夏智慧 崔文玉 豐程鳳 羅凱云 程安瑋
摘要:? 蒸汽爆破是一種新興的原料預(yù)處理技術(shù),通過(guò)高溫高壓和蒸汽瞬間釋壓作用于生物基質(zhì),可實(shí)現(xiàn)物料在組分水平、組織水平和細(xì)胞水平上的分級(jí)分離。本文簡(jiǎn)要介紹了蒸汽爆破過(guò)程中原料所發(fā)生的主要的物理、化學(xué)變化,闡述了蒸汽爆破技術(shù)對(duì)糧油、果蔬和其他原料中提取的植物多酚含量以及體外和細(xì)胞內(nèi)抗氧化活性的影響,并對(duì)蒸汽爆破的研究前景進(jìn)行了展望,以期進(jìn)一步拓展該技術(shù)在食品加工行業(yè)的應(yīng)用范圍。
關(guān)鍵詞:? 蒸汽爆破; 植物多酚; 抗氧化活性
中圖分類(lèi)號(hào):? TS201.1??? 文獻(xiàn)標(biāo)識(shí)碼: A??? 文章編號(hào):? 1000-4440(2021)05-1352-09
Research progress on the effects of steam explosion on the content and antioxidant activity of polyphenols extracted from plants
XIA Zhi-hui, CUI Wen-yu, FENG Cheng-feng, LUO Kai-yun, CHENG An-wei
(College of Food Science and Technology, Hunan Agricultural University/Hunan Rapeseed Oil Nutrition, Health and Deep Development Engineering Technology Research Center, Changsha 410128, China)
Abstract:? Steam explosion, as a new technology of material pretreatment, can achieve the separation of bioactivity compounds at the component, tissue and cell levels by the instantaneous pressure relief on biomass under the dual action of high temperature and pressure. This paper briefly introduced the main physico-chemical changes of raw materials in the process of steam explosion, expounded the effects of steam explosion on the content of plant polyphenols in grain, oil, fruit and vegetable and other raw materials and their antioxidant activity ?in vitro ?and in cells, and prospected the research of steam explosion, in order to further expand the application scope of steam explosion in food processing industry.
Key words:? steam explosion; plant polyphenols; antioxidant activity
植物多酚是植物體中分子結(jié)構(gòu)具有多個(gè)羥基的次生代謝物,被稱(chēng)為第七大營(yíng)養(yǎng)素,多酚的結(jié)構(gòu)和結(jié)合方式復(fù)雜,種類(lèi)繁多,主要包括酚類(lèi)、羥基苯甲酸和肉桂酸衍生物、類(lèi)黃酮、花青素、香豆素和單寧等? [1] 。植物多酚具有抗氧化、清除自由基、抗癌、抑菌、抗病毒等功效。
蒸汽爆破技術(shù)可通過(guò)高溫高壓和瞬間釋壓過(guò)程來(lái)實(shí)現(xiàn)對(duì)質(zhì)地堅(jiān)硬的原料中組分的分離和結(jié)構(gòu)的改變,具有類(lèi)酸性水解、熱降解、類(lèi)機(jī)械斷裂、氫鍵破壞以及結(jié)構(gòu)重排等多種作用,是一項(xiàng)新近發(fā)展起來(lái)的農(nóng)產(chǎn)品原料預(yù)處理技術(shù),其過(guò)程示意圖見(jiàn)圖1。該技術(shù)因具有無(wú)污染、縮短原料預(yù)處理時(shí)間、提高活性物質(zhì)的提取率,降低能量消耗和加工成本,適應(yīng)工業(yè)化等優(yōu)點(diǎn),逐漸成為從植物性原料中提取生物活性物質(zhì)提高綜合附加值的重要手段之一? [2-3] 。本文全面闡述了蒸汽爆破處理對(duì)原料中提取的植物多酚含量以及抗氧化活性等方面的影響,為蒸汽爆破加工適用于不同種類(lèi)物質(zhì)活性成分的提取及應(yīng)用提供理論指導(dǎo)。
1 蒸汽爆破過(guò)程中主要的物理化學(xué)變化
蒸汽爆破主要通過(guò)熱蒸汽被迅速汽化,使得原料細(xì)胞瞬間受到較大的壓力差,細(xì)胞內(nèi)部壓力過(guò)大,體積急劇膨脹,遠(yuǎn)超細(xì)胞承受范圍,發(fā)生類(lèi)機(jī)械斷裂,進(jìn)一步促進(jìn)氫鍵、無(wú)定形區(qū)和部分結(jié)晶的分解,并進(jìn)行結(jié)構(gòu)重組? [4-5] 。Li等? [6] 和Kobayashi等? [7] 分別用蒸汽爆破處理甘薯淀粉、馬鈴薯淀粉,發(fā)現(xiàn)其可以降低分子鏈聚合度,導(dǎo)致淀粉降解。另有研究結(jié)果表明蒸汽爆破能引起果膠分子數(shù)減少和分子質(zhì)量的降低? [8] 。蒸汽爆破處理富含纖維的苦蕎麥麩皮后可使其纖維素、半纖維素部分降解,木質(zhì)素發(fā)生一定程度水解,分子鍵斷裂,顆粒變小,水不溶性膳食纖維中長(zhǎng)鏈膳食纖維含量減少,短鏈膳食纖維增多? [5] 。這與蒸汽爆破處理橡子殼? [9] 、菠蘿皮渣? [10] 、小麥秸稈? [11] 和麻黃草? [12] 的研究結(jié)果相類(lèi)似。進(jìn)一步研究發(fā)現(xiàn),蒸汽爆破也可使木質(zhì)素和半纖維素部分降解為低分子酚類(lèi)物質(zhì)和水溶性糖,而蒸汽爆破處理壓力過(guò)高時(shí)間過(guò)長(zhǎng)時(shí),又會(huì)使酚類(lèi)物質(zhì)發(fā)生降解或聚合。蒸汽爆破過(guò)程中也可發(fā)生糊化和美拉德反應(yīng),蛋白質(zhì)與糖類(lèi)發(fā)生共價(jià)結(jié)合,且美拉德反應(yīng)的程度與蒸汽爆破強(qiáng)度有關(guān)? [13] ,對(duì)籽粒莧籽實(shí)蒸汽爆破處理也有相似的結(jié)論? [14] 。
從微觀結(jié)構(gòu)來(lái)看,蒸汽爆破會(huì)破壞物質(zhì)結(jié)構(gòu),使其由光滑致密變?yōu)榘欛奘杷? [15] 。蒸汽爆破處理西番蓮后,其果皮出現(xiàn)了一定程度的皺褶,表面還產(chǎn)生大量的小坑洞,增加了表面積? [16] 。麥胚經(jīng)蒸汽爆破處理后多糖的片狀結(jié)構(gòu)出現(xiàn)破碎,有多處氣孔和少量的絲狀分支? [17] 。蒸汽爆破處理后牦牛股骨表面由光滑變得疏松、多孔,股骨頭結(jié)構(gòu)明顯遭到破壞? [18] ,也可使羽毛呈現(xiàn)海綿狀,出現(xiàn)許多裂縫和孔洞? [19] 。這些微觀結(jié)構(gòu)的變化,一定程度上有利于萃取溶劑的滲透和可觸及性,提高活性物質(zhì)的析出和溶解。
2 蒸汽爆破對(duì)植物多酚的影響
2.1 蒸汽爆破對(duì)糧油原料中提取的植物多酚含量的影響
糧油原料中酚類(lèi)物質(zhì)含量豐富,種類(lèi)繁多,根據(jù)結(jié)構(gòu)不同分為酚酸、類(lèi)黃酮、原花青素等;根據(jù)其結(jié)合方式的不同,分為游離酚和結(jié)合酚,其中結(jié)合酚又分為蛋白結(jié)合態(tài)多酚、糖苷鍵結(jié)合態(tài)多酚、酯鍵結(jié)合態(tài)多酚等? [20] 。谷物麩皮中大部分酚類(lèi)物質(zhì)以結(jié)合態(tài)形式與細(xì)胞壁結(jié)合,常規(guī)溶劑萃取提取率較低,利用蒸汽爆破處理可以有效破壞麩皮結(jié)構(gòu),水解醚鍵和酯鍵,促進(jìn)多酚釋放? [21-22] 。小麥麩皮在2.5 MPa、30 s爆破條件下,游離酚酸中香草酸的含量提高了50%左右,香豆酸和阿魏酸含量均達(dá)到最大,分別為對(duì)照的36倍和11倍? [23] ;結(jié)合態(tài)糖醛酸、香豆酸、阿魏酸的含量也在此時(shí)達(dá)到峰值,其中阿魏酸含量最高,比對(duì)照高出近25倍,總酚含量為28 ?mg/g ,比未處理組提高近9倍? [23] 。Li等? [24] 和Gong等? [25] 用蒸汽爆破處理谷物麩皮也得到了相似結(jié)論。用高于 7.4× 10? 5 ?Pa的蒸汽爆破壓力處理鷹嘴豆時(shí),會(huì)導(dǎo)致細(xì)胞膜和細(xì)胞壁的損傷,從而有利于結(jié)合酚從細(xì)胞壁上游離出來(lái),補(bǔ)償了游離酚在該過(guò)程中熱降解的損失? 26] 。Chen等? [27] 發(fā)現(xiàn)蒸汽爆破處理也可提高大豆種皮中提取的酚類(lèi)物質(zhì)含量。此外,豆渣中提取的大豆異黃酮含量也會(huì)隨著蒸汽爆破強(qiáng)度增加呈上升趨勢(shì),在2.0 MPa下30 s時(shí)達(dá)到最大值? [28] 。由于原料基質(zhì)的物理結(jié)構(gòu)及性質(zhì)差異,以及不同的試驗(yàn)?zāi)康模x用的爆破條件也會(huì)不同,對(duì)有效成分的影響趨勢(shì)也會(huì)不同。
適當(dāng)強(qiáng)度的蒸汽爆破處理可提高原料中多酚類(lèi)物質(zhì)的提取率,但強(qiáng)度過(guò)高的處理?xiàng)l件會(huì)產(chǎn)生相反的效果。麩皮在過(guò)高的蒸汽爆破強(qiáng)度(如2.5 MPa、90 s)條件下生物質(zhì)會(huì)降解形成有機(jī)酸(如甲酸、乙酸和丙酸),酚類(lèi)物質(zhì)很容易發(fā)生降解或聚合反應(yīng),反而會(huì)降低酚類(lèi)物質(zhì)的含量? [5] 。籽粒莧籽實(shí)經(jīng)0.6 MPa、60 s蒸汽爆破處理后,提取的總酚含量可高達(dá)7.798 ?mg/g ,是對(duì)照的5.3倍,如果繼續(xù)增大壓力或延長(zhǎng)爆破時(shí)間,總酚含量開(kāi)始下降,時(shí)間為120 s時(shí)其總酚含量反而低于對(duì)照? [14] 。壓力 0.25~ 0.75 MPa蒸汽爆破處理紅豆 30~ 90 s,其酚類(lèi)物質(zhì)的得率提高,但當(dāng)壓力達(dá)到1.0 MPa時(shí),隨著時(shí)間的延長(zhǎng)會(huì)導(dǎo)致酚類(lèi)物質(zhì)不同程度的降解或聚合,甚至引起原料的碳化? [29] 。易軍鵬等? [30] 也發(fā)現(xiàn)高強(qiáng)度的蒸汽爆破處理會(huì)引起紫苷薯花色苷的分解。此外,Chen等? [31] 、Liu等? [32] 、唐宇等? [33] 和趙鵬成等? [34] 的研究結(jié)果證明,蒸汽爆破會(huì)對(duì)糧油原料中提取的酚類(lèi)物質(zhì)含量產(chǎn)生類(lèi)似的影響。有關(guān)的研究結(jié)果見(jiàn)表1。
2.2 蒸汽爆破對(duì)果蔬原料中提取的植物多酚含量的影響
果蔬原料中也含有豐富的酚類(lèi)物質(zhì),主要為酚酸、花色苷、類(lèi)黃酮等,蒸汽爆破處理能使果蔬原料完整結(jié)構(gòu)受到破壞,傳質(zhì)阻力變小,有利于多酚類(lèi)物質(zhì)的提取。表2列出了蒸汽爆破對(duì)從不同果蔬原料中提取的多酚含量的影響。Hu等? [42] 發(fā)現(xiàn)用蒸汽爆破處理秋葵籽雖然會(huì)引起黃酮類(lèi)物質(zhì)的損失,但中高壓蒸汽爆破使總酚釋放量由2.95 ?mg/g 增加到6.19 ?mg/g ,有利于總酚類(lèi)物質(zhì)的釋放和產(chǎn)生。蒸汽爆破處理柑橘? [43-44] 、柑桔果渣? [45] 、大蒜? [2] 、大蒜皮? [46] 、西番蓮? [16] 、漆樹(shù)果實(shí)? [47] 、突尼斯紅棗? [48] 、甘蔗渣? [49] 、菠蘿皮渣? [10] 和鹽膚木果實(shí)? [50] 也均得到相似結(jié)論,適度的蒸汽爆破有助于果蔬中提取的多酚物質(zhì)含量的增加。有關(guān)的研究結(jié)果見(jiàn)表2。
2.3 蒸汽爆破對(duì)其他原料中提取的植物多酚含量的影響
表3列出了蒸汽爆破對(duì)其他原料中提取的多酚含量的影響。松針經(jīng)1.5 MPa蒸汽爆破60 s后,提取的黃酮類(lèi)物質(zhì)含量達(dá)到50.8 ?mg/g ,是對(duì)照的2.54倍,而且在較高的處理?xiàng)l件下 (1.5~ 2.0 MPa、60 s),松針中的類(lèi)黃酮類(lèi)物質(zhì)的含量也不會(huì)顯著下降,具有一定的穩(wěn)定性? [51] 。但茶渣? [52] 和橡木? [53] 中提取的酚類(lèi)物質(zhì)的含量隨著蒸汽爆破處理強(qiáng)度的不斷增大,呈現(xiàn)先增多后減少的趨勢(shì)。無(wú)花果葉? [54] 、粉葛? [55] 和銀杏葉? [56] 蒸汽爆破處理后總黃酮得率變化也與此一致。提取的酚類(lèi)物質(zhì)含量下降可能是由于一部分黃酮發(fā)生降解,且細(xì)胞內(nèi)部溶出的黃酮又重新聚合形成不溶性物質(zhì)所引起的? [51] 。橄欖樹(shù)枝葉? [57-58] 、杜仲葉? [59] 、虎杖? [60] 、 Sasa palmata ?(bean) nakai葉片? [61] 和亮葉楊桐葉片? [62] 等原料也證明蒸汽爆破是提高多酚類(lèi)物質(zhì)釋放量的有效處理方法。
蒸汽爆破使物質(zhì)中多酚得率提高的原因主要有兩方面,一方面是蒸汽爆破過(guò)程中產(chǎn)生了新的多酚,在高溫高壓的酸性環(huán)境下,纖維素、半纖維素和木質(zhì)素發(fā)生熱降解產(chǎn)生酚酸和揮發(fā)酚類(lèi),如愈創(chuàng)木酚、丁香酚、酚醛(香草醛和丁香醛)和酮類(lèi)(香草酮和丁香酮)等? [63-65] ;另一方面是促進(jìn)了多酚的釋放,蒸汽爆破后物質(zhì)結(jié)構(gòu)變得更為疏松多孔,增大了提取液與物料的接觸面積,使酚類(lèi)物質(zhì)溶出率提高;或是蒸汽爆破過(guò)程中水解了細(xì)胞壁物質(zhì)(多酚、多糖、木質(zhì)素等)之間的酯鍵和/或醚鍵,使結(jié)合態(tài)多酚向游離態(tài)多酚轉(zhuǎn)化,提高了多酚的溶出率? [20,47] 。
3 蒸汽爆破對(duì)提取的植物多酚抗氧化活性的影響
3.1 蒸汽爆破對(duì)提取的植物多酚體外抗氧化活性的影響
植物多酚體外抗氧化活性的強(qiáng)弱多采用 DPPH· (1,1-二苯基-2-三硝基苯肼)、ABTS? + (2,2′-聯(lián)氮-雙-3-乙基苯并噻唑啉-6-磺酸)自由基清除率以及FRAP(鐵離子還原能力)等檢測(cè)指標(biāo)來(lái)表示。表4列出了蒸汽爆破處理對(duì)植物多酚體外抗氧化活性的影響。Noda等? [46] 用蒸汽爆破處理大蒜皮,測(cè)得 DPPH· 清除活性的 EC?? 50 值隨著壓強(qiáng)的增加和時(shí)間的延長(zhǎng)而急劇下降,在壓強(qiáng)3.0 MPa以上達(dá)到恒定值,而且抗氧化活性高于黑大蒜。原因可能是,一方面蒸汽爆破促進(jìn)了細(xì)胞內(nèi)結(jié)合酚的釋放,另一方面是木質(zhì)素和半纖維素部分降解為低分子酚類(lèi)物質(zhì)和水溶性糖(如5-羥甲基糠醛),進(jìn)而提高了提取物的抗氧化活性。Chen等? [31] 、Liu等? [32] 和Gong等 ?[22] 也發(fā)現(xiàn)蒸汽爆破處理后谷物麩皮提取物的抗氧化活性得到有效提高。此外,Sui等? [52] 的研究結(jié)果表明,蒸汽爆破可提升茶渣提取物的抗氧化能力,F(xiàn)RAP、羥自由基清除活性、超氧化物生成的最高抑制率最大,分別可達(dá)到對(duì)照(維生素C)的95.2%、76.6%、88.0%,DPPH·清除能力基本達(dá)到維生素C的水平,比相同劑量的未處理組高20.0%。類(lèi)似的,蒸汽爆破處理籽粒莧籽實(shí)? [14] 、紫甘薯? [30] 、秋葵籽? [42] 、粉葛? [55] 、 Sasa palmata ?(bean) nakai的葉片? [61] 和竹莖? [66] 后,其酚類(lèi)物質(zhì)的含量都有所提高,進(jìn)而提高了提取物的抗氧化活性。漆樹(shù)果實(shí)經(jīng)蒸汽爆破處理后所含的主要黃酮類(lèi)物質(zhì)槲皮苷(槲皮素-3- O -鼠李糖苷)去除糖基變?yōu)榛钚愿叩拈纹に?,抗氧化活性得到提? [47] 。
適宜的爆破條件可以提高提取的酚類(lèi)物質(zhì)的抗氧化活性,但在高強(qiáng)度的蒸汽爆破條件下,物質(zhì)的抗氧化活性反而會(huì)降低。當(dāng)蒸汽爆破處理壓力過(guò)高時(shí)間過(guò)長(zhǎng)時(shí),阿魏酸和對(duì)香豆酸會(huì)發(fā)生脫羧基反應(yīng),通過(guò)自由基中間體進(jìn)一步聚合成二聚體,阿魏酸也會(huì)發(fā)生降解,生成甲基、乙基、乙烯基愈創(chuàng)木酸和香蘭素等小分子物質(zhì),降低物料的氧化能力? [23,67] 。蒸汽爆破條件為1.5 MPa、90 s時(shí)麥麩提取物清除DPPH自由基能力與鐵離子還原能力達(dá)到最高,繼續(xù)增加壓力和延長(zhǎng)時(shí)間,抗氧化能力反而呈下降趨勢(shì),這表明過(guò)高強(qiáng)度的蒸汽爆破處理不利于麥麩抗氧化成分的釋放,也可能造成抗氧化成分的損失? [68] 。用蒸汽爆破處理籽粒莧籽實(shí)? [14] 、紫甘薯? [57] 和茶渣? [52] 后也得出相似結(jié)論,即過(guò)高的蒸汽爆破處理強(qiáng)度可能會(huì)降低提取的酚類(lèi)物質(zhì)的抗氧化活性。蒸汽爆破處理后多酚的抗氧化活性與其含量之間具有明顯的相關(guān)性。紅豆經(jīng)爆破處理后,多酚濃度與DPPH·、ABTS? + 清除能力和FRAP相關(guān)系數(shù)分別為0.784、0.937和0.90? [29] 。秋葵籽經(jīng)蒸汽爆破后其提取物的FRAP、 DPPH· 、O? 2??? · - (超氧自由基)清除能力與總類(lèi)黃酮含量呈負(fù)相關(guān),相關(guān)系數(shù)分別為 -0.893 、 -0.960 、 -0.132 ,但與總多酚含量呈正相關(guān),相關(guān)系數(shù)分別為0.685、0.468、0.951,有可能是蒸汽爆破過(guò)程中產(chǎn)生的一些非酚類(lèi)物質(zhì)例如還原性糖也具有抗氧化活性? [42] 。
3.2 蒸汽爆破對(duì)提取的植物多酚細(xì)胞內(nèi)抗氧化活性的影響
Chen等? [31] 研究發(fā)現(xiàn)細(xì)胞抗氧化活性在人肝癌(HepG2)細(xì)胞未經(jīng)磷酸鹽緩沖液(PBS)沖洗的情況下,蒸汽爆破處理和未蒸汽爆破處理的麥麩提取物的半數(shù)效應(yīng)濃度值( EC?? 50 )分別為 (5 038.70± 318.87) ?g/ml 和 (895.78± 22.12) ?g/ml ,即蒸汽爆破處理后的提取物顯示出比未蒸汽爆破處理的更高的抗氧化活性。張瑞婷? [68] 也證明蒸汽爆破可提高麥麩提取物的細(xì)胞抗氧化活性,HepG2細(xì)胞經(jīng)PBS沖洗或未經(jīng)PBS沖洗,2.5 MPa、30 s處理組提取物的細(xì)胞抗氧化值均大于未處理組,且分別是未蒸汽爆破處理組的1.74倍(PBS沖洗)和5.61倍(無(wú)PBS沖洗)。這主要是由于蒸汽爆破處理后提取物中可溶性酚含量較高,尤其是可溶性阿魏酸? [69-72] ??嗍w麥麩皮經(jīng)蒸汽爆破處理后,提取物中游離酚類(lèi)物質(zhì)使HepG2細(xì)胞的抗氧化活性提高了215%, EC?? 50 值比未蒸汽爆破處理組高2倍左右,結(jié)合酚的 EC?? 50 值與未蒸汽爆破處理組相比也有顯著性差異( P <0.05);同時(shí)也發(fā)現(xiàn)蒸汽爆破處理后酚類(lèi)提取物對(duì)人結(jié)腸癌(Caco-2)細(xì)胞增殖的抑制作用也顯著提高,游離酚組分細(xì)胞增殖率由100.00%降至32.59%? [24] 。唐宇等? [33] 在模擬胃腸消化過(guò)程中發(fā)現(xiàn)未經(jīng)蒸汽爆破處理的麩皮的腸消化組沒(méi)有細(xì)胞抗氧化活性,而經(jīng)蒸汽爆破處理的麩皮的腸消化組有細(xì)胞抗氧化活性。用蒸汽爆破處理亮葉楊桐葉片也可以顯著增強(qiáng)提取物的細(xì)胞抗氧化活性,不管HepG2細(xì)胞是否用PBS洗滌,蒸汽爆破處理后葉片提取物的 EC?? 50 值均明顯降低? [62] 。
4 展 望
蒸汽爆破作為一種新興的原料預(yù)處理技術(shù),可提高多酚類(lèi)等活性物質(zhì)的提取率,影響其抗氧化活性。蒸汽爆破技術(shù)主要受物料種類(lèi)及成分、含水率、預(yù)浸泡、化學(xué)預(yù)處理、粉碎程度、流動(dòng)性等內(nèi)因和蒸汽壓力(溫度)、維壓時(shí)間等外因影響。因此需要進(jìn)一步研究:(1)通過(guò)體內(nèi)和體外聯(lián)合試驗(yàn)分析蒸汽爆破對(duì)提取的多酚含量及活性的影響及機(jī)制;(2)原料基質(zhì)特點(diǎn)與蒸汽爆破效果之間的作用關(guān)系,通過(guò)構(gòu)建模型確立最佳爆破條件,提高有效成分的提取率;(3)蒸汽爆破對(duì)原料基質(zhì)中活性成分釋放機(jī)制及遷移轉(zhuǎn)化規(guī)律的影響;(4)蒸汽爆破對(duì)原料中各種營(yíng)養(yǎng)成分的影響及它們之間的互作關(guān)系變化等。相信隨著研究的不斷深入,蒸汽爆破技術(shù)將在植物活性物質(zhì)提取和抗氧化活性的提高等領(lǐng)域發(fā)揮越來(lái)越重要的作用,蒸汽爆破技術(shù)在食品加工業(yè)的應(yīng)用范圍將被進(jìn)一步拓展。
參考文獻(xiàn):
[1]? NACZK M, SHAHIDI F. Extraction and analysis of phenolics in food[J]. Journal of Chromatography A, 2004, 1054: 95-111.
[2] NODA Y, ASADA C, SASAKI C, et al. Extraction method for increasing antioxidant activity of raw garlic using steam explosion[J]. Biochemical Engineering Journal, 2013, 73(15): 1-4.
[3] MCINTOSH S, ZHANG Z Y, PALMER J, et al. Pilotscale cellulosic ethanol production using eucalyptus biomass pretreated by dilute acid and steam explosion[J]. Biofuels Bioproducts and Biorefining, 2016, 10(4): 346-358.
[4] SUI W J, CHEN H Z. Extraction enhancing mechanism of steam exploded ?Radix Astragali [J]. Process Biochemistry, 2014, 49(12): 2181-2190.
[5] 何曉琴,李葦舟,夏曉霞,等. 蒸汽爆破預(yù)處理的苦蕎麩皮不溶性膳食纖維理化特性及結(jié)構(gòu)研究[J]. 食品與發(fā)酵工業(yè), 2020, 46(18): 47-53.
[6] LI G L, CHEN M X, LI F, et al. Effect of steam explosion pretreatment on molecular structure of sweet potato starch[J]. Tropical Journal of Pharmaceutical Research, 2017, 16(5): 1113-1119.
[7] KOBAYASHI F, SAWADA T, NAKAMURA Y, et al. Saccharification and alcohol fermentation in starch solution of steam-exploded potato [J]. Applied Biochemistry and Biotechnology, 1998, 69(3): 177-189.
[8] 王樹(shù)寧,陳笑言,黃瀅潔,等. 蒸汽爆破技術(shù)對(duì)蘋(píng)果果膠乳化特性的影響[J]. 食品科技, 2020, 45(2): 56-61.
[9] 楊 靜,蔣劍春,張 寧,等. 蒸汽爆破預(yù)處理對(duì)橡子殼酶水解效果的影響[J]. 太陽(yáng)能學(xué)報(bào), 2014, 35(12): 2565-2569.
[10] 姜永超,林麗靜,龔 霄,等. 物理改性處理對(duì)菠蘿皮渣膳食纖維物化特性的影響[J]. 熱帶作物學(xué)報(bào), 2019, 40(5): 973-979.
[11] 鄭 續(xù),王慧梅,劉 忠,等. 小麥秸稈的蒸汽爆破及其產(chǎn)物表征[J]. 天津科技大學(xué)學(xué)報(bào), 2020, 35(4): 26-30.
[12] 陳洪章,彭小偉. 汽爆技術(shù)促進(jìn)中藥資源高值化利用[J]. 化學(xué)進(jìn)展, 2012, 24(9): 1857-1864.
[13] 張燕鵬,楊瑞金,華 霄,等. 凝膠電泳法研究蒸汽爆破對(duì)高溫豆粕中蛋白質(zhì)結(jié)構(gòu)的影響[J]. 中國(guó)油脂, 2013, 38(12): 76-79.
[14] 方 芳. 蒸汽爆破預(yù)處理對(duì)籽粒莧籽實(shí)抗氧化能力的影響 [J]. 食品工業(yè)科技, 2018, 39(15): 21-25,30.
[15] 孫俊良,杜寒梅,梁新紅,等. 響應(yīng)面法優(yōu)化蒸汽爆破技術(shù)提取蘋(píng)果果膠工藝[J]. 食品科學(xué), 2017, 38(14): 270-275.
[16] 梁泳倫,鄭麗麗,楊 旸,等. 汽爆預(yù)處理提取西番蓮果膠及其性質(zhì)分析[J]. 食品研究與開(kāi)發(fā), 2020, 41(13): 9-16.
[17] 胡 蕾,葉 鵬,彭子木,等. 蒸汽爆破麥胚多糖提取工藝優(yōu)化及其理化性質(zhì)研究[J]. 食品工業(yè)科技, 2021, 42(1): 149-155.
[18] 秦曉潔,沈青山,張春暉,等. 瞬時(shí)彈射式蒸汽爆破法制備速溶牦牛骨粉及其理化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(4): 307-315.
[19] ZHANG Y, YANG R, ZHAO W. Improving digestibility of feather meal by steam flash explosion[J]. Journal of Agricultural and Food Chemistry, 2014, 62(13): 2745-2751.
[20] 顏才植,葉發(fā)銀,趙國(guó)華. 食品中多酚形態(tài)的研究進(jìn)展[J]. 食品科學(xué), 2015, 36(15): 249-254.
[21] HELENO S A, MARTINS A, QUEIROZ M J, et al. Bioactivity of phenolicacids: metabolites versus parent compounds: a review [J]. Food Chemistry, 2015, 173: 501-513.
[22] GONG L X, ZHANG Y, WANG J, et al. Change in health ingredients of whole Tibetan hull-less barley after steam explosion and simulated digestion ?in vitro [J]. Journal of Food Processing and Preservation, 2016, 40(2): 239-248.
[23] LIU C, ZHANG R T, LIU B G, et al. Effect of steam explosion treatment on phenolic acid composition of wheat bran and its antioxidant capacity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 6: 308-314.
[24] LI W Z, ZHANG X L, HE X Q, et al. Effect of steam explosion pretreatment on the composition and bioactive activities of Tartary buckwheat bran phenolics[J]. Food & Function, 2020, 11(5): 4648-4658.
[25] GONG L X, HUANG L L, ZHANG Y. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity [J]. Journal of Agricultural and Food Chemistry, 2012, 60: 7177-7184.
[26] MRAD R, ROUPHAEL M, MAROUN R G, et al. Effect of expansion by ‘Intensification of Vaporization by Decompression to the Vacuum (IVDV) on polyphenol content, expansion ratio, texture and color changes of Australian chickpea [J]. LWT-Food Science and Technology, 2014, 59: 874-882.
[27] CHEN Y S, SHAN S R, CAO D M, et al. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity [J]. Food Chemistry, 2020, 319:126552.
[28] 靳羽慧,劉長(zhǎng)忠,徐 響,等. 蒸汽爆破對(duì)豆渣中大豆異黃酮的影響研究[J]. 中國(guó)糧油學(xué)報(bào), 2017, 32(10): 16-20.
[29] CHENG A W, HOU C Y, SUN J Y, et al. Effect of steam explosion on phenolic compounds and antioxidant capacity in adzuki beans[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4495-4503.
[30] 易軍鵬,楊亞皇,李 欣,等. 蒸汽爆破預(yù)處理對(duì)紫甘薯花色苷抗氧化性及抑菌性的影響[J]. 農(nóng)產(chǎn)品加工, 2019, 489(19): 25-30.
[31] CHEN Y S, ZHANG R T, LIU C, et al. Enhancing antioxidant activity and antiproliferation of wheat bran through steam flash explosion [J]. Journal of Science and Technology, 2016, 53(7): 3028-3034.
[32] LIU L Y, ZHAO M L, LIU X X, et al. Effect of steam explosion-assisted extraction on phenolicacid profiles and antioxidant properties of wheatbran[J]. Journal of the Science of Food and Agriculture, 2016, 96(10): 3484-3491.
[33] 唐 宇,張小利,何曉琴,等. 體外模擬胃腸消化過(guò)程中蒸汽爆破處理的苦蕎麩皮的抗氧化及抗增殖活性 [J]. 食品與發(fā)酵工業(yè), 2019, 45(3): 103-111.
[34] 趙鵬成. 蒸汽爆破預(yù)處理對(duì)花生殼黃酮組分的影響[D]. 洛陽(yáng):河南科技大學(xué), 2019.
[35] MAURA F, ANTON H, GIULIO Z, et al. Advances in combined enzymatic extraction of ferulic acid from wheat bran [J]. New Biotechnology, 2020, 56: 38-45.
[36] KONG F, WANG L, CHEN H Z, et al. Improving storage property of wheat bran by steam explosion[J].Food Science Technology, 2020, 56(1): 287-292.
[37] 李 冰. 亞麻籽蒸汽爆破處理及其活性成分變化研究 [D]. 洛陽(yáng):河南科技大學(xué), 2017.
[38] YU G W, GUO T T, HUANG Q D, et al. Preparation of high-quality concentrated fragrance flaxseed oil by steam explosion pretreatment technology [J]. Food Science & Nutrition, 2019, 8: 2112-2123.
[39] 張善英,鄭麗麗,艾斌凌,等. 蒸汽爆破預(yù)處理對(duì)油茶籽水代法提油品質(zhì)的影響 [J]. 食品科學(xué), 2019, 40(11): 124-130.
[40] 仇 菊,曹汝鴿,朱 宏,等. 牡丹籽粕營(yíng)養(yǎng)特性分析及蒸汽爆破處理的影響[J]. 飼料研究, 2020, 43(6): 83-86.
[41] YU G, GUO T, HUANG Q. Preparation of rapeseed oil with super high canolol content and superior quality characteristics by steam explosion pretreatment technology[J]. Food Science & Nutrition, 2020, 8(5): 2271-2278.
[42] HU L, GUO J M, ZHU X W, et al. Effect of steam explosion on nutritional composition and antioxidative activities of okra seed and its application in gluten-free cookies[J]. Food Science & Nutrition, 2020, 8(8): 4409-4421.
[43] CAMERON R G, CHAU H K, HOTCHKISS A T, et al. Release and recovery of pectic hydrocolloids and phenolics from culled citrus fruits [J]. Food Hydrocolloids,2017,72: 52-61.
[44] CAMERON R G, CHAU H K, HOTCHKISS A T, et al. Recovery of pectic hydrocolloids and phenolics from huanglongbing related dropped citrus fruit [J]. Journal of the Science of Food and Agriculture,2017,97(13): 4467-4475.
[45] DORADO C, CAMERON R G, MANTHEY J A. Study of static steam explosion of Citrus sinensis Juice processing waste for the isolation of sugars, pectic hydrocolloids, flavonoids, and peel oil[J]. Food and Bioprocess Technology, 2019, 12: 1293-1303.
[46] NODA Y, ASADA C, SASAKI C, et al. Effects of hydrothermal methods such as steam explosion and microwave irradiation on extraction of water soluble antioxidant materials from garlic husk[J]. Waste and Biomass Valorization, 2019, 10: 3397-3402.
[47] CHEN G Z, CHEN H Z. Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion[J]. Food Chemistry, 2011, 126: 1934-1938.
[48] MRABET A, JIMNEZ-ARAUJO A, JUAN F J, et al. Antioxidant phenolic extracts obtained from secondary Tunisian date varieties ( Phoenix dactylifera ?L.) by hydrothermal treatments [J]. Food Chemistry, 2016, 196: 917-924.
[49] CARLOS M, HELENE B K, MARCELO M, et al. Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion [J]. Holzforschung, 2007, 61(5): 483-487.
[50] 陳洪章. 鹽膚木果實(shí)汽爆處理及其油脂黃酮等聯(lián)產(chǎn)綜合利用技術(shù)[Z]. 北京:中國(guó)科學(xué)院過(guò)程工程研究所, 2007.
[51] SONG H D, YANG R J, ZHAO W, et al. Innovative assistant extraction of flavonoids from Pine ( Larixolgensis ?Henry) needles by high-density steam flash-explosion [J]. Food Chemistry, 2014, 62: 3806-3812.
[52] SUI W J, XIAO Y, LIU R, et al. Steam explosion modification on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts[J]. Journal of Food Engineering, 2019, 261: 51-59.
[53] JUNG J Y, HA S Y,YANG J K. Response surface optimization of phenolic compounds extraction from steam exploded oak wood ( Quercus mongolica )[J]. Journal of the Korean Wood Science and Technology, 2017, 45(6): 809-827.
[54] QIN L Z, CHEN H Z. Enhancement of flavonoids extraction from fig leaf using steam explosion[J]. Industrial Crops and Products, 2015, 69: 1-6.
[55] 張 棋,易軍鵬,李 欣,等. 蒸汽爆破預(yù)處理對(duì)粉葛總黃酮及抗氧化性的影響[J]. 食品科學(xué), 2016, 37(9): 40-44.
[56] 張兵兵,曾國(guó)明,傅 亞,等. 蒸汽爆破提取銀杏葉黃酮類(lèi)化合物的工藝研究[J]. 纖維素科學(xué)與技術(shù), 2012, 20(1): 39-44; 71.
[57] CONDE E, CARA C, MOURE A, et al. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning[J]. Food Chemistry, 2009, 114: 806-812.
[58] CASTRO E, CONDE E, MOURE A, et al. Antioxidant activity of liquors from pretreated olive tree wood [J]. Wood Science and Technology, 2008, 42:579-592.
[59] FU X G, CHEN H Z. Air-steam explosion enhancing the extraction efficiency of chlorogenic acid from leaves of ?Eucommia ulmoides ?oliver [J]. Separation and Purification Technology, 2015, 146: 317-325.
[60] 陳洪章,彭小偉. 汽爆與生物法耦合將虎杖白藜蘆醇苷轉(zhuǎn)化成白藜蘆醇的方法:CN101812483A [P].? 2010-08-25.
[61] KUROSUMI A, SASAKI C, KUMADA K, et al. Novel extraction method of antioxidant compounds from ?Sasa palmata ?(Bean) Nakai using steam explosion[J]. Process Biochemistry, 2007, 42: 1449-1453.
[62] LIU B G, CHEN Y S, MO H Z, et al. Catapult steam explosion significantly increases cellular antioxidant and anti-proliferative activities of ?Adinandra nitida ?leaves [J]. Journal of Functional Foods, 2016, 23: 423-431.
[63] CADAHA E, FERNNDEZ D S B, JALOCHA J. Volatile compounds in Spanish, French, and American oak woods after natural seasoning and toasting[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 5923-5932.
[64] NATALI N, CHINNICI F, RIPONI C. Characterization of volatiles in extracts from oak chips obtained by accelerated solvent extraction (ASE) [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 8190-8198.
[65] PISARNITSKY A F, KLIMOV S A, BRAZHNIKOVA E V. Effect of acid hydrolysis of oak wood on its aroma-forming complex[J]. Applied Biochemistry and Biotechnology, 2004, 40: 613-616.
[66] SUN S L, WEN J L, MA M G, et al. Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem [J]. Industrial Crops and Products, 2014, 56: 128-136.
[67] ARRIETA-BAEZ D, DORANTES-LVAREZ L, MAR-TINEZ-TORRES R, et al. Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: dimerization and antioxidant activity [J]. Journal of the Science of Food and Agriculture, 2012, 92(13): 2715-2720.
[68] 張瑞婷. 蒸汽爆破對(duì)麥麩多酚組成及其抗氧化活性的影響[D]. 洛陽(yáng): 河南工業(yè)大學(xué), 2016.
[69] GHASEMI K, GHASEMI Y, EBRAHIMZADEH M A. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues[J]. Pakistan Journal of Pharmaceutical Sciences, 2009, 22(3): 277-281.
[70] EBRAHIMZADEH M A, ENAYATIFARD R, KHALILI M, et al. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants[J]. Iranian Journal of Pharmaceutical Research: IJPR, 2014, 13(3): 1041-1047.
[71] TAN B L, NORHAIZAN M E, YEAP S K, et al. Water extract of brewers rice induces antiproliferation of human colorectal cancer (HT-29) cell lines via the induction of apoptosis[J]. European Review for Medical and Pharmacological Sciences, 2015, 19: 1022-1029.
[72] CHANDRASEKARA A, SHAHIDI F. Bioactivities and antiradical properties of millet grains and hulls[J]. Journal of Agricultural and Food Chemistry, 2011, 59: 9563-9571.
(責(zé)任編輯:陳海霞)