二区| 一级片'在线观看视频| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 亚洲久久久国产精品| 一区二区三区精品91| 男女高潮啪啪啪动态图| 老司机在亚洲福利影院| 久久狼人影院| 国产女主播在线喷水免费视频网站| 日韩制服骚丝袜av| 大片免费播放器 马上看| 丝袜在线中文字幕| 亚洲第一青青草原| 国产黄色免费在线视频| 久久ye,这里只有精品| 日韩中文字幕欧美一区二区 | 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 午夜免费鲁丝| 一区二区三区激情视频| 人妻一区二区av| 免费人妻精品一区二区三区视频| 国产片内射在线| 亚洲欧美激情在线| 欧美精品一区二区大全| 最新在线观看一区二区三区 | 少妇的丰满在线观看| 一本久久精品| 亚洲av成人不卡在线观看播放网 | 亚洲四区av| 国产又爽黄色视频| 国产成人精品久久久久久| 可以免费在线观看a视频的电影网站 | 麻豆精品久久久久久蜜桃| 一区二区日韩欧美中文字幕| 精品福利永久在线观看| 欧美中文综合在线视频| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 这个男人来自地球电影免费观看 | 亚洲第一青青草原| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲高清精品| 在线天堂中文资源库| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 精品亚洲乱码少妇综合久久| 夫妻性生交免费视频一级片| 七月丁香在线播放| netflix在线观看网站| av在线app专区| 叶爱在线成人免费视频播放| 国产成人免费观看mmmm| 中文字幕精品免费在线观看视频| 免费少妇av软件| 久久久久久久久久久久大奶| 日韩av免费高清视频| 日韩一区二区三区影片| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美成人综合另类久久久| 嫩草影院入口| 久久久国产精品麻豆| 国产精品久久久人人做人人爽| 亚洲国产日韩一区二区| 久久人人爽人人片av| 精品第一国产精品| 人人妻人人澡人人看| 国产av精品麻豆| 日韩 亚洲 欧美在线| 欧美另类一区| 一级毛片 在线播放| 日本午夜av视频| 只有这里有精品99| 国产精品久久久久久人妻精品电影 | bbb黄色大片| 亚洲欧美精品综合一区二区三区| 99国产综合亚洲精品| 人人澡人人妻人| videos熟女内射| 欧美日韩成人在线一区二区| 最近手机中文字幕大全| 欧美激情极品国产一区二区三区| 国产日韩一区二区三区精品不卡| 美女中出高潮动态图| 亚洲国产av新网站| 女的被弄到高潮叫床怎么办| 欧美日韩成人在线一区二区| 久热爱精品视频在线9| 欧美日韩一区二区视频在线观看视频在线| 久久99热这里只频精品6学生| 久热这里只有精品99| 色吧在线观看| 亚洲伊人色综图| 国产 一区精品| 国产 精品1| 香蕉丝袜av| 丁香六月欧美| 老汉色av国产亚洲站长工具| 亚洲国产精品一区三区| 国产午夜精品一二区理论片| 国产亚洲欧美精品永久| 亚洲国产精品国产精品| 国产精品香港三级国产av潘金莲 | 久久久久视频综合| 色婷婷av一区二区三区视频| 国产成人精品久久久久久| 欧美黑人欧美精品刺激| 精品一品国产午夜福利视频| 波多野结衣av一区二区av| 日本欧美视频一区| 久久婷婷青草| 国产在线视频一区二区| 天天添夜夜摸| av.在线天堂| 国产精品av久久久久免费| 国产在线视频一区二区| av有码第一页| 桃花免费在线播放| www.自偷自拍.com| 国产国语露脸激情在线看| 啦啦啦啦在线视频资源| 欧美日韩成人在线一区二区| 侵犯人妻中文字幕一二三四区| 亚洲av日韩在线播放| 丰满少妇做爰视频| 免费观看人在逋| 一本久久精品| 夫妻性生交免费视频一级片| 精品卡一卡二卡四卡免费| 日韩熟女老妇一区二区性免费视频| 少妇的丰满在线观看| 亚洲精品一区蜜桃| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 日本vs欧美在线观看视频| 亚洲美女搞黄在线观看| av片东京热男人的天堂| 国产一区有黄有色的免费视频| 少妇的丰满在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲免费av在线视频| 新久久久久国产一级毛片| 免费不卡黄色视频| 欧美av亚洲av综合av国产av | 国产精品香港三级国产av潘金莲 | 久热爱精品视频在线9| 日韩av在线免费看完整版不卡| 亚洲欧美日韩另类电影网站| 亚洲人成电影观看| 亚洲三区欧美一区| 日本色播在线视频| 熟妇人妻不卡中文字幕| 日日撸夜夜添| 巨乳人妻的诱惑在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女搞黄在线观看| 一本—道久久a久久精品蜜桃钙片| 在线观看人妻少妇| 国产男人的电影天堂91| 秋霞伦理黄片| 成人18禁高潮啪啪吃奶动态图| 18禁国产床啪视频网站| xxxhd国产人妻xxx| 亚洲精品美女久久久久99蜜臀 | 欧美少妇被猛烈插入视频| 亚洲国产欧美在线一区| 亚洲熟女毛片儿| 国产成人精品久久久久久| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 伦理电影大哥的女人| 一区二区日韩欧美中文字幕| 精品久久久久久电影网| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 18禁裸乳无遮挡动漫免费视频| 青春草国产在线视频| 99国产综合亚洲精品| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 久久性视频一级片| 午夜福利影视在线免费观看| 尾随美女入室| 性少妇av在线| 国产精品久久久久久久久免| 国产精品久久久久久人妻精品电影 | 中文天堂在线官网| 久久ye,这里只有精品| 亚洲欧美中文字幕日韩二区| videosex国产| 久久人人爽av亚洲精品天堂| videos熟女内射| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 精品少妇黑人巨大在线播放| 午夜激情久久久久久久| 久久久久久人人人人人| 久久人妻熟女aⅴ| 男女国产视频网站| 黄色 视频免费看| 香蕉丝袜av| 我的亚洲天堂| 一级爰片在线观看| 国产精品av久久久久免费| 咕卡用的链子| 日日啪夜夜爽| 一区二区三区精品91| 天天躁日日躁夜夜躁夜夜| 尾随美女入室| 最新在线观看一区二区三区 | 香蕉国产在线看| av不卡在线播放| 亚洲欧美成人精品一区二区| 日本vs欧美在线观看视频| 免费日韩欧美在线观看| 91精品三级在线观看| 啦啦啦在线观看免费高清www| 女人被躁到高潮嗷嗷叫费观| 免费高清在线观看日韩| 亚洲精品久久午夜乱码| 老司机影院毛片| 在现免费观看毛片| 视频在线观看一区二区三区| 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 考比视频在线观看| 亚洲 欧美一区二区三区| 国产成人精品在线电影| 女性被躁到高潮视频| 亚洲激情五月婷婷啪啪| 国产精品蜜桃在线观看| 99热网站在线观看| av视频免费观看在线观看| 看免费av毛片| 叶爱在线成人免费视频播放| 国产精品99久久99久久久不卡 | 伊人久久国产一区二区| 久久久久国产一级毛片高清牌| 午夜免费男女啪啪视频观看| 黄色毛片三级朝国网站| 狠狠婷婷综合久久久久久88av| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 97在线人人人人妻| 熟女少妇亚洲综合色aaa.| kizo精华| 丝袜美足系列| 交换朋友夫妻互换小说| 久久久久久免费高清国产稀缺| 精品久久久久久电影网| 国产av一区二区精品久久| 观看美女的网站| 人体艺术视频欧美日本| 国产亚洲av高清不卡| 99热国产这里只有精品6| 波多野结衣av一区二区av| 精品一区在线观看国产| 国产一区二区激情短视频 | 少妇猛男粗大的猛烈进出视频| 51午夜福利影视在线观看| 亚洲精品成人av观看孕妇| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 久久人人爽av亚洲精品天堂| 国产有黄有色有爽视频| 日韩一区二区三区影片| 一区二区av电影网| 精品视频人人做人人爽| 日本爱情动作片www.在线观看| 欧美激情高清一区二区三区 | 视频区图区小说| 国产免费又黄又爽又色| 久久久久久久精品精品| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 最新在线观看一区二区三区 | 免费高清在线观看日韩| 最近的中文字幕免费完整| 日本一区二区免费在线视频| 国产野战对白在线观看| 在线观看国产h片| 精品酒店卫生间| 中文乱码字字幕精品一区二区三区| 香蕉国产在线看| 搡老岳熟女国产| 黄色怎么调成土黄色| 国产熟女欧美一区二区| 欧美成人午夜精品| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 国精品久久久久久国模美| 日韩一区二区三区影片| 1024视频免费在线观看| 妹子高潮喷水视频| 美女主播在线视频| 黑人巨大精品欧美一区二区蜜桃| 少妇人妻 视频| 亚洲精品国产av蜜桃| 国产熟女午夜一区二区三区| 另类精品久久| 亚洲色图 男人天堂 中文字幕| 啦啦啦啦在线视频资源| av福利片在线| 久久精品国产a三级三级三级| 一本—道久久a久久精品蜜桃钙片| 亚洲国产毛片av蜜桃av| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 91老司机精品| 国产一区二区激情短视频 | 国产日韩欧美视频二区| 欧美精品人与动牲交sv欧美| 午夜激情av网站| 久久精品亚洲av国产电影网| 亚洲国产成人一精品久久久| 亚洲免费av在线视频| 赤兔流量卡办理| svipshipincom国产片| 亚洲久久久国产精品| 黄色毛片三级朝国网站| 免费观看人在逋| 国产精品免费视频内射| 丝袜人妻中文字幕| 18禁观看日本| 最新在线观看一区二区三区 | 亚洲图色成人| 国产男女内射视频| 热99久久久久精品小说推荐| 久久青草综合色| 99精国产麻豆久久婷婷| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 国产精品久久久久久久久免| 性少妇av在线| 赤兔流量卡办理| 少妇猛男粗大的猛烈进出视频| 国产av精品麻豆| 欧美精品亚洲一区二区| 十八禁人妻一区二区| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 亚洲精品一区蜜桃| 在线观看三级黄色| 国产成人午夜福利电影在线观看| xxxhd国产人妻xxx| 精品国产露脸久久av麻豆| 老司机亚洲免费影院| 这个男人来自地球电影免费观看 | 成人黄色视频免费在线看| 日韩制服丝袜自拍偷拍| 成人三级做爰电影| 欧美激情 高清一区二区三区| 美女福利国产在线| 久久人妻熟女aⅴ| 一区二区三区激情视频| 国产欧美日韩综合在线一区二区| 巨乳人妻的诱惑在线观看| 国产片内射在线| 性高湖久久久久久久久免费观看| 日本欧美国产在线视频| 亚洲精品自拍成人| 男人舔女人的私密视频| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 黄色怎么调成土黄色|