• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Valley-resolved transport in zigzag graphene nanoribbon junctions

    2021-11-13 05:37:22MingLiZiLiangCaiZhiBoFengandZhengYinZhao
    Communications in Theoretical Physics 2021年11期

    Ming Li Zi-Liang Cai,Zhi-Bo Feng and Zheng-Yin Zhao

    College of Science,Xuchang University,Xuchang 461000,China

    Abstract Applying the transfer matrix and Green’s function methods,we study the valley-resolved transport properties of zigzag graphene nanoribbon(ZGNR)junctions.The width of the left and right ZGNRs are NL and NR,and NL ≥NR.The step/dip positions of the conductance G,the intravalley transmission coefficients (TKK andTK ′K ′),and the valley polarization efficiencyP KK′correspond to the subband edges of the right/left ZGNR that are controlled by NR/NL.The intervalley transmission coefficients(TK K ′andTK ′K)exhibit peaks at most of the subband edge of the left and right ZGNRs.In the bulk gap of the right ZGNR,TK K ′=T K ′K=0,andP KK ′=±1,the valley polarization is well preserved.As NR increases,the energy region forP KK ′=±1 decreases.When NL is fixed and NR decreases,G,TKK,TK ′K ′andP KK ′exhibit more and more dips,and the peaks ofTK K ′(T K ′K) become more and more high,especially when(NL-NR)/2 is odd.These characters are quite useful for manipulating the valley dependent transport properties of carriers in ZGNR junctions by modulating NL or NR,and our results are helpful to the design of valleytronics based on ZGNR junctions.

    Keywords: transfer matrix method,ZGNR junction,valley polarization,Landauer–Büttiker formula,edge state

    1.lntroduction

    With the progresses in fabricating stable graphene nanostructures,various electronic and optical properties of these structures,including graphene quantum dots,have been explored [1–3].Since graphene has exceptional electron and thermal transport properties,it is a promising material that can be used in advanced low-energy electronic devices [4–7].Zhang and Wu et al [8–10] investigated the resonant tunneling through S- and U-shaped graphene nanoribbons(GNRs)and graphene nanorings in between two semi-infinite zigzag GNR leads,thus tunability of the resonant tunneling is realized by only changing the geometry of the GNRs.Furthermore,a GNR junction can be formed by interconnecting two semi-infinite GNRs with different widths[11].Moreover,the conductance of GNR metal–semiconductor junctions,as the key elements in all-graphene circuits,has been studied in detail recently[12–14].Due to the energy mismatch between subbands in the left and right zigzag graphene nanoribbons(ZGNRs),a traveling carrier is scattered by the junction interface,which causes a finite junction conductance[11,15,16].

    In addition to charge and spin,carriers in graphene host an extra valley degree of freedom,because there are two degenerate and inequivalent valleys (K andK′ ) at the corners of the first Brillouin zone[17–19].The valley-dependent properties in graphene have attracted a great amount of interest [7,20–25].A.Rycerz et al [21] proposed a valley filter and an electrostatically controlled valley valve based on a quantum point contact in a graphene sheet.Wu et al [25] showed that the gauge fields induced by strain can lead to valley-dependent transport phenomena in a single layer of graphene,such as the Brewster angles and the Goos–H?nchen effect.Other novel two-dimensional honeycomb lattice materials,such as silicene[26] and transition metal dichalcogenides [27] also have the valley degree of freedom.So the new field of valleytronics is born out of the manipulation of valley degree of freedom for carriers in these materials [20,28–31].

    Moreover,to utilize the valley as an information carrier,the valley polarization efficiency of the transmission current is a key quantity.However,the valley degree of freedom is dependent on the momentum and highly related to the translation invariance of the crystal lattice.Therefore,for systems with interfaces,disorders as well as bias voltages,translational symmetry (TS) is broken and the momentum is not a good quantum number [32].For systems lacking TS,the valley depolarization effect can be induced even without any disorder,which must be considered in the design of valleytronic devices[33].It is therefore interesting to ask,what will the valley transport be like in a GNR junction? We wonder under such circumstances,whether the valley filter still perform high valley efficiency.What is more,modulation of the valley-resolved transport properties of ZGNR junctions by the width of the left and right ZGNRs has not been studied,which is crucial for designing valley filter with high efficiency based on ZGNR junctions.Thus in this paper,we main study ZGNR junctions.The left and right leads are composed of semi-infinite ZGNRs,and the central conduction region is marked by a box as shown in figure 1,which is different from that in [8–10,21,25].By applying the transfer matrix and Green’s function methods and analyzing the width dependent conductance channels(the edge states,the conduction subbands and valence subbands),we systematically investigate the dependence of valley-resolved transport properties of ZGNR junctions on the width of the left and right ZGNRs,and results are analyzed in detail.Step positions of G,TKK,TK′K′andPKK′are decided by NR.As NRincreases,G,TKK,TK′K′and their step numbers increase,the energy region forPKK′= ±1decreases.For a fixed NLand decreasing NR,G,TKKandTK′K′decrease,outside the bulk gap of the right ZGNR,G(TKK,TK′K′andPKK′)exhibits more and more dips,and the peak values ofTKK′(TK′K)become more and more large,especially when (NL-NR)/2 is odd.These transmission characters may be utilized to manipulate the valley degree of electrons in ZGNR junctions in the future.

    The rest of the paper is organized as follows.In section 2,we briefly introduce the transfer matrix and Green’s function methods (the detailed descriptions are given in the appendix),the tight-binding model and the specific structure of ZGNR junctions.Results of numerical calculation and discussion are given in section 3.Finally,we give the conclusion in section 4.

    2.Model and method

    Figure 1 shows the geometry of ZGNR junctions,the left and right leads are composed of semi-infinite ZGNRs,and the central conduction region is marked by a box.Here NLand NRdenote the width of the left and right ZGNRs,and NL≥NR.The Hamiltonian for the ZGNR junction reads [34–37]

    Figure 1.The geometry of ZGNR junctions.In the upper/lower panel,(NL-NR)/2 is even/odd.The central conduction region is marked by a box.

    Here t=2.75 eV is the transfer energy of the nearest neighbor hopping,〈ij〉 represents the nearest neighbors.For ZGNR junctions,we assume that all edge sites at the interface are terminated by hydrogen atoms,and neglect the difference between the values of the site energy and the transfer energy for the atoms at the edge and the center [3,38,39].

    Adopting the transfer matrix and Green’s function method (see the appendix for detail),the physical transmission matrix element from mode(channel)i in the left terminal to mode (channel) j in the right terminal tijis calculated [32,40–44].The valley-resolved transmission coefficients are obtained by collecting tijin two separate valleys (K andK′ ),and the transmission coefficient from valley K in the left terminal to valleyK′ in the right terminal is [32,44]

    The linear conductance of the junction at zero temperature can be calculated byTK′K′) [45].To investigate the valley polarization of transmission current,the valley polarization efficient is defined as [32]

    3.Results and discussion

    Figure 2 shows the intravalley transmission coefficients (TKKandTK′K′)as a function of EFfor a ZGNR with NL=NR=40 and the corresponding energy band structure.Indeed,when EF>0,the step positions of TKKandTK′K′coincide with the minima of the conduction subbands,while they coincide with the maxima of the valence subbands when EF<0.Therefore,the plateau height/step positions of TKKandTK′K′are determined by the number/edges of occupied transverse subbands that are controlled by the ribbon width N.As can be seen in figures 2(a) and 2(b),TKK/TK′K′jumps from 0 to 1 at EF=0,then increases step by step with decreasing/increasing EF,andTKK/TK′K′jumps from 0 to 1 when EFcrosses the lowest conduction subband/topmost valence subband,then increases step by step with increasing/decreasing EF.In fact,this is also the case for G andPKK′,as shown in figure 3.Around EF=0,there are two conducting channels contributing to G by the edge states,but only the one atK′/Kvalley contributes to G when EF>0/EF<0,assuming the current is right-going in the device.Thus the carriers can transmit through theK′valley andTK′K′(EF) >TK K(EF)when EF>0,and through the K valley andTK′K′(EF) <TK K(EF) when EF<0 [17].If there are no edge states,the conductance is zero around EF=0 and a conductance gap will appear,since there are no conducting channels.So the energy region between the top of the first valence subband and the bottom of the first conduction subband is defined as the bulk gap region.

    Figure 2.(a) TKK andTK ′K ′ versus EF and (b) the band structure for a ZGNR with N=40.

    Figure 3.G,TKK,TK ′K ′andP KK ′versus EF for ZGNRs with different width N.

    Figure 4.G,TKK,TK ′K ′,TK K′,andTK ′K versus EF for ZGNR junctions with NL=40 and different NR.In the left/right panels,(NL-NR)/2 is even/odd.

    In figure 3,we show G,TKK,TK′K′andPKK′as a function of EFfor pure ZGNRs with different width N.G,TKK,TK′K′andPKK′show perfect quantized step-like plateaus and the step height of G is 4e2/h.For a pure ZGNR device,the intervalley transmission coefficients (TKK′andTK′K) are zero.Because the left and right ZGNRs have the same number of conductance channels,which match well at the interface,carriers are not strongly scattered and can transmit only within the same valley.Thus the valley degree of freedom for carriers can be well preserved when they transmit through a pure ZGNR.Step positions of G,TKK,TK′K′andPKK′are decided by the ribbon width N.As N increases,the energy space between subbands decreases rapidly,so G,TKK,TK′K′and their step numbers increase accordingly.In the bulk gap region of a pure ZGNR,becauseTK′K′=1for EF>0 and TKK=1 for EF<0,the full valley polarization (PKK′=±1) can be produced by the zigzag edge states.As N increases,the energy region forPKK′=±1 decreases,and the step number ofPKK′increases.The plateau height of∣PKK′∣are 1,1/3,1/5,1/7,1/9,etc,as can be derived from equation(3)and can be seen in figures 3(b) and (c),because ∣TKK-TK′K′∣ =1,and the sum of TKKandTK′K′are 1,3,5,7,9,etc.In figures 4 and 5,we show G,TKK,TKK′,TK′K,TK′K′andPKK′as a function of EFfor ZGNR junctions with NL=40 and different NR.Compared with pure ZGNRs,the conductance properties of ZGNR junctions show evident differences.Step positions of G,TKK,TK′K′andPKK′are decided by NR,their curves still show obvious plateaus when(NL-NR)/2 is even,but exhibit sharp dips.Because the left and right ZGNRs have different number of conductance channels,which mismatch at the interface,and carriers are strongly scattered,especially when (NL-NR) is large.For(NL-NR)/2 being odd,due to the stronger scattering at the mismatched interface,the conductance plateaus are destroyed to a certain degree,G exhibits sharp dips and even oscillation behavior.But in almost the whole bulk gap region of the right ZGNR,TKK′=0,PKK′=1,the full valley polarization(PKK′=±1) can still be remained.This can be ascribed to the zigzag edge states of the right ZGNR.In the bulk gap region of the right ZGNR,carriers transmit completely through theK′valley when EF>0 and through the K valley when EF<0[17],assuming the current is right-going in the device.So carriers can transmit only within the same valley,and there are no intervalley transmissions (TKK′andTK′Kare zero).Therefore,within the gap interval regime,the valley degree of freedom for carriers can be well preserved,implying that the valley polarization efficiency could be high.

    When NLis fixed and NRdecreases,G,TKK,TK′K′and their step numbers decrease rapidly,they show more and more dips,the energy region forPKK′=±1 increases and the step number ofPKK′also decreases,andTKK′(TK′K) increases outside the bulk gap of the right ZGNR.In figure 5,panels(c)and (d) are the zoom in of panels (a) and (b),respectively,which clearly present the behavior ofPKK′in the high |EF|region.As shown in figures 5(a)and(c),when(NL-NR)/2 is even,∣PKK′∣shows dips outside the bulk gap of the right ZGNR,but the plateaus are basically intact.As shown in figures 5(b) and (d),when (NL-NR)/2 is odd,dips of∣PKK′∣become deeper,plateaus ofPKK′are broken seriously as NRdecreases to a certain degree.Naturally,the intervalley scattering in a pure ZGNR is vanishing.Nevertheless,in ZGNR junctions,when EFis not in the bulk gap of the right ZGNR,carriers may be transmitted from one valley to another (TKK′andTK′Kare not zero),and many deep dips appear in the profile of G,TKK,TK′K′andPKK′,especially when(NL-NR)/2 is large and odd,due to the strong scattering of carriers at the mismatched interface.Therefore,in order to strengthenTKK′(TK′K),we can increase(NL-NR)/2 and let it be odd.However,compared with the intravalley transmission coefficients (TKKandTK′K′),the intervalley transmission coefficients (TKK′andTK′K) are much smaller.Thus the intravalley transmission coefficients(TKKandTK′K′)contribute dominantly to G.So the valley dependent transport properties of carriers in ZGNR junctions can be manipulated by both NLand NR.

    Figure 5.P KK ′versus EF for ZGNR junctions with NL=40 and different NR.In the left (right) panels,(NL-NR)/2 is even (odd).The enlarged area in the lower panels clearly present the behavior ofP KK ′in the high |EF| region.

    Next,in order to further clarify the complex behavior of G andTK′Kin ZGNR junctions,we calculate the corresponding density of states(DOS).In figure 6,G,TK′Kand DOS(the red dot line)versus EFfor ZGNR junctions with NL=40 and NR=16,18 ,36 and 38 are shown,the DOS versus EFfor ZGNRs with NL=NR=40,16,18,36 and 38 are also shown for comparison.Obviously,for ZGNR junctions,step and dip positions of G correspond exactly to the peaks of the DOS.For ZGNRs,the DOS (the blue dash line for N=40 and the green real line for other N) peaks coincide with the edges of the subbands.Either at the subband edges of the left wider or the right narrower ZGNR,the DOS of the ZGNR junction(the red dot line)increases,and even shows peaks.G shows dips at some of the subband edges of the left wider ZGNR where there exists a DOS peak,while G exhibits steps at every subband edge of the right narrower ZGNR,andTK′Kexhibits peaks at most of the subband edges of both the left and right ZGNRs.Therefore,in ZGNR junctions,dip positions of G are determined by the width of the left wider ZGNR NL,step positions of G are determined by the width of the right narrower ZGNR NR,and peak positions ofTK′Kare determined by both NLand NR.For a fixed NLand decreasing NR,by comparing panel(a)/(b)with panel(e)/(f)in figure 6,we can see that a DOS peak(the red dot line)appears at more and more subband edges of the left wider ZGNR,thus G shows more and more dips and the peaks ofTK′Kbecome more and more high,especially when(NL-NR)/2 is odd.As(NL-NR)approaches zero,most dips of G and peaks ofTK′Kdisappear,since most of the DOS peaks (the red dot line)located at the subband edges of the left wider ZGNR disappear,especially when |EF| is not very large,as shown in figures 6(e)and(f)for NR=36 and 38,respectively.Because the energy mismatch between subbands in the left and right ZGNRs decreases,the scattering of carriers at the mismatched interface becomes weaker.The curves of TKK,TK′K′,TKK′andPKK′versus EFcan be analyzed similarly.

    Figure 6.G,TK′ K and DOS(the red dot line)versus EF for ZGNR junctions with NL=40 and NR=16,18,36 and 38,the DOS versus EF for ZGNRs with NL=NR=40,16,18,36 and 38 are also shown for comparison.

    4.Conclusion

    In summary,the valley dependent transport properties of ZGNR junctions are studied by the transfer matrix and Green’s function method.In the bulk gap region of the right ZGNR,TKK′=TK′K=0and the valley polarizationPKK′=±1,thus the valley polarization can be well preserved.Out of the bulk gap of the right ZGNR,the plateau values of∣PKK′∣are 1/3,1/5,1/7,1/9,etc.It is found that step/dip positions of G,TKK,TK′K′andPKK′can be modulated by NR/NLand peaks positions ofTKK′andTK′Kcan be manipulated by both NLand NR.As NRincreases,G,TKK,TK′K′and their step numbers increase,the energy region forPKK′=±1 decreases.When NLis fixed and NRdecreases,outside the bulk gap of the right ZGNR,G (TKK,TK′K′andPKK′) shows more and more dips,andTKK′(TK′K) has more and more high peaks,especially when (NL-NR)/2 is odd.SoTKK′andTK′Kcan be strengthened by increasing (NL-NR)/2 and letting it be odd.However,compared with the intravalley transmission coefficients (TKKandTK′K′),the intervalley transmission coefficients (TKK′andTK′K) are much smaller.So the intravalley transmission contributes dominantly to G.Our findings may provide valuable guidance for the design and fabrication of valleytronic devices based on ZGNR junctions.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Henan Province under Grant No.212300410388,and the“316” Project Plan of Xuchang University.

    Appendix

    Let us introduce the transfer matrix and Green’s function method in detail.Assuming the lead is characterized by the unit cell Hamiltonian h and nearest-neighbor hopping matrix t=Hi,i+1.Here the number of basis states in each unit cell is assumed to be M and thus h and t are M×M matrices.The wave propagation in this lead is governed by the uniform Schr?dinger equation [9,41,42]

    here I is the M×M identity matrix and ciis a vector of dimension M containing the wave-function coefficients on all sites and/or orbitals of the ith unit cell.Assuming the thickness of each unit cell in the lead is a,and imposing the Bloch symmetry ci=λci-1,ci+1=λ2ci-1(λ ≡eikais the Bloch factor),the above equation can be written as[9,41,42]

    The above equation can be rewritten as a generalized 2M×2M eigenvalue problem [9,41]

    For a given energy E and without imposing any boundary conditions,equation (A3) can be solved to yield 2M eigenmodes,which are classified into M right-going ones and M left-going ones according to the characteristics of their corresponding k(λ)[41].The eigenvalues are denoted as λ±,iwhere i=1,···,M,and the corresponding eigenvectors are u±,i,which are M×1 matrices.Here + and - correspond to the right-going and left-going waves,respectively.

    The propagation matrices P±for left-going and rightgoing waves can be written as [9,40–42]

    withU±=[∣u±,1〉 ,···,∣u±,M〉].The group velocity of the eigenmode i in the p lead can be calculated by [41,42]

    Generally,the layered system can be divided into the semi-infinite left lead L,the central region C (unit cells 1 ≤m ≤N),and the semi-infinite right lead R.The Green’s function of the central region can be expressed as

    where H is the effective Hamiltonian for the central region,and ΣL,Rare self-energy corrections due to the left and right leads,which can be calculated by [41,42]

    The physical transmission matrix element from the rightgoing eigenmode i in the left terminal to the right-going eigenmode j in the right terminal is computed by[32,40–44]

    hereQ0= (E+ i0+)I-his the(N,1) block of G,which relates the first unit cell to the last unit cell of the central region,and aL(aR) is the thickness of the unit cell in the left (right) lead.

    Thus the valley-resolved transmission coefficients are obtained by collecting tijin two separate valleys (K andK′ ),and the transmission coefficient from valley K in the left terminal to valleyK′ in the right terminal is [32,44]

    ORClD iDs

    男女之事视频高清在线观看 | 又大又黄又爽视频免费| 久久久久久久久免费视频了| 色婷婷久久久亚洲欧美| 少妇精品久久久久久久| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 久久久久久久精品精品| 日韩 亚洲 欧美在线| 精品亚洲成a人片在线观看| 精品少妇黑人巨大在线播放| 哪个播放器可以免费观看大片| 国产精品人妻久久久影院| 黄色毛片三级朝国网站| 乱人伦中国视频| 黄色视频不卡| 哪个播放器可以免费观看大片| 黑人欧美特级aaaaaa片| 国产精品国产三级国产专区5o| 午夜免费观看性视频| 亚洲av日韩在线播放| 亚洲成国产人片在线观看| 精品卡一卡二卡四卡免费| 欧美成人精品欧美一级黄| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| 亚洲情色 制服丝袜| 亚洲欧美日韩另类电影网站| 亚洲,欧美,日韩| 十八禁人妻一区二区| 2018国产大陆天天弄谢| 天堂8中文在线网| av福利片在线| 国产亚洲av高清不卡| 国产精品亚洲av一区麻豆 | 色播在线永久视频| 在线观看国产h片| 日韩av免费高清视频| 一本—道久久a久久精品蜜桃钙片| 久久久久精品久久久久真实原创| 日本av免费视频播放| 满18在线观看网站| 国产一区二区激情短视频 | 制服人妻中文乱码| 91老司机精品| 国精品久久久久久国模美| 亚洲精品久久午夜乱码| av在线播放精品| 无限看片的www在线观看| 国产片特级美女逼逼视频| 日韩 亚洲 欧美在线| 一二三四在线观看免费中文在| 免费黄色在线免费观看| 欧美 日韩 精品 国产| 亚洲图色成人| 国产野战对白在线观看| 熟女av电影| 日本黄色日本黄色录像| 99热国产这里只有精品6| av在线播放精品| 久久久久久久国产电影| 国产免费现黄频在线看| 最近最新中文字幕免费大全7| netflix在线观看网站| www.自偷自拍.com| 欧美xxⅹ黑人| 高清av免费在线| xxxhd国产人妻xxx| 丁香六月欧美| 天天躁夜夜躁狠狠久久av| 国产精品 国内视频| 免费人妻精品一区二区三区视频| 青草久久国产| 成人免费观看视频高清| 亚洲视频免费观看视频| 国产男靠女视频免费网站| 乱人伦中国视频| 亚洲激情在线av| 国产欧美日韩精品亚洲av| 国产高清激情床上av| 亚洲伊人色综图| 国产亚洲精品久久久久久毛片| 成人永久免费在线观看视频| 日日爽夜夜爽网站| 色综合婷婷激情| 欧美成狂野欧美在线观看| 男女下面进入的视频免费午夜 | 国产av一区二区精品久久| 成人精品一区二区免费| 亚洲精品久久国产高清桃花| 亚洲精品一区av在线观看| 亚洲情色 制服丝袜| 男女下面插进去视频免费观看| 少妇粗大呻吟视频| 久久久久精品国产欧美久久久| 大陆偷拍与自拍| 悠悠久久av| √禁漫天堂资源中文www| 一个人免费在线观看的高清视频| 国产视频一区二区在线看| 国产区一区二久久| 99国产精品免费福利视频| 美女国产高潮福利片在线看| 精品无人区乱码1区二区| 久久中文看片网| 又黄又爽又免费观看的视频| 日韩有码中文字幕| 久久精品国产清高在天天线| 国产亚洲精品一区二区www| 国产欧美日韩一区二区精品| 国产一区在线观看成人免费| 国产成人免费无遮挡视频| 大香蕉久久成人网| 人人妻人人澡人人看| 日本三级黄在线观看| 久久热在线av| 国产成人精品久久二区二区91| 日韩免费av在线播放| 黄片播放在线免费| 久久久久久久精品吃奶| av天堂在线播放| 久久热在线av| 色综合站精品国产| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 久久香蕉精品热| 国产亚洲欧美精品永久| 大陆偷拍与自拍| 午夜精品国产一区二区电影| 级片在线观看| av视频在线观看入口| 女人高潮潮喷娇喘18禁视频| 免费观看精品视频网站| 国产精品 国内视频| 免费少妇av软件| 咕卡用的链子| 国产精品美女特级片免费视频播放器 | 制服丝袜大香蕉在线| 自线自在国产av| 中文字幕久久专区| 亚洲成av人片免费观看| 丰满的人妻完整版| 97人妻天天添夜夜摸| 女人被狂操c到高潮| 国产av精品麻豆| 91成人精品电影| 亚洲午夜理论影院| 在线观看日韩欧美| 91精品三级在线观看| 亚洲电影在线观看av| 亚洲天堂国产精品一区在线| 电影成人av| 国产蜜桃级精品一区二区三区| 曰老女人黄片| 国产亚洲欧美精品永久| 黄频高清免费视频| 国产三级在线视频| 免费在线观看视频国产中文字幕亚洲| 日本vs欧美在线观看视频| 色综合站精品国产| 此物有八面人人有两片| 久久 成人 亚洲| 国产麻豆成人av免费视频| videosex国产| 欧美+亚洲+日韩+国产| 久久 成人 亚洲| 久久这里只有精品19| av在线天堂中文字幕| 成年人黄色毛片网站| 国产欧美日韩一区二区精品| 后天国语完整版免费观看| 精品欧美国产一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品美女特级片免费视频播放器 | 黄色毛片三级朝国网站| 精品无人区乱码1区二区| 午夜亚洲福利在线播放| 国产一区在线观看成人免费| 亚洲欧美精品综合一区二区三区| av天堂久久9| 别揉我奶头~嗯~啊~动态视频| 女性生殖器流出的白浆| 神马国产精品三级电影在线观看 | 一进一出抽搐动态| aaaaa片日本免费| 国产成人欧美在线观看| 少妇的丰满在线观看| 熟女少妇亚洲综合色aaa.| 啦啦啦韩国在线观看视频| av片东京热男人的天堂| 亚洲国产精品成人综合色| 免费在线观看完整版高清| 好男人电影高清在线观看| 国产成+人综合+亚洲专区| 亚洲avbb在线观看| 给我免费播放毛片高清在线观看| 国产亚洲欧美在线一区二区| 亚洲少妇的诱惑av| 九色亚洲精品在线播放| 亚洲在线自拍视频| 精品一区二区三区四区五区乱码| 国产高清有码在线观看视频 | 欧美黄色片欧美黄色片| 久久人人97超碰香蕉20202| av电影中文网址| 欧美国产日韩亚洲一区| 亚洲成av人片免费观看| 国产精品爽爽va在线观看网站 | 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美精品济南到| 亚洲性夜色夜夜综合| 国产高清激情床上av| 黄色 视频免费看| 国产亚洲精品一区二区www| 日本在线视频免费播放| 一级作爱视频免费观看| 亚洲精品中文字幕一二三四区| 久久天堂一区二区三区四区| 伊人久久大香线蕉亚洲五| 中文字幕精品免费在线观看视频| 日韩欧美在线二视频| 久99久视频精品免费| 男女之事视频高清在线观看| 国产精品,欧美在线| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 精品熟女少妇八av免费久了| 少妇裸体淫交视频免费看高清 | 欧美激情 高清一区二区三区| 男人舔女人的私密视频| 欧美不卡视频在线免费观看 | 亚洲精品一区av在线观看| 一级黄色大片毛片| 亚洲av成人一区二区三| 午夜久久久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本a在线网址| 亚洲熟妇中文字幕五十中出| 亚洲国产精品999在线| 激情视频va一区二区三区| 欧美乱码精品一区二区三区| 国产片内射在线| 精品国产一区二区久久| 在线观看午夜福利视频| 大陆偷拍与自拍| 深夜精品福利| 中文字幕人成人乱码亚洲影| 久久久久久人人人人人| 亚洲色图av天堂| 9191精品国产免费久久| 九色国产91popny在线| 成年女人毛片免费观看观看9| 后天国语完整版免费观看| 色播亚洲综合网| 91成年电影在线观看| 宅男免费午夜| 日韩成人在线观看一区二区三区| 身体一侧抽搐| 国产精品99久久99久久久不卡| 99久久99久久久精品蜜桃| 午夜久久久久精精品| 国产单亲对白刺激| 欧美日韩福利视频一区二区| 亚洲精华国产精华精| 俄罗斯特黄特色一大片| 亚洲精品美女久久av网站| 在线观看免费视频网站a站| 久久欧美精品欧美久久欧美| 动漫黄色视频在线观看| 老司机在亚洲福利影院| 国产亚洲精品综合一区在线观看 | 国产欧美日韩一区二区三区在线| 亚洲专区国产一区二区| 亚洲最大成人中文| 咕卡用的链子| 中文字幕av电影在线播放| 成人18禁高潮啪啪吃奶动态图| 久久久久国产一级毛片高清牌| 女警被强在线播放| 久久 成人 亚洲| 麻豆成人av在线观看| 涩涩av久久男人的天堂| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 69精品国产乱码久久久| 老司机福利观看| 亚洲第一欧美日韩一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国内精品久久久久久久电影| 日韩有码中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产精华一区二区三区| 视频在线观看一区二区三区| 亚洲黑人精品在线| 久久精品国产亚洲av高清一级| 亚洲人成77777在线视频| 女生性感内裤真人,穿戴方法视频| 国产成年人精品一区二区| 欧美日本中文国产一区发布| 一级作爱视频免费观看| www.熟女人妻精品国产| 国产熟女xx| 妹子高潮喷水视频| 精品一品国产午夜福利视频| 国产av精品麻豆| av福利片在线| 亚洲av成人一区二区三| 女人爽到高潮嗷嗷叫在线视频| 女人爽到高潮嗷嗷叫在线视频| 咕卡用的链子| 免费在线观看视频国产中文字幕亚洲| 国产精品亚洲美女久久久| 国产成+人综合+亚洲专区| 熟妇人妻久久中文字幕3abv| 又黄又粗又硬又大视频| 国产精品乱码一区二三区的特点 | 久久中文看片网| 国产高清有码在线观看视频 | 99国产精品一区二区蜜桃av| cao死你这个sao货| 亚洲国产欧美一区二区综合| 电影成人av| 久久久久国内视频| 大香蕉久久成人网| 国产av又大| 欧美日韩一级在线毛片| 国产成人一区二区三区免费视频网站| 免费在线观看黄色视频的| 国产精品美女特级片免费视频播放器 | 成人国产综合亚洲| 九色亚洲精品在线播放| 亚洲成人免费电影在线观看| 欧美日韩黄片免| 12—13女人毛片做爰片一| 亚洲专区中文字幕在线| 自线自在国产av| 无遮挡黄片免费观看| 97人妻精品一区二区三区麻豆 | 亚洲欧洲精品一区二区精品久久久| 天堂影院成人在线观看| 欧美久久黑人一区二区| 啦啦啦韩国在线观看视频| 午夜日韩欧美国产| 熟妇人妻久久中文字幕3abv| 曰老女人黄片| 日韩中文字幕欧美一区二区| 色哟哟哟哟哟哟| 国产精品影院久久| 亚洲自拍偷在线| 精品人妻在线不人妻| 亚洲男人天堂网一区| 国产亚洲欧美在线一区二区| 免费看美女性在线毛片视频| 久久亚洲真实| 欧美乱妇无乱码| 热99re8久久精品国产| 精品久久蜜臀av无| 国产av一区在线观看免费| 国产成人av激情在线播放| 99国产精品99久久久久| 欧美乱码精品一区二区三区| 手机成人av网站| 久久婷婷成人综合色麻豆| 国产av在哪里看| 男女做爰动态图高潮gif福利片 | 大陆偷拍与自拍| 一级片免费观看大全| 国产熟女午夜一区二区三区| 免费在线观看亚洲国产| 国产激情久久老熟女| 夜夜躁狠狠躁天天躁| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 成人特级黄色片久久久久久久| 老熟妇仑乱视频hdxx| 午夜影院日韩av| 一进一出好大好爽视频| 国产一区二区在线av高清观看| 丝袜美腿诱惑在线| 在线观看午夜福利视频| 在线观看日韩欧美| 色综合欧美亚洲国产小说| 久久香蕉激情| 久久久精品国产亚洲av高清涩受| 免费搜索国产男女视频| 精品欧美国产一区二区三| 成人国语在线视频| 黑人欧美特级aaaaaa片| 美国免费a级毛片| 亚洲熟女毛片儿| 人人妻人人澡欧美一区二区 | 亚洲人成伊人成综合网2020| 色尼玛亚洲综合影院| 成人精品一区二区免费| 欧美精品亚洲一区二区| 成人国产一区最新在线观看| 久久婷婷人人爽人人干人人爱 | 日本三级黄在线观看| 一级毛片高清免费大全| 久久国产精品影院| 99国产极品粉嫩在线观看| 国产精品久久久人人做人人爽| 露出奶头的视频| 又大又爽又粗| 成人国语在线视频| 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 一区二区三区高清视频在线| 国产精品香港三级国产av潘金莲| 国产精品日韩av在线免费观看 | 久久国产亚洲av麻豆专区| 国产精品1区2区在线观看.| 日韩精品青青久久久久久| 午夜免费观看网址| 久9热在线精品视频| 香蕉久久夜色| 日韩精品免费视频一区二区三区| 啪啪无遮挡十八禁网站| √禁漫天堂资源中文www| 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕| 免费在线观看亚洲国产| 中文字幕最新亚洲高清| 成人国产综合亚洲| 亚洲美女黄片视频| 久久久国产精品麻豆| 久久午夜亚洲精品久久| 在线播放国产精品三级| 熟妇人妻久久中文字幕3abv| 日韩免费av在线播放| 日韩欧美三级三区| 大型av网站在线播放| 免费不卡黄色视频| 可以在线观看毛片的网站| 中文亚洲av片在线观看爽| 国产主播在线观看一区二区| 久久人妻福利社区极品人妻图片| 精品熟女少妇八av免费久了| 国内精品久久久久精免费| 午夜a级毛片| 午夜精品久久久久久毛片777| 亚洲一区二区三区不卡视频| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 久久精品国产综合久久久| avwww免费| 波多野结衣一区麻豆| 无限看片的www在线观看| 精品乱码久久久久久99久播| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 亚洲第一青青草原| 亚洲精品久久国产高清桃花| www.精华液| 国产精品国产高清国产av| 一级a爱片免费观看的视频| 俄罗斯特黄特色一大片| 精品国产一区二区久久| 久久 成人 亚洲| 一进一出抽搐gif免费好疼| 99国产精品免费福利视频| 国产精华一区二区三区| 九色国产91popny在线| 午夜两性在线视频| 精品国产美女av久久久久小说| 亚洲黑人精品在线| 欧美中文综合在线视频| 色老头精品视频在线观看| 巨乳人妻的诱惑在线观看| 久久人妻福利社区极品人妻图片| 97超级碰碰碰精品色视频在线观看| 久久国产亚洲av麻豆专区| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 久久久国产成人免费| 欧美最黄视频在线播放免费| 久久婷婷成人综合色麻豆| 国产欧美日韩精品亚洲av| 一区在线观看完整版| 国产精品国产高清国产av| 久久人妻熟女aⅴ| 亚洲国产日韩欧美精品在线观看 | 国产亚洲欧美在线一区二区| 日本一区二区免费在线视频| 亚洲中文日韩欧美视频| 亚洲少妇的诱惑av| 51午夜福利影视在线观看| 午夜福利成人在线免费观看| 一边摸一边抽搐一进一出视频| 国产又色又爽无遮挡免费看| 亚洲国产欧美一区二区综合| 国产片内射在线| 精品一区二区三区视频在线观看免费| 欧美黑人欧美精品刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久久人妻蜜臀av | 色综合亚洲欧美另类图片| 亚洲五月婷婷丁香| 国产99久久九九免费精品| 此物有八面人人有两片| 91av网站免费观看| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| 91成人精品电影| av网站免费在线观看视频| 国产aⅴ精品一区二区三区波| 色哟哟哟哟哟哟| 亚洲av电影在线进入| 中文字幕色久视频| 精品不卡国产一区二区三区| www.999成人在线观看| 精品一区二区三区四区五区乱码| 又黄又粗又硬又大视频| 精品人妻在线不人妻| tocl精华| 香蕉久久夜色| 午夜福利一区二区在线看| 精品欧美国产一区二区三| 国产亚洲精品av在线| avwww免费| 波多野结衣一区麻豆| 国产亚洲精品av在线| 一区福利在线观看| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 男女下面进入的视频免费午夜 | 97碰自拍视频| 亚洲aⅴ乱码一区二区在线播放 | 成人av一区二区三区在线看| 欧美国产精品va在线观看不卡| 男女下面进入的视频免费午夜 | 大型黄色视频在线免费观看| 18禁美女被吸乳视频| 久久人妻av系列| 国产男靠女视频免费网站| 午夜福利在线观看吧| 一级毛片高清免费大全| 午夜a级毛片| 操出白浆在线播放| 少妇熟女aⅴ在线视频| 99国产精品免费福利视频| 成年女人毛片免费观看观看9| 国产亚洲精品久久久久久毛片| 久久精品人人爽人人爽视色| 精品久久久久久成人av| 日本免费一区二区三区高清不卡 | 免费观看精品视频网站| 亚洲第一av免费看| 制服诱惑二区| 久久精品亚洲熟妇少妇任你| 岛国视频午夜一区免费看| 在线av久久热| 色哟哟哟哟哟哟| 国产成人精品无人区| 国产99久久九九免费精品| 久久狼人影院| 99久久国产精品久久久| 麻豆成人av在线观看| 国产精品精品国产色婷婷| 国产日韩一区二区三区精品不卡| 免费看a级黄色片| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 久久久水蜜桃国产精品网| 午夜久久久在线观看| 97碰自拍视频| 午夜福利视频1000在线观看 | 亚洲精品美女久久久久99蜜臀| 精品欧美一区二区三区在线| 悠悠久久av| 久久精品成人免费网站| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区蜜桃| 99riav亚洲国产免费| 国产精品亚洲一级av第二区| 一区在线观看完整版| 黄色 视频免费看| 麻豆国产av国片精品| 悠悠久久av| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费 | 精品第一国产精品| 亚洲男人天堂网一区| av天堂久久9| 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 国产高清视频在线播放一区| 欧美成人一区二区免费高清观看 | 国产亚洲欧美精品永久| 亚洲少妇的诱惑av| av福利片在线| 国产一区二区三区视频了| 麻豆av在线久日| 色老头精品视频在线观看| 香蕉丝袜av| 精品国产国语对白av| 国产午夜精品久久久久久| 久久国产精品人妻蜜桃| 午夜a级毛片| 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 99香蕉大伊视频| 身体一侧抽搐| 午夜福利视频1000在线观看 | 波多野结衣一区麻豆| 日韩欧美国产一区二区入口| 亚洲成a人片在线一区二区| 97人妻精品一区二区三区麻豆 | 久久精品国产亚洲av高清一级|