• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detecting entanglement of quantum channels

    2021-11-13 05:36:52ChaojianLiBangHaiWangBujiaoWuandXiaoYuan
    Communications in Theoretical Physics 2021年11期

    Chaojian Li,Bang-Hai Wang,Bujiao Wu and Xiao Yuan

    1 School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China

    2 Advanced Institute of Information Technology,Peking University,China

    3 Center on Frontiers of Computing Studies,Department of Computer Science,Peking University,Beijing 100871,China

    Abstract Entanglement is the crucial resource for different quantum information processing tasks.While conventional studies focus on the entanglement of bipartite or multipartite quantum states,recent works have extended the scenario to the entanglement of quantum channels,an operational quantification of the channel entanglement manipulation capability.Based on the recently proposed channel entanglement resource framework,here we study a further task of resource detection—witnessing entanglement of quantum channels.We first introduce the general framework and show how channel entanglement detection is related to the Choi state of the channel,enabling channel entanglement detection via conventional state entanglement detection methods.We also consider entanglement of multipartite quantum channels and use the stabilizer formalism to construct entanglement witnesses for circuits consisting of controlled-Z gates.We study the effectiveness of the proposed detection methods and compare their performance for several typical channels.Our work paves the way for systematic theoretical studies of channel entanglement and practical benchmarking of noisy intermediate scaled quantum devices.

    Keywords: quantum entanglement,quantum channel,entanglement detection,entanglement witness

    1.lntroduction

    Entanglement is a key feature of quantum physics [1—3],having wide applications in various quantum information processing tasks including quantum dense coding [4],quantum teleportation [5],quantum cryptography [6],quantum computation [7],etc.However,because almost every quantum system is noisy,how the noise affects the quantum system and whether entanglement survives under the noise is important for robust and reliable quantum information processing.It thus becomes one of the basic problems of quantum entanglement theory to check whether a quantum state is entangled or not.Entangled quantum states could be detected and analyzed by several theoretical and experimental tools.Many researchers have contributed to various separability standards and detection methods [8—16].Notable approaches in the practical analysis of entanglement include the usage of positive but not completely positive maps[8]and entanglement witnesses [9—12].

    Conventional entanglement theory focuses on the nonlocal correlation of quantum states,and quantum channels are used as their manipulation tool.Recent works have shown that quantum channel itself could be regarded as the resource object [17—22] and the entanglement of channels has be studied under the framework of quantum resource theories[23—28].Analog to quantum states,quantum channels are also categorized into entangled and separable ones,with the amount of entanglement quantified via channel entanglement measures [23—25].Since a positive channel entanglement measure generally implies the existence of entanglement,it serves as a natural way to detect channel entanglement.However,a channel entanglement measure generally requires full information of the process,hence demanding a cost that is exponential to the system size.Because the channel has both inputs and outputs,the cost increases even quadratically faster than the one of states.Efficient state entanglement detection methods exist when exploiting the specific structure of the target resource and allowing a certain amount of failure,whether we could analogously detect channel entanglement remains open.

    Here,we address this problem by considering general approaches for detecting channel entanglement.We first review the framework of state and channel entanglement as well as the task of entanglement detection.Then we show that detecting the channel entanglement is equivalent to detecting the entanglement of the corresponding Choi state,the output state of the channel given the maximally entangled input.We give three general channel entanglement detection strategies based on conventional state entanglement detection methods—negative partial transpose(NPT)[29],the computable cross norm or realignment criterion (CCNR)criterion [30,31],and entanglement witnesses.We further extend the discussion to multipartite quantum channels and show how the stabilizer formalism[32]helps in designing entanglement witnesses for circuits consisting of CZ gates.As examples,we consider noisy CNOT and SWAP channels and show the effectiveness of the propose methods.

    2.Background

    We first review the framework of entanglement for bipartite states and channels,and the task of entanglement detection.For a system A,we denote the corresponding Hilbert space as HAand the set of state operators as D(A) .Consider a bipartite system AB,we call the stateσABseparable when it can be expressed as [33—35]

    withλi≥0,∑iλi= 1,and local statesσA,σBon quantum systems A and B,respectively.Otherwise the state is entangled.On the other hand,quantum channels are linear and completely positive and trace-preserving maps which act on quantum states [36].A quantum channel N could be written in the Kraus form [37] as

    where the Kraus operators{Ki} fulfilLet NAB∈ CPTP(AB→A′B′)be a bipartite channel,it is called separable [23,25] if it can be written as

    Suppose a quantum information task requires to prepare an entangled stateψABand the practically prepared state isρAB.The task of entanglement detection is to determine whetherρABis entangled.A general detection strategy corresponds to a function f,which distinguishes separable and entangled states.However,since the geometry of the set of separable states is complex,detecting the entanglement of an arbitrary state is a challenging task.A conventional entanglement detection strategy is to exploit a linear witness operator W such that Tr (WσAB) ≥0for all separable statesσABand it detects the entanglement ofρABwith Tr (WρAB)<0[16].Here we review three general strategies of constructing the witness operator,which will be extended to detecting entanglement of quantum channels in the next section.

    The first method is to exploit the positive but not completely positive map of transpose,or the NPT property of states.In particular,we always havewhen applying a partial transposeTAon a separable stateσAB,whereas we could have a negative partial transposed statewhenρABis entangled.In this case,we can find the eigenvector∣φ〉with a negative eigenvalue [38],i.e.withλ<0.Then,a linear witness operator can be constructed as follows [16,29]

    It is easy to verify that for any state with positive partial transpose,which include separable statesσAB,we have

    and for the entangled stateρAB,

    In practice,we may not know the density matrixρABand hence cannot get the eigenvectors with negative eigenvalues.Nevertheless,a realistic quantum protocol generally assumes an ideal pure stateψAB,and the partial transposed pure statecould be used as the witness operator.Indeed,any partial transposed pure state could serve as the witness operator,although to be able to detect the entanglement of a given state,the operator should be accordingly chosen.

    The second method is based on a Schimidt decomposition [39] of the density operator,namely the computable CCNR.Specifically,denote the set of Hermitian operators on H as L ( H) ,which is a linear space with inner productfor anyV1,V2∈L ( H).Then for any density matrixρAB∈ D (HAB) ?L (HAB),the Schmidt decomposition ofρABis

    whereλk≥0,andare orthonormal bases in L ( HA) and L ( HB) ,respectively.Then we can construct the witness as follows [30,31]

    It is easy to verify that for any separable statewe have

    Therefore,the stateρABis entangled whenever Tr[ρABW]<0.Again,the witness operator W could be constructed from any state,for example based on the ideal pure stateψAB.

    In the third method,we construct the witness operator W based on any observable O as

    where

    Since Tr[σABO] ≤α,we have Tr[WσAB] ≥0for all separable states.In practice,we could chooseO=ψABand the witness operator can effectively detect entanglement with white noise.

    Given the witness operator,a practical scheme is to decompose the operator into local observables.This is particularly important for detecting multipartite entanglement because it is hard to measure a general multipartite observable.Efficient witnesses have been constructed for several typical classes of states including the W state and general graph states.In the next section,we show how similar strategies could be extended to efficient channel entanglement detection.

    3.Channel entanglement detection

    3.1.Bipartite channels

    Since a quantum channel has both inputs and outputs,we first map a channel to a quantum state.In particular,consider a bipartite channel NABthat maps AB toA′B′,we consider the maximally entangled input state ΦAA?ΦBBwithand d being the dimension of each subsystem [23—25].The output state

    is called the Choi state which is a one-to-one map between states and channels.The entanglement of the biparitite channel can be now reformulated via the entanglement of the Choi state.

    Lemma 1.A bipartite channel NABis entangled if the Choi stateis entangled.

    Similar results have been discussed in several works[23—25]and we refer to appendix for the proof.Based on such a connection,we can now study the entanglement of channels via its Choi state.Focusing on entanglement detection,our task now becomes to find an observable W,such thatfor all separable channels N.Following the above results for quantum states,we can similarly introduces three types of witness operators for Choi states of channels.

    We will shortly show that we can realize the witness with quantum games consisting of proper input states,measurements,and payoffs.Next,we extend the discussion to the multipartite scenario.

    3.2.Multipartite channel entanglement

    We consider the entanglement of multipartite channels[40,41].Consider a channelΘnthat maps n systems{1 ,2,… ,n}to n systems{1 ′ ,2′,… ,n′},it is fully separable when

    Based on the Choi state of the channel

    we can similarly relate the entanglement ofΘnto the entanglement of

    Lemma 2.A multipartite channelΘnis(genuinely)entangled if the Choi state(genuinely) entangled.

    Therefore,we could use techniques of detecting multipartite entanglement to detect channel entanglement.While the three entanglement detection methods work similarly for multipartite channels,how to make the detection to be efficient is in general a challenging task for multipartite channels.

    3.3.Entanglement detection via quantum games

    In the above discussion,the entanglement witness is constructed and applied with respect to the Choi state of the channel.While we could get the Choi state by inputting a maximally entangled state,we need to double the system size,making its implementation hard.Here,we show a different yet equivalent entanglement detection way via quantum games [43—46].

    A quantum gameG is defined by the tuple G=({αij} ,{ρi} ,{Oj}),whereρiare input states,{Oj}is a positive observable valued measures at the output,andαij∈R are the real coefficients which define the particular game.The performance in the gameG enabled by a channel N is quantified by the payoff function

    Consider the bipartite channel NABas an example,we haveaccording to the Choi—Jamiolkowski isomorphism.Then we have

    where the W operator is

    Therefore,for any witness operator W,we can decompose it as above and it corresponds to a quantum game[43].Suppose the quantum game with a witness operator W is G(W) ,then we can show that for any separable channel NABwe have

    In practice,we can equivalently realize the witness via a quantum game.Instead of witnessing the entanglement of the Choi state,we can apply the channel to a set of input states,measure the output,and linearly combine the measurement outcomes.The game payoff function plays a similar role of detecting channel entanglement.

    4.Example

    Now we show entanglement detection for several typical channels.We also note the following fact that local unitary operations before and after the channel does not change the entanglement.

    Therefore,any entanglement witness for a channel N works similarly to other channels V? N ? U that are equivalent to N under local unitary operations U andV.

    4.1.Bipartite channels

    We first consider bipartite channels,specifically,the CNOT and SWAP gate under local depolarizing noise,as shown in figure 1.In particular the CNOT and SWAP gates are unitary

    Figure 1.The CNOT or SWAP gate with local depolarizing noise.Given maximally entangled input states ΦA A = ∣Φ〉〈Φ∣AA and ΦB B = ∣Φ 〉〈Φ∣BB,the output state corresponds to the Choi state of the noise channel.The task is to detect the entanglement of the output state between the bipartition betweenAA′ and B′ B.

    and the local depolarizing noise is

    The noisy CNOT/SWAP channel is

    where U is eitherUCNOTorUSWAP.Here we explicitly show the three entanglement witnesses for the CNOT gate and the result works analogy for the SWAP gate.

    The Choi state of the CNOT gate is

    and the density matrix is

    The three witness operators could then be constructed accordingly.Consider the eigenvector with a negative eigenvalue ofthe witness operators of the first method isWCNOT,1= ∣φ〉〈φ∣TAA′with

    Given the witness operator,we can now construct the quantum game by decomposing the witness in the Pauli basis.In particular,we have the quantum games forWCNOT,1andWCNOT,2as shown in tables 1 and 2,respectively.We note that interestingly,even though the two witness operatorsWCNOT,2andWCNOT,3are constructed differently,we do haveWCNOT,2= 2*WCNOT,3.We note that in the quantum games forWCNOT,1andWCNOT,2,we used Pauli matrix as input states for simplicity,which is not exactly correct.Nevertheless,we can solve the problem by decomposing each Pauli matrix as a linear combination of pure states.Furthermore,there may exist better decomposition of the witness operator when we consider general input states and measurements [44,47].

    Table 1.Quantum game with WCNOT,1 for the noisy CNOT gate.

    Table 2.Quantum game with WCNOT,2 for the noisy CNOT gate.

    For the SWAP gate,its Choi state is

    and the density matrix is

    The three witness operators could then be constructed accordingly.Consider the eigenvector with a negative eigenvalue of,the witness operators of the first method is

    Interestingly,for the second and third method,we again have the same witness (with different but irrelevant normalization factor).In particular,we haveWSWAP,2=6WSWAP,3withWe also convert the witness into quantum games.In particular,we have the quantum games forWSWAP,1andWSWAP,2as shown in table 3 and 4,respectively.

    Table 3.Quantum game with WSWAP,1 for the noisy SWAP gate.

    Table 4.Quantum game with WSWAP,2 for the noisy SWAP gate.

    Consider a noisy CNOT and SWAP gate with different noise ratio,we show the three entanglement witness values in figure 2.Since the second and third methods give basically the same witness,we have normalized the witness value.For the noisy CNOT gate,the second and the third methods outperform the first method,whereas for the noisy SWAP gate,have the same effect under normalization.

    Figure 2.Entanglement witness values for the noisy CNOT and SWAP gates as a function of the noise parameter p.Since the witnesses have different normalization,we only plot different witness values under normalization.In particular,for the noisy CNOT gate,the second and third witnesses have the same value after proper normalization.For the noisy SWAP gate,they all have the same value after normalization.

    4.2.Multipartite channels

    Up to now,we have studied the effectiveness of the proposed detection methods and compare their performance for several typical bipiartite channels.Here we consider the entanglement of multipartite quantum channels,and use stabilizer witness to detect multipartite channels consisting of noisy CZ gates[48].We consider a special circuit with two CZ gates in figure 3(a)and the results could be similarly generalized to larger circuits with more CZ gates.Using lemma 3,the Choi state ΦAA1BB1CC1of the circuit could be mapped to a graph state∣GCZ〉(see figure 3(b))with white noise on local system[49].Therefore,we can use stabilizer witness to detect the entanglement of the graph state∣GCZ〉 to study the entanglement of the noisy CZ multipartite channel [50].The elements of the stabilizer for

    Figure 3.(a)An example quantum circuit consisting of two CZ gates with local depolarizing noise.The Choi state of (a) is equivalent to(b) the graph state∣G C Z 〉up to local unitary rotation.

    graph state∣GCZ〉 are products of the operators

    Then,we can consider the following stabilizer witness

    for the graph state to detect the genuine entanglement of the channel.We can similarly convert the witness into a quantum game according to section 3.3.In particular,we apply the Hadamard gate on qubit2,4,6 and map the Pauli measurements on qubit1,3,5 as input states.The entanglement of the noisy CZ multipartite channel is shown in figure 4.We can clearly observe the existence of genuine entanglement wheneverp< 0.2.We note that the method could be extended to quantum circuits consisting of multiple CZ gates.In the general case,we can similarly construct the stabilizer witness.

    Figure 4.Stabilizer witness valueas a function about the noise parameter p.

    5.Conclusion

    In this work,we have studied entanglement detection of quantum channels.By relating the channel entanglement to the entanglement of the corresponding Choi state,we exploit state entanglement detection methods for witnessing channel entanglement.Using the language of quantum games,we can further convert the witness operator as a quantum game of the channel.Based on the general result,we proposed three methods to construct witnesses that allow to detect entanglement of bipartite channels and compare their performance for noisy CNOT and SWAP channels.From these results,the three methods could become convenient tools for routine performance detection of bipartite quantum channels.We also introduced the definition of mulitipartite channel entanglement,noting that Choi state of quantum channels with CZ gates correspond to graph states.We can then use graph state witnesses to detect multipartite circuits consisting of CZ gates.

    Acknowledgments

    We are grateful to Jinzhao Sun for helpful discussions.This work is supported by the National Natural Science Foundation of China under Grant Nos.62 072 119 and 61 672 007,and Guangdong Basic and Applied Basic Research Foundation under Grant No.2020A1515011180.

    Appendix A.Proof of lemma 1

    Here we prove that a bipartite channel is separable if its Choi state is separable.First,let N ∈ CPTP (A0B0→A1B1) be a bipartite channel.If N is separable,it can be expressed as

    Lemma 4.For a bipartite channel N ∈ CPTP (A0B0→A1B1) ,its Choi state is separable if N is a separable channel.

    Proof.If a bipartite channel N ∈ CPTP (A0B0→A1B1) is separable.Then,we have

    So Choi state of the bipartite channel N is separable.□

    If Choi state ΦAA1BB1of a bipartite channel N is separable,it can be expressed as

    we assume thatandare pure states.Hence

    Lemma 5.For a given bipartite channel N ∈ CPTP (A0B0→A1B1) .N is separable if its Choi state is separable.

    Proof.We first assume that the input state is a product state,i.e.ρAB=ρA?ρB.According to the Choi—Jamiolkowski isomorphism,we have

    For a general input state,we can always decompose it as a linear combination of product states (possibly with negative coefficients).Together with the linearity of the above equation,it is not hard to see that it also hold for any bipartite quantum state.□

    Appendix B.Sketch proof of lemma 2

    The proof of lemma 2 follows naturally with the help lemma 1.First,we show that a separable multipartite channel is equivalent to a separable Choi state.In this case,we divide the parties into two partitions and regard the system as a bipartite one.Then we can exploit lemma 1 to prove the equivalence.The equivalence for genuine entanglement follow naturally.

    婷婷色麻豆天堂久久| 国产精品一区二区三区四区免费观看| 欧美性感艳星| 看十八女毛片水多多多| 又黄又爽又刺激的免费视频.| 国产精品一二三区在线看| 中文乱码字字幕精品一区二区三区| 色视频在线一区二区三区| 国产一区二区在线观看日韩| 国产一区二区在线观看日韩| 噜噜噜噜噜久久久久久91| 亚洲av不卡在线观看| 国产一级毛片在线| 久热这里只有精品99| 黄色一级大片看看| 2022亚洲国产成人精品| 亚洲欧洲国产日韩| 女人精品久久久久毛片| 99久久精品热视频| 观看美女的网站| 欧美 亚洲 国产 日韩一| 性色av一级| av在线老鸭窝| 国产白丝娇喘喷水9色精品| 日韩人妻高清精品专区| 2021少妇久久久久久久久久久| av不卡在线播放| 国产免费一区二区三区四区乱码| 亚洲精品456在线播放app| 特大巨黑吊av在线直播| 精品一品国产午夜福利视频| 夜夜看夜夜爽夜夜摸| 成人黄色视频免费在线看| 妹子高潮喷水视频| 成年女人在线观看亚洲视频| 精品人妻偷拍中文字幕| 亚洲自偷自拍三级| 王馨瑶露胸无遮挡在线观看| 26uuu在线亚洲综合色| 97在线视频观看| 免费观看无遮挡的男女| 妹子高潮喷水视频| 新久久久久国产一级毛片| 久久久久久久久久久丰满| 青青草视频在线视频观看| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 欧美精品一区二区免费开放| 一级毛片久久久久久久久女| 亚洲人与动物交配视频| 午夜精品国产一区二区电影| 久久精品久久久久久久性| 99热全是精品| 热re99久久精品国产66热6| 国产无遮挡羞羞视频在线观看| 日韩一区二区三区影片| 色视频www国产| 狠狠精品人妻久久久久久综合| 十八禁网站网址无遮挡 | 国产av精品麻豆| 亚洲在久久综合| 国产亚洲av片在线观看秒播厂| av女优亚洲男人天堂| 精品少妇久久久久久888优播| 免费不卡的大黄色大毛片视频在线观看| 777米奇影视久久| 欧美国产精品一级二级三级 | 人人妻人人看人人澡| 精品国产露脸久久av麻豆| 国产色爽女视频免费观看| 夜夜爽夜夜爽视频| 人人妻人人爽人人添夜夜欢视频 | 美女主播在线视频| 少妇的逼好多水| 欧美少妇被猛烈插入视频| 搡老乐熟女国产| av国产精品久久久久影院| 精品少妇内射三级| 国产中年淑女户外野战色| 欧美丝袜亚洲另类| 青春草视频在线免费观看| 免费看不卡的av| 免费看光身美女| .国产精品久久| 久久99一区二区三区| 国产精品国产av在线观看| 精品人妻偷拍中文字幕| 综合色丁香网| 永久免费av网站大全| 亚洲伊人久久精品综合| 五月天丁香电影| 免费少妇av软件| 亚洲国产精品一区二区三区在线| 97在线视频观看| 99热6这里只有精品| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 香蕉精品网在线| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频 | 99视频精品全部免费 在线| 永久网站在线| 丰满人妻一区二区三区视频av| av卡一久久| 亚洲欧洲日产国产| 大片电影免费在线观看免费| 免费播放大片免费观看视频在线观看| 亚洲伊人久久精品综合| 国产视频首页在线观看| 美女福利国产在线| 亚洲av在线观看美女高潮| 乱人伦中国视频| 少妇被粗大的猛进出69影院 | 亚洲国产欧美在线一区| 久久综合国产亚洲精品| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 人人妻人人添人人爽欧美一区卜| 各种免费的搞黄视频| 亚洲四区av| 成人综合一区亚洲| 如日韩欧美国产精品一区二区三区 | 伊人亚洲综合成人网| 又粗又硬又长又爽又黄的视频| 日本欧美国产在线视频| 蜜桃在线观看..| 欧美日韩视频精品一区| 国产在视频线精品| 少妇的逼水好多| 自拍偷自拍亚洲精品老妇| 综合色丁香网| 欧美精品高潮呻吟av久久| 午夜福利在线观看免费完整高清在| 九色成人免费人妻av| 狂野欧美白嫩少妇大欣赏| 三级经典国产精品| 热re99久久国产66热| 国产精品一二三区在线看| 黄色配什么色好看| 精品国产一区二区久久| 国产在视频线精品| 熟女av电影| 3wmmmm亚洲av在线观看| 在现免费观看毛片| 久久亚洲国产成人精品v| 欧美日韩精品成人综合77777| 青青草视频在线视频观看| 国产爽快片一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| 国产一区二区在线观看av| 婷婷色综合www| 亚洲三级黄色毛片| 日本午夜av视频| 亚洲高清免费不卡视频| 国产色婷婷99| 亚州av有码| 国产精品人妻久久久影院| 国产 精品1| 欧美+日韩+精品| 亚洲伊人久久精品综合| 国产日韩欧美视频二区| 久久国产精品大桥未久av | 一级爰片在线观看| 国产亚洲5aaaaa淫片| 视频中文字幕在线观看| tube8黄色片| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 狠狠精品人妻久久久久久综合| 免费观看在线日韩| 日本爱情动作片www.在线观看| 91成人精品电影| 国内少妇人妻偷人精品xxx网站| 久久久久久久精品精品| 久久午夜福利片| 啦啦啦视频在线资源免费观看| 久久久久久久久久久丰满| 中文天堂在线官网| 久久午夜福利片| 久热这里只有精品99| 日韩中字成人| 亚洲欧美一区二区三区国产| 三级经典国产精品| 一本大道久久a久久精品| 精品视频人人做人人爽| 精品一区二区免费观看| 国产日韩欧美视频二区| 永久网站在线| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 一级,二级,三级黄色视频| 久久99热这里只频精品6学生| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| av专区在线播放| 26uuu在线亚洲综合色| 亚洲精品日本国产第一区| 精品少妇黑人巨大在线播放| 在线观看三级黄色| 亚洲人成网站在线播| 亚洲欧洲日产国产| 精品人妻熟女av久视频| 老司机影院毛片| 欧美国产精品一级二级三级 | 97超视频在线观看视频| 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区 | 好男人视频免费观看在线| 亚洲国产欧美在线一区| 中文乱码字字幕精品一区二区三区| 秋霞伦理黄片| 成人毛片a级毛片在线播放| 一边亲一边摸免费视频| 简卡轻食公司| 日韩电影二区| 日韩欧美 国产精品| 国产男人的电影天堂91| 乱系列少妇在线播放| 男女无遮挡免费网站观看| 熟妇人妻不卡中文字幕| 亚洲人成网站在线播| 国产av码专区亚洲av| 日韩三级伦理在线观看| av国产久精品久网站免费入址| 国产色爽女视频免费观看| 狂野欧美激情性bbbbbb| 国产精品人妻久久久久久| 欧美精品一区二区免费开放| 偷拍熟女少妇极品色| 久久精品国产亚洲网站| 青春草视频在线免费观看| 国产免费一级a男人的天堂| 国产亚洲午夜精品一区二区久久| 亚洲人与动物交配视频| 国产午夜精品一二区理论片| 国产真实伦视频高清在线观看| 国产精品一区二区在线不卡| 简卡轻食公司| 观看免费一级毛片| 精品国产一区二区三区久久久樱花| 免费人妻精品一区二区三区视频| 精华霜和精华液先用哪个| 国产黄频视频在线观看| 一级a做视频免费观看| 午夜91福利影院| 国产精品伦人一区二区| h视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 22中文网久久字幕| 最近最新中文字幕免费大全7| 性色avwww在线观看| 亚洲av二区三区四区| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 国产一区二区在线观看日韩| 超碰97精品在线观看| 天天操日日干夜夜撸| 91精品伊人久久大香线蕉| 亚洲人成网站在线观看播放| 少妇的逼好多水| 久久精品国产鲁丝片午夜精品| 免费人妻精品一区二区三区视频| 国产成人aa在线观看| 最近中文字幕2019免费版| 国产综合精华液| 夜夜爽夜夜爽视频| 各种免费的搞黄视频| 中文字幕制服av| 男女边摸边吃奶| 精品久久久精品久久久| 国产精品.久久久| 亚洲国产精品一区三区| 少妇的逼水好多| 国产精品人妻久久久影院| 这个男人来自地球电影免费观看 | 中文字幕精品免费在线观看视频 | 成人综合一区亚洲| 少妇人妻久久综合中文| 亚洲国产欧美日韩在线播放 | 亚洲精品国产av蜜桃| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 熟女电影av网| 18禁在线无遮挡免费观看视频| 久久亚洲国产成人精品v| 高清av免费在线| 在线观看人妻少妇| 一级毛片 在线播放| 中文字幕免费在线视频6| 中文欧美无线码| 欧美日韩av久久| 免费久久久久久久精品成人欧美视频 | 亚洲美女黄色视频免费看| 日韩亚洲欧美综合| 你懂的网址亚洲精品在线观看| av国产精品久久久久影院| 91精品一卡2卡3卡4卡| 久久久国产一区二区| 老女人水多毛片| 欧美bdsm另类| 国产91av在线免费观看| 国产一区二区三区av在线| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 六月丁香七月| 久久国产精品大桥未久av | 日本欧美视频一区| 久久免费观看电影| 99久久精品国产国产毛片| 国产成人精品福利久久| 精品少妇久久久久久888优播| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 一级av片app| 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区| 久久免费观看电影| 午夜激情福利司机影院| 亚洲激情五月婷婷啪啪| 少妇熟女欧美另类| 在线观看国产h片| 国产日韩欧美亚洲二区| 亚洲国产精品专区欧美| 涩涩av久久男人的天堂| 美女国产视频在线观看| 亚洲av在线观看美女高潮| 日韩精品有码人妻一区| 中文字幕亚洲精品专区| 日韩不卡一区二区三区视频在线| 99久久人妻综合| 国内揄拍国产精品人妻在线| 99久久人妻综合| 国产欧美日韩综合在线一区二区 | 日本黄大片高清| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| 91精品伊人久久大香线蕉| 不卡视频在线观看欧美| 久久 成人 亚洲| 国产探花极品一区二区| 黄色怎么调成土黄色| 日韩成人伦理影院| 人人妻人人澡人人看| av卡一久久| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av涩爱| 亚洲精品久久久久久婷婷小说| 国产成人精品无人区| 一级a做视频免费观看| 欧美 日韩 精品 国产| 免费av不卡在线播放| 午夜久久久在线观看| 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 国产高清国产精品国产三级| 国产亚洲av片在线观看秒播厂| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 婷婷色综合大香蕉| 最近手机中文字幕大全| 成年女人在线观看亚洲视频| 国产精品无大码| 女的被弄到高潮叫床怎么办| 九草在线视频观看| 精品国产乱码久久久久久小说| 午夜福利视频精品| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久精品电影小说| 国产精品人妻久久久久久| 97在线视频观看| av视频免费观看在线观看| av一本久久久久| 久久毛片免费看一区二区三区| 亚洲精品国产成人久久av| 人妻 亚洲 视频| 男女边吃奶边做爰视频| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 黄色配什么色好看| 欧美日韩国产mv在线观看视频| 大陆偷拍与自拍| 一级毛片我不卡| 亚洲国产av新网站| 欧美精品亚洲一区二区| 日韩av在线免费看完整版不卡| 亚洲欧美日韩另类电影网站| 自拍偷自拍亚洲精品老妇| 热re99久久精品国产66热6| 亚洲精品色激情综合| 精品亚洲乱码少妇综合久久| 亚州av有码| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 国产成人精品一,二区| 2018国产大陆天天弄谢| 在线播放无遮挡| 午夜免费鲁丝| av福利片在线观看| 在现免费观看毛片| 日日啪夜夜撸| 人妻系列 视频| 午夜av观看不卡| 国产精品久久久久久久久免| 日韩伦理黄色片| 永久网站在线| 国产精品熟女久久久久浪| 成年美女黄网站色视频大全免费 | 久久国产精品男人的天堂亚洲 | 五月玫瑰六月丁香| 一本—道久久a久久精品蜜桃钙片| 国产亚洲欧美精品永久| 在线观看免费视频网站a站| 日本猛色少妇xxxxx猛交久久| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久av不卡| 亚洲电影在线观看av| 热99国产精品久久久久久7| 在线看a的网站| 久久久久精品性色| 免费人妻精品一区二区三区视频| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 中文字幕久久专区| 成人18禁高潮啪啪吃奶动态图 | 国产av精品麻豆| av不卡在线播放| 我的老师免费观看完整版| 黄色视频在线播放观看不卡| 91aial.com中文字幕在线观看| 亚洲精品456在线播放app| 亚洲成人手机| 欧美xxⅹ黑人| a级毛色黄片| 最黄视频免费看| 女的被弄到高潮叫床怎么办| 中国三级夫妇交换| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 国产精品福利在线免费观看| 不卡视频在线观看欧美| 99九九线精品视频在线观看视频| 亚洲在久久综合| 美女内射精品一级片tv| 亚洲精品aⅴ在线观看| 三级国产精品片| 亚洲天堂av无毛| 免费黄网站久久成人精品| 人人妻人人澡人人看| 亚洲av成人精品一区久久| 日本猛色少妇xxxxx猛交久久| 久久av网站| 美女福利国产在线| 亚洲欧美精品自产自拍| a 毛片基地| 亚洲精品乱码久久久久久按摩| 国产亚洲一区二区精品| 少妇人妻久久综合中文| 大又大粗又爽又黄少妇毛片口| 男女边吃奶边做爰视频| 99re6热这里在线精品视频| 国产高清有码在线观看视频| 欧美日本中文国产一区发布| 国产精品女同一区二区软件| 熟女av电影| 免费大片18禁| 亚洲国产精品999| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 亚洲精品日韩av片在线观看| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载| 午夜福利影视在线免费观看| 国产在线免费精品| 9色porny在线观看| h视频一区二区三区| 国产亚洲91精品色在线| av黄色大香蕉| 亚洲美女视频黄频| 亚洲美女黄色视频免费看| 国产亚洲欧美精品永久| 欧美精品高潮呻吟av久久| 99久久中文字幕三级久久日本| 亚洲国产日韩一区二区| 精品一区在线观看国产| 在线观看免费视频网站a站| 国国产精品蜜臀av免费| 少妇被粗大的猛进出69影院 | 欧美日韩视频高清一区二区三区二| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 在线观看免费视频网站a站| 一边亲一边摸免费视频| 日本欧美视频一区| 一级片'在线观看视频| 精品一区二区三卡| 国产国拍精品亚洲av在线观看| 日韩视频在线欧美| 大片电影免费在线观看免费| 男女无遮挡免费网站观看| 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 一级爰片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 一级片'在线观看视频| 成人美女网站在线观看视频| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 观看av在线不卡| 亚洲美女搞黄在线观看| 人人妻人人添人人爽欧美一区卜| 麻豆精品久久久久久蜜桃| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| 91久久精品电影网| a 毛片基地| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 久久免费观看电影| 少妇熟女欧美另类| 自拍偷自拍亚洲精品老妇| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 一级av片app| 亚洲欧洲国产日韩| 免费少妇av软件| 国产国拍精品亚洲av在线观看| 美女中出高潮动态图| √禁漫天堂资源中文www| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 亚洲三级黄色毛片| 成人特级av手机在线观看| 久久av网站| 久久 成人 亚洲| 色网站视频免费| 国产亚洲精品久久久com| 制服丝袜香蕉在线| 久久久久精品性色| 日韩av在线免费看完整版不卡| 麻豆精品久久久久久蜜桃| 国产一区二区三区av在线| 国产精品久久久久久久久免| 最黄视频免费看| 高清毛片免费看| 最近最新中文字幕免费大全7| 免费少妇av软件| √禁漫天堂资源中文www| a级片在线免费高清观看视频| 在线观看美女被高潮喷水网站| 我的老师免费观看完整版| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 国产成人aa在线观看| 只有这里有精品99| 特大巨黑吊av在线直播| 桃花免费在线播放| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 女人久久www免费人成看片| 18禁在线无遮挡免费观看视频| 免费观看av网站的网址| 热99国产精品久久久久久7| 亚洲激情五月婷婷啪啪| 免费看日本二区| 亚洲伊人久久精品综合| 青春草视频在线免费观看| 99九九线精品视频在线观看视频| www.av在线官网国产| 丰满少妇做爰视频| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡 | 亚洲三级黄色毛片| 国产高清国产精品国产三级| 国产探花极品一区二区| 一区二区三区免费毛片| 国产精品一区二区性色av| 最近2019中文字幕mv第一页| 国产真实伦视频高清在线观看| 老熟女久久久| 一边亲一边摸免费视频| 尾随美女入室| 黄色毛片三级朝国网站 | 最近手机中文字幕大全| 国产av码专区亚洲av| 乱系列少妇在线播放| 午夜av观看不卡| 中文字幕人妻熟人妻熟丝袜美| 久久久国产一区二区| 亚洲性久久影院| 丰满少妇做爰视频| 一级,二级,三级黄色视频| 男人狂女人下面高潮的视频| 我的女老师完整版在线观看| 欧美变态另类bdsm刘玥| 精品少妇久久久久久888优播| 亚洲av二区三区四区| 高清欧美精品videossex| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 久久久久视频综合| 日韩在线高清观看一区二区三区|